[1] 李增学,张功成,李莹,等. 中国海域区古近纪含煤盆地与煤系分布研究[J]. 地学前缘,2012,19(4):314-326.

Li Zengxue, Zhang Gongcheng, Li Ying, et al. The Paleogene coal-bearing basin and coal-measures distribution of China sea area[J]. Earth Science Frontiers, 2012, 19(4): 314-326.
[2] 刘群,李银彩,闫东兰,等. 中国中、新生代陆源碎屑—化学岩型盐类沉积[M]. 北京:北京科学技术出版社,1987:1-154.

Liu Qun, Li Yincai, Yan Donglan, et al. Mesozoic and Cenozoic terrigenous clastic-chemical rock salt deposits in China[M]. Beijing: Beijing Science and Technology Press, 1987: 1-154.
[3] 刁海忠,王娟,王继国. 山东古近纪含膏盆地的断裂构控矿作用及成矿模式探讨[J]. 矿业工程,2019,17(4):8-11.

Diao Haizhong, Wang Juan, Wang Jiguo. Discussion on ore-controlling of fracture structure and metallogenic model in Paleogene gypsum basin, Shandong province[J]. Mining Engineering, 2019, 17(4): 8-11.
[4] 雷国良,张虎才,朱芸,等. 湖相沉积物酸溶与酸不溶组分常量元素的地球化学行为及其环境意义[J]. 山地学报,2013,31(2):174-183.

Lei Guoliang, Zhang Hucai, Zhu Yun, et al. Geochemical behavior of acid soluble and insoluble fractions and their application to paleoenvironment reconstruction of lacustrine sediment[J]. Journal of Mountain Science, 2013, 31(2): 174-183.
[5] Talbot M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates[J]. Chemical Geology: Isotope Geoscience Section, 1990, 80(4): 261-279.
[6] 吴敬禄. 青藏高原RM孔自生碳酸盐稳定同位素组成及其古气候[J]. 地理科学,1997,17(1):19-24.

Wu Jinglu. Compositions of 18O and 13C in various carbonates and the significance of core RM in the Zoie Basin[J]. Scientia Geographica Sinica, 1997, 17(1): 19-24.
[7] Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7/8): 811-831.
[8] 吕凤琳,刘成林,焦鹏程,等. 罗布泊中更新世以来盐湖碳酸盐碳氧同位素组成及其古环境意义[J]. 地质学报,2018,92(8):1589-1604.

Fenglin Lü, Liu Chenglin, Jiao Pengcheng, et al. Carbon and oxygen isotopic compositions of the lacustrine carbonate in Lop Nur since the Mid-Pleistocene and their paleoenvironment significance[J]. Acta Geologica Sinica, 2018, 92(8): 1589-1604.
[9] Zhu G, Jiang D Z, Zhang B L, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103.
[10] 赵田,朱光,向必伟,等. 郯庐断裂带起源机制的探讨[J]. 矿物岩石地球化学通报,2016,35(6):1120-1140,1071.

Zhao Tian, Zhu Guang, Xiang Biwei, et al. Discussion on initial mechanism of the Tan-Lu Fault Zone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(6): 1120-1140, 1071.
[11] 李守军,郑德顺,蔡进功,等. 鲁北和鲁西南地区古近纪盆地沉积特征与控制因素探讨[J]. 地质论评,2003,49(3):225-232.

Li Shoujun, Zheng Deshun, Cai Jingong, et al. Sedimentary characteristics and controlling factors of basins in the north Shandong and southwest Shandong in Palaeogene[J]. Geological Review, 2003, 49(3): 225-232.
[12] 王万奎,王玉玲,李艳双. 鲁西地区新生代非金属矿含矿沉积建造[J]. 山东地质,1996,12(2):77-91.

Wang Wankui, Wang Yuling, Li Yanshuang. The Cenozoic ore-bearing sedimentary formations of nonmetallic minerals in western Shandong[J]. Geology of Shandong, 1996, 12(2): 77-91.
[13] Fontes J C, Gasse F, Gibert E. Holocene environmental changes in Lake Bangong Basin (western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1/2): 25-47.
[14] Liu W G, Li X Z, Zhang L, et al. Evaluation of oxygen isotopes in carbonate as an indicator of lake evolution in arid areas: The modern Qinghai Lake, Qinghai-Tibet Plateau[J]. Chemical Geology, 2009, 268(1/2): 126-136.
[15] Murphy J T, Lowenstein T K, Pietras J T. Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak-Laney member transition zone[J]. Sedimentary Geology, 2014, 314: 75-91.
[16] McCormack J, Nehrke G, Jöns N, et al. Refining the interpretation of lacustrine carbonate isotope records: Implications of a mineralogy-specific Lake Van case study[J]. Chemical Geology, 2019, 513: 167-183.
[17] 张成君,郑绵平, Prokopenko A,等. 博斯腾湖碳酸盐和同位素组成的全新世古环境演变高分辨记录及与冰川活动的响应[J]. 地质学报,2007,81(12):1658-1671.

Zhang Chengjun, Zheng Mianping, Prokopenko A, et al. The palaeoenvironmental variation from the high-resolution record of the Holocene sediment carbonate and isotopic composition in Bosten Lake and responding to glacial activity[J]. Acta Geologica Sinica, 2007, 81(12): 1658-1671.
[18] Manuella F C, Ventura G D, Galdenzi F, et al. Sr-rich aragonite veins in Hyblean serpentinized peridotite xenoliths (Sicily, Italy): Evidence for abyssal-type carbonate metasomatism[J]. Lithos, 2019, 326-327: 200-212.
[19] Dean W, Rosenbaum J, Skipp G, et al. Unusual Holocene and Late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA[J]. Sedimentary Geology, 2006, 185(1/2): 93-112.
[20] Land L S. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3/4): 361-368.
[21] 张亦凡,马怡飞,姚奇志,等. “白云石问题”及其实验研究[J]. 高校地质学报,2015,21(3):395-406.

Zhang Yifan, Ma Yifei, Yao Qizhi, et al. “Dolomite problem” and experimental studies of dolomite formation[J]. Geological Journal of China Universities, 2015, 21(3): 395-406.
[22] Yuan J Y, Huang C G, Zhao F, et al. Carbon and oxygen isotopic compositions, and palaeoenvironmental significance of saline lacustrine dolomite from the Qaidam Basin, western China[J]. Journal of Petroleum Science and Engineering, 2015, 135: 596-607.
[23] Boles J R, Ramseyer K. Diagenetic carbonate in Miocene sandstone reservoir, San Joaquin Basin, California[J]. AAPG Bulletin, 1987, 71(12): 1475-1487.
[24] Lovley D R, Chapelle F H. Deep subsurface microbial processes[J]. Reviews of Geophysics, 1995, 33(3): 365-381.
[25] You X L, Sun S, Zhu J Q, et al. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, northwest China: Implications for the role of organic substrate on dolomite precipitation[J]. Terra Nova, 2013, 25(5): 387-395.
[26] 张军涛,何治亮,岳小娟,等. 鄂尔多斯盆地奥陶系马家沟组五段富铁白云石成因[J]. 石油与天然气地质,2017,38(4):776-783.

Zhang Juntao, He Zhiliang, Yue Xiaojuan, et al. Genesis of iron-rich dolostones in the 5th member of the Majiagou Formation of the Ordovician in Ordos Basin[J]. Oil & Gas Geology, 2017, 38(4): 776-783.
[27] 张中欣. 热液改造白云石及其与油气的关系[J]. 辽宁化工,2011,40(1):72-75.

Zhang Zhongxin. Hydrothermal alteration dolomitization and its relationship with oil and gas[J]. Liaoning Chemical Industry, 2011, 40(1): 72-75.
[28] 杨一博. 柴达木盆地西部千米深钻元素地球化学记录的晚上新世以来古湖演化和干旱化[D]. 北京:中国科学院青藏高原研究所,2013:1-175.

Yang Yibo. Palaolake evolution and climate drying in the western Qaidam Basin since the Late Pliocene archived by elemental geochemistry records in a 1000 m-long deep core[D]. Beijing: Institute of Tibetan Plateau Research, Chinese Academy of Science, 2013: 1-175.
[29] 郭金春,马海州,宋恩玉,等. 湖泊碳酸盐在过去环境变化研究中的应用[J]. 盐湖研究,2008,16(2):66-72.

Guo Jinchun, Ma Haizhou, Song Enyu, et al. Applications of lacustrine carbonate in paleoenvironment research[J]. Journal of Salt Lake Research, 2008, 16(2): 66-72.
[30] 王云飞. 青海湖、岱海的湖泊碳酸盐化学沉积与气候环境变化[J]. 海洋与湖沼,1993,24(1):31-36.

Wang Yunfei. Lacustrine carbonate chemical sedimentation and climatic-environmental evolution-A case study of Qinghai Lake and Daihai Lake[J]. Oceanologia et Limnologia Sinica, 1993, 24(1): 31-36.
[31] 李世杰,区荣康,朱照宇,等. 24万年来西昆仑山甜水海湖岩心碳酸盐含量变化与气候环境演化[J]. 湖泊科学,1998,10(2):58-65.

Li Shijie, Rongkang Ou, Zhu Zhaoyu, et al. A carbonate content record of Late Quaternary climate and environment changes from lacustrine core TS95 in Tianshuihai Lake Basin, northwestern Qinghai-Xizang (Tibet) Plateau[J]. Journal of Lake Science, 1998, 10(2): 58-65.
[32] 蔡萌. 1.6万年以来泸沽湖沉积中碳酸盐和粒度变化及其环境指示意义[D]. 昆明:云南师范大学,2019:1-64.

Cai Meng. Carbonate mineral and grainsize changes since 16 kyr BP in Lake Lugu and environmental indication[D]. Kunming: Yunnan Normal University, 2019: 1-64.
[33] Gasse F, Fontes J C, Plaziat J C, et al. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene Lakes from North Sahara[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1987, 60: 1-46.
[34] 曾承. 湖泊自生碳酸盐碳同位素在环境变化中的应用[J]. 盐湖研究,2010,18(2):1-6.

Zeng Cheng. Carbon isotopic records from lacustrine authigenic carbonates as environmental change indicators[J]. Journal of Salt Lake Research, 2010, 18(2): 1-6.
[35] 刘传联,赵泉鸿,汪品先. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J]. 地球化学,2001,30(4):363-367.

Liu Chuanlian, Zhao Quanhong, Wang Pinxian. Correlation between carbon and oxygen isotopic ratios of lacustrine carbonates and types of oil-producing paleolakes[J]. Geochimica, 2001, 30(4): 363-367.
[36] 伊海生,林金辉,周恳恳,等. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J]. 古地理学报,2007,9(3):303-312.

Yi Haisheng, Lin Jinhui, Zhou Kenken, et al. Carbon and oxygen isotope characteristics and palaeo- environmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau[J]. Journal of Palaeogeography, 2007, 9(3): 303-312.
[37] 朱敏,丁仲礼,王旭,等. 南阳盆地PETM事件的高分辨率碳同位素记录[J]. 科学通报,2010,55(24):2400-2405.

Zhu Min, Ding Zhongli, Wang Xu, et al. High-resolution carbon isotope record for the Paleocene-Eocene thermal maximum from the Nanyang Basin, central China[J]. Chinese Science Bulletin, 2010, 55(24): 2400-2405.
[38] Higgins J A, Schrag D P. Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 523-537.
[39] Dickens G R, O'Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 965-971.
[40] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615.
[41] Secord R, Gingerich P D, Lohmann K C, et al. Continental warming preceding the Palaeocene-Eocene thermal maximum[J]. Nature, 2010, 467(7318): 955-958.
[42] 江湉,贾建忠,邓丽君,等. 古近纪重大气候事件及其生物响应[J]. 地质科技情报,2012,31(3):31-38.

Jiang Tian, Jia Jianzhong, Deng Lijun, et al. Significant climate events in Paleogene and their biotic response[J]. Geological Science and Technology Information, 2012, 31(3): 31-38.
[43] Lear C H, Elderfield H, Wilson P A, et al. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287(5451): 269-272.
[44] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
[45] Zhang C X, Guo Z T. Clay mineral changes across the Eocene-Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411: 18-29.
[46] Sun J M, Ni X J, Bi S D, et al. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 2014, 4(1): 7463.
[47] Fang X M, Zan J B, Appel E, et al. An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift[J]. Geophysical Journal International, 2015, 201(1): 78-89.
[48] 昝立宏,程捷. 新疆吐鲁番盆地古近纪气候事件的研究[J]. 古地理学报,2008,10(6):647-656.

Zan Lihong, Cheng Jie. Study on the Paleogene climatic events in Turpan Basin, Xinjiang[J]. Journal of Palaeogeography, 2008, 10(6): 647-656.
[49] 王健,彭捷,操应长,等. 东营凹陷中晚始新世古气候演化特征及其意义:以Hk1井为例[J]. 沉积学报,2022,40(4):1059-1072.

Wang Jian, Peng Jie, Cao YingChang, et al. Mid-late Eocene paleoclimate characteristics and significance in the Dongying Depression: An example from well Hk-1[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1059-1072.
[50] 朱猛. 山东省大汶口盆地盐类矿床的地质成因探讨[J]. 山东国土资源,2015,31(1):27-30.

Zhu Meng. Stuty on the origin of salt deposit in Dawenkou Basin in Shandong province[J]. Shandong Land and Resources, 2015, 31(1): 27-30.
[51] Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268.
[52] Cung T C, Geissman J W. A review of the paleomagnetic data from Cretaceous to Lower Tertiary rocks from Vietnam, Indochina and South China, and their implications for Cenozoic tectonism in Vietnam and adjacent areas[J]. Journal of Geodynamics, 2013, 69: 54-64.
[53] Akhmetiev M A. Paleocene and Eocene floristic and climatic change in Russia and northern Kazakhstan[J]. Bulletin of Geosciences, 2010, 85(1): 77-94.
[54] Chen H, Xie X N, van Rooij D, et al. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest sub-basin, South China Sea[J]. Marine Geology, 2014, 355: 36-53.
[55] Quan C, Liu Z H, Utescher T, et al. Revisiting the Paleogene climate pattern of East Asia: A synthetic review[J]. Earth-Science Reviews, 2014, 139: 213-230.
[56] Sun X J, Wang P X. How old is the Asian monsoon system?-Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.