[1] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
[2] Jackson M P A, Talbot C J. External shapes, strain rates, and dynamics of salt structures[J]. Geological Society of America Bulletin, 1986, 97(3): 305-323.
[3] 戈红星,Jackson M P A. 盐构造与油气圈闭及其综合利用[J]. 南京大学学报,1996,32(4):640-649.

Ge Hongxing, Jackson M P A. Salt structures, hydrocarbon traps and mineral deposits[J]. Journal of Nanjing University (Natural Sciences), 1996, 32(4): 640-649.
[4] Hudec M R, Jackson M P A. Terra infirma: Understanding salt tectonics[J]. Earth-Science Reviews, 2007, 82(1/2): 1-28.
[5] Smith R. Silled sub-basins to connected tortuous corridors: Sediment distribution systems on topographically complex sub-aqueous slopes[J]. Geological Society, London, Special Publications, 2004, 222(1): 23-43.
[6] Ings S J, Beaumont C. Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal’ minibasins[J]. Geology, 2010, 38(4): 339-342.
[7] Goteti R, Ings S J, Beaumont C. Development of salt minibasins initiated by sedimentary topographic relief[J]. Earth and Planetary Science Letters, 2012, 339-340: 103-116.
[8] Prather B E. Calibration and visualization of depositional process models for above-grade slopes: A case study from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2000, 17(5): 619-638.
[9] Gee M J R, Gawthorpe R L. Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola[J]. Marine and Petroleum Geology, 2006, 23(4): 443-458.
[10] Oluboyo A P, Gawthorpe R L, Bakke K, et al. Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola[J]. Basin Research, 2014, 26(4): 597-620.
[11] Clark I R, Cartwright J A. Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea[J]. Marine and Petroleum Geology, 2009, 26(8): 1465-1482.
[12] Clark I R, Cartwright J A. Key controls on submarine channel development in structurally active settings[J]. Marine and Petroleum Geology, 2011, 28(7): 1333-1349.
[13] 陈亮,赵千慧,王英民,等. 盐构造与深水水道的交互作用以下刚果盆地为例[J]. 沉积学报,2017,35(6):1197-1204.

Chen Liang, Zhao Qianhui, Wang Yingmin, et al. Interactions between submarine channels and salt structures: Examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1197-1204.
[14] Carter R C, Gani M R, Roesler T, et al. Submarine channel evolution linked to rising salt domes, Gulf of Mexico, USA[J]. Sedimentary Geology, 2016, 342: 237-253.
[15] Mayall M, Lonergan L, Bowman A, et al. The response of turbidite slope channels to growth-induced seabed topography[J]. AAPG Bulletin, 2010, 94(7): 1011-1030.
[16] Doughty-Jones G, Mayall M, Lonergan L. Stratigraphy, facies, and evolution of deep-water lobe complexes within a salt-controlled intraslope minibasin[J]. AAPG Bulletin, 2017, 101(11): 1879-1904.
[17] 周浩玮. 墨西哥Sureste盆地成藏组合及勘探潜力[J]. 地学前缘,2017,24(3):249-256.

Zhou Haowei. Hydrocarbon plays and exploration potential of the Sureste Basin of Mexico[J]. Earth Science Frontiers, 2017, 24(3): 249-256.
[18] Vendeville B C. Salt tectonics driven by sediment progradation: Part I—Mechanics and kinematics[J]. AAPG Bulletin, 2005, 89(8): 1071-1079.
[19] Gaullier V, Vendeville B C. Salt tectonics driven by sediment progradation: Part II—Radial spreading of sedimentary lobes prograding above salt[J]. AAPG Bulletin, 2005, 89(8): 1081-1089.
[20] Gradmann S, Beaumont C, Albertz M. Factors controlling the evolution of the Perdido Fold Belt, northwestern Gulf of Mexico, determined from numerical models[J]. Tectonics, 2009, 28(2): TC2002.
[21] Brun J P, Fort X. Salt tectonics at passive margins: Geology versus models[J]. Marine and Petroleum Geology, 2011, 28(6): 1123-1145.
[22] Feng J H, Buffler R T, Kominz M A. Laramide orogenic influence on Late Mesozoic-Cenozoic subsidence history, western deep Gulf of Mexico Basin[J]. Geology, 1994, 22(4): 359-362.
[23] Sánchez R J P. Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México[J]. Boletín de la Sociedad Geológica Mexicana, 2007, 59(1): 19-42.
[24] Gutiérrez-Paredes H C, Peterson-Rodríguez R, Catuneanu O, et al. Tectonic influence on the morphology, facies and distribution of Miocene reservoirs, southern Gulf of Mexico[J]. Journal of South American Earth Sciences, 2018, 88: 399-414.
[25] Witt C, Brichau S, Carter A. New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry[J]. Tectonics, 2012, 31(6): TC6001.
[26] Pirmez C, Beaubouef R T, Friedmann S J, et al. Equilibrium profile and baselevel in submarine channels: Examples from Late Pleistocene systems and implications for the architecture of deepwater reservoirs[C]//Deep‐water reservoirs of the world. Gulf coast section, SEPM 20th annual research conference. Huston: SEPM Special Publication, 2000: 782-805.
[27] Kneller B. The influence of flow parameters on turbidite slope channel architecture[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 901-910.
[28] Beaubouef R T, Friedmann S J. High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, western Gulf of Mexico: Depositional models and reservoir analogs[C]//Deep-water reservoirs of the world: Gulf coast section SEPM 20th annual research conference. Huston: SEPM Special Publication, 2000: 40-60.
[29] Prather B E. Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 529-545.
[30] Weimer P, Bouroullec R, Lapinski T G, et al. Sequence stratigraphic evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico—Lower Cretaceous through upper Miocene (8.2 Ma): A case study[J]. AAPG Bulletin, 2017, 101(7): 1109-1143.
[31] Prather B E, Booth J R, Steffens G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5A): 701-728.
[32] Prather B E, Pirmez C, Winker C D. Stratigraphy of linked intraslope basins: Brazos-Trinity system western Gulf of Mexico[M]//Prather B, Deptuck M E, Mohrig D C, et al. Application of the principles of seismic geomorphology to continental-slope and base-of-slope systems: Case studies from seafloor and near-seafloor analogues. Tulsa: SEPM Special Publication, 2012: 83-109.
[33] 李磊,王英民,张莲美,等. 尼日尔三角洲下陆坡限定性重力流沉积过程及响应[J]. 中国科学(D辑):地球科学,2010,40(11):1591-1597.

Li Lei, Wang Yingmin, Zhang Lianmei, et al. Confined gravity flow sedimentary process and its impact on the lower continental slope, Niger Delta[J]. Science China (Seri. D): Earth Sciences, 2010, 40(11): 1591-1597.
[34] Posamentier H W. Depositional elements associated with a basin floor channel-levee system: Case study from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 677-690.
[35] Samuel A, Kneller B, Raslan S, et al. Prolific deep-marine slope channels of the Nile Delta, Egypt[J]. AAPG Bulletin, 2003, 87(4): 541-560.
[36] Mallarino G, Beaubouef R T, Droxler A W, et al. Sea level influence on the nature and timing of a minibasin sedimentary fill (northwestern slope of the Gulf of Mexico)[J]. AAPG Bulletin, 2006, 90(7): 1089-1119.
[37] Kane I A, McGee D T, Jobe Z R. Halokinetic effects on submarine channel equilibrium profiles and implications for facies architecture: Conceptual model illustrated with a case study from Magnolia Field, Gulf of Mexico[J]. Geological Society, London, Special Publications, 2012, 363(1): 289-302.
[38] McHargue T, Pyrcz M J, Sullivan M D, et al. Architecture of turbidite channel systems on the continental slope: Patterns and predictions[J]. Marine and Petroleum Geology, 2011, 28(3): 728-743.
[39] Franks S G, Uchytil S J. Geochemistry of formation waters from the subsalt Tubular Bells Field, offshore Gulf of Mexico: Implications for fluid movement and reservoir continuity[J]. AAPG Bulletin, 2016, 100(6): 943-967.
[40] Nikolinakou M A, Heidari M, Flemings P B, et al. Geomechanical modeling of pore pressure in evolving salt systems[J]. Marine and Petroleum Geology, 2018, 93: 272-286.