[1] 柳占立,庄茁,孟庆国,等. 页岩气高效开采的力学问题与挑战[J]. 力学学报,2017,49(3):507-516.

Liu Zhanli, Zhuang Zhuo, Meng Qingguo, et al. Problems and challenges of mechanics in shale gas efficient exploitation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 507-516.
[2] 霍进,何吉祥,高阳,等. 吉木萨尔凹陷芦草沟组页岩油开发难点及对策[J]. 新疆石油地质,2019,40(4):379-388.

Huo Jin, He Jixiang, Gao Yang, et al. Difficulties and countermeasures of shale oil development in Lucaogou Formation of Jimsar Sag[J]. Xinjiang Petroleum Geology, 2019, 40(4): 379-388.
[3] 王小军,杨智峰,郭旭光,等. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望[J]. 新疆石油地质,2019,40(4):402-413.

Wang Xiaojun, Yang Zhifeng, Guo Xuguang, et al. Practices and prospects of shale oil exploration in Jimsar Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 402-413.
[4] 匡立春,胡文瑄,王绪龙,等. 吉木萨尔凹陷芦草沟组致密油储层初步研究:岩性与孔隙特征分析[J]. 高校地质学报,2013,19(3):529-535.

Kuang Lichun, Hu Wenxuan, Wang Xulong, et al. Research of the tight oil reservoir in the Lucaogou Formation in Jimusar Sag: Analysis of lithology and porosity characteristics[J]. Geological Journal of China Universities, 2013, 19(3): 529-535.
[5] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010.

Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010.
[6] Liu B, Wang H L, Fu X F, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432.
[7] 谢宗奎. 柴达木台南地区第四系细粒沉积岩相与沉积模式研究[J]. 地学前缘,2009,16(5):245-250.

Xie Zongkui. Quaternary fine-grained sedimentary lithofacies and sedimentary model in south Qaidam platform area[J]. Earth Science Frontiers, 2009, 16(5): 245-250.
[8] 张顺,陈世悦,崔世凌,等. 东营凹陷半深湖—深湖细粒沉积岩岩相类型及特征[J]. 中国石油大学学报(自然科学版),2014,38(5):9-17.

Zhang Shun, Chen Shiyue, Cui Shiling, et al. Characteristics and types of fine-grained sedimentary rocks lithofacies in semi-deep and deep lacustrine, Dongying Sag[J]. Journal of China University of Petroleum, 2014, 38(5): 9-17.
[9] Ameen M S, Hailwood E A. A new technology for the characterization of microfractured reservoirs (test case: Unayzah reservoir, Wudayhi field, Saudi Arabia)[J]. AAPG Bulletin, 2008, 92(1): 31-52.
[10] Lai J, Wang G W, Wang S, et al. A review on the applications of image logs in structural analysis and sedimentary characterization[J]. Marine and Petroleum Geology, 2018, 95: 139-166.
[11] 张晋言. 页岩油测井评价方法及其应用[J]. 地球物理学进展,2012,27(3):1154-1162.

Zhang Jinyan. Well logging evaluation method of shale oil reservoirs and its applications[J]. Progress in Geophysics, 2012, 27(3): 1154-1162.
[12] 张超,张立强,陈家乐,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别[J]. 天然气地球科学,2017,28(5):713-723.

Zhang Chao, Zhang Liqiang, Chen Jiale, et al. Lithofacies types and discrimination of Paleogene fine-grained sedimentary rocks in the Dongying Sag, Bohai Bay Basin, China[J]. Natural Gas Geoscience, 2017, 28(5): 713-723.
[13] Yan J P, He X, Hu Q H, et al. Lower Es3 in Zhanhua Sag, Jiyang Depression: A case study for lithofacies classification in lacustrine mud shale[J]. Applied Geophysics, 2018, 15(2): 151-164, 361.
[14] 车世琦. 测井资料用于页岩岩相划分及识别:以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏,2018,30(1):121-132.

Che Shiqi. Shale lithofacies identification and classification by using logging data: A case of Wufeng-Longmaxi Formation in Fuling gas field, Sichuan Basin[J]. Lithologic Reservoir, 2018, 30(1): 121-132.
[15] 杨洋,石万忠,张晓明,等. 页岩岩相的测井曲线识别方法:以焦石坝地区五峰组—龙马溪组为例[J]. 岩性油气藏,2021,33(2):135-146.

Yang Yang, Shi Wanzhong, Zhang Xiaoming, et al. Identification method of shale lithofacies by logging curve: A case study from Wufeng-Longmaxi Formation in Jiaoshiba area, SW China [J]. Lithologic Reservoirs, 2021, 33(2): 135-146.
[16] 王圣柱. 博格达山山前带芦草沟组不同岩相储集特征及含油性[J]. 新疆石油地质,2020,41(4):402-413.

Wang Shengzhu. Reservoir characteristics and oil-bearing properties of different lithofacies of Lucaogou Formation in the piedmont belt of Bogda Mountain[J]. Xinjiang Petroleum Geology, 2020, 41(4): 402-413.
[17] 林万昌,陈汶滨,田继东. 自组织特征映射神经网络在岩性识别中的应用[J]. 西南石油学院学报,1999,21(3):78-80.

Lin Wanchang, Chen Wenbin, Tian Jidong. Application of self-organizing feature map neural network in lithological identification[J]. Journal of Southwest Petroleum Institute, 1999, 21(3): 78-80.
[18] 邱颖,孟庆武,李悌,等. 神经网络用于岩性及岩相预测的可行性分析[J]. 地球物理学进展,2001,16(3):76-84.

Qiu Ying, Meng Qingwu, Li Ti, et al. The feasibility analysis of neural network in the prediction of lithology and lithofacies[J]. Progress in Geophysics, 2001, 16(3): 76-84.
[19] 谭琨. 测井岩性自适应识别[D]. 长春:吉林大学,2005.

Tan Kun. Lithology Auto-identification from oil well logs[D]. Changchun: Jilin University, 2005.
[20] 匡立春,唐勇,雷德文,等 .准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012,39(6):657-667.

Kuang Lichun, Tang Yong, Lei Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(6): 657-667.
[21] 方世虎,宋岩,徐怀民,等. 构造演化与含油气系统的形成:以准噶尔盆地东部吉木萨尔凹陷为例[J]. 石油实验地质,2007,29(2):149-153,161.

Fang Shihu, Song Yan, Xu Huaimin, et al. Relationship between tectonic evolution and petroleum system Formation: Taking the Jimsar Sag of eastern Junggar Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(2): 149-153, 161.
[22] 杨焱钧,柳益群,蒋宜勤,等. 新疆准噶尔盆地吉木萨尔凹陷二叠系芦草沟组云质岩地球化学特征[J]. 沉积与特提斯地质,2019,30(2):84-93.

Yang Yanjun, Liu Yiqun, Jiang Yiqin, et al. Geochemistry of the dolomitic rocks from the Permian Lucaogou Formation in the Jimusar Depression, Junggar Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2019, 30(2): 84-93.
[23] 陈新发,曲国胜,马宗晋,等. 准噶尔盆地构造格局与油气区带预测[J]. 新疆石油地质,2008,29(4):425-430.

Chen Xinfa, Qu Guosheng, Ma Zongjin, et al. Tectonic frameworks and potential oil-gas traps in Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(4): 425-430.
[24] 斯春松,陈能贵,余朝丰,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层沉积特征[J]. 石油实验地质,2013,35(5):528-533.

Si Chunsong, Chen Nenggui, Yu Chaofeng, et al. Sedimentary characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Petroleum Geology & Experiment, 2013, 35(5): 528-533.
[25] 邱振,卢斌,施振生,等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油滞留聚集机理及资源潜力探讨[J]. 天然气地球科学,2016,27(10):1817-1827,1847.

Qiu Zhen, Lu Bin, Shi Zhensheng, et al. Residual accumulation and resource assessment of shale oil from the Permian Lucaogou Formation in Jimusar Sag[J]. Natural Gas Geoscience, 2016, 27(10): 1817-1827, 1847.
[26] 张亚奇,马世忠,高阳,等. 吉木萨尔凹陷芦草沟组致密油储层沉积相分析[J]. 沉积学报,2017,35(2):358-370.

Zhang Yaqi, Ma Shizhong, Gao Yang, et al. Depositional facies analysis on tight reservoir of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 358-370.
[27] 葸克来,操应长,朱如凯,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507.

Xi Kelai, Cao Yingchang, Zhu Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507.
[28] 邵雨,杨勇强,万敏,等. 吉木萨尔凹陷二叠系芦草沟组沉积特征及沉积相演化[J]. 新疆石油地质,2015,36(6):635-641.

Shao Yu, Yang Yongqiang, Wan Min, et al. Sedimentary characteristic and facies evolution of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2015, 36(6): 635-641.
[29] 张少敏,操应长,朱如凯,等. 湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘,2018,25(4):198-209.

Zhang Shaomin, Cao Yingchang, Zhu Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209.
[30] 陈程. 吉木萨尔凹陷芦草沟组细粒沉积岩岩相发育规律[D]. 青岛:中国石油大学(华东), 2017.

Chen Cheng. A study on development regularity of lithofacies of fine-grained sedimentary rocks in Lucaogou Formation, Jimsar Sag[D]. Qingdao: China University of Petroleum (East China), 2017.
[31] Dill H G, Ludwig R R, Kathewera A, et al. A lithofacies terrain model for the Blantyre region: Implications for the interpretation of palaeosavanna depositional systems and for environmental geology and economic geology in southern Malawi[J]. Journal of African Earth Sciences, 2005, 41(5): 341-393.
[32] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
[33] Slatt R M, Rodriguez N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84.
[34] Xu C M, Cronin T P, McGinness T E, et al. Middle Atokan sediment gravity flows in the Red Oak field, Arkoma Basin, Oklahoma: A sedimentary analysis using electrical borehole images and wireline logs[J]. AAPG Bulletin, 2009, 93(1): 1-29.
[35] Donselaar M E, Schmidt J M. The application of borehole image logs to fluvial facies interpretation[J]. AAPG Memoir, 2010(92):145-166.
[36] Muniz M C, Bosence D W J. Pre-salt microbialites from the campos Basin (offshore Brazil): Image log facies, facies model and cyclicity in lacustrine carbonates[J]. Geological Society, London, Special Publications, 2015, 418(1): 221-242.
[37] Brekke H, MacEachern J A, Roenitz T, et al. The use of microresistivity image logs for facies interpretations: An example in point-bar deposits of the McMurray Formation, Alberta, Canada[J]. AAPG Bulletin, 2017, 101(5): 655-682.
[38] 马克,侯加根,刘钰铭,等. 吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式[J]. 石油学报,2017,38(6):636-648.

Ma Ke, Hou Jiagen, Liu Yuming, et al. The sedimentary model of saline lacustrine mixed sedimentation in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2017, 38(6): 636-648.
[39] 黄春林. 基于Kohonen网络的动目标实时定位融合算法[J]. 飞行器测控学报,2012,31(2):49-53.

Huang Chunlin. Moving target real-time location fusion algorithm with Kohonen network[J]. Journal of Spacecraft TT & C Technology, 2012, 31(2): 49-53.
[40] 潘晓峰,刘红星. 基于神经网络的图像KL变换方法的改进[J]. 微处理机,2005,26(4):26-28.

Pan Xiaofeng, Liu Hongxing. Improving Karhunen-Loeve transform of images based on neural networks[J]. Microprocessors, 2005, 26(4): 26-28.
[41] 高峰,刘江,李艳,等. 基于Kohonen自组织竞争网络的机床温度测点辨识研究[J]. 中国机械工程,2014,25(7):862-866.

Gao Feng, Liu Jiang, Li Yan, et al. Identification of temperature measuring points for machine tools with Kohonen self-organizing competitive network[J]. China Mechanical Engineering, 2014, 25(7): 862-866.
[42] 律方成,张波. 基于S_Kohonen网络的GIS局部放电类型识别[J]. 电测与仪表,2014,51(20):21-24.

Fangcheng Lü, Zhang Bo. Recognition of GIS discharge types based on the S_Kohonen network[J]. Electrical Measurement & Instrumentation, 2014, 51(20): 21-24.
[43] 郑波,马昕. 改进的Kohonen网络在航空发动机分类故障诊断中的应用[J]. 航空发动机,2020,46(2):23-29.

Zheng Bo, Ma Xin. Application of improved Kohonen network in aeroengine classification fault diagnosis[J]. Aeroengine, 2020, 46(2): 23-29.
[44] Owens J, Hunter A. Application of the self-organising map to trajectory classification[C]//Proceedings third IEEE international workshop on visual surveillance. Dublin: IEEE, 2000: 77-83.
[45] 张胜生,韩祎,罗兵,等. 基于Kohonen神经网络的军用车辆腐蚀防护涂层检测[J]. 军事交通学院学报,2015,17(12):79-82,87.

Zhang Shengsheng, Han Yi, Luo Bing, et al. Detection of corrosion protection coating of military vehicle with Kohonen neural network[J]. Journal of Military Transportation University, 2015, 17(12): 79-82, 87.
[46] 徐艳,马宏忠,刘勇业,等. 基于Kohonen网络的高压断路器机械故障识别方法[J]. 智慧电力,2018,46(3):95-100.

Xu Yan, Ma Hongzhong, Liu Yongye, et al. Detecting method for mechanical fault in high voltage circuit breaker based on Kohonen network[J]. Smart Power, 2018, 46(3): 95-100.
[47] 王中,肖克炎,丁建华. Kohonen人工神经网络在新疆东天山地区斑岩型钼矿资源预测中的应用[J]. 地质学刊,2015,39(2):231-235.

Wang Zhong, Xiao Keyan, Ding Jianhua. Application of Kohonen artificial neural networks to the prediction of porphyry molybdenum resources in the eastern Tianshan area of Xinjiang[J]. Journal of Geology, 2015, 39(2): 231-235.
[48] 陈悦,汪程,尹文中. 基于Kohonen聚类的特高拱坝变形分区[J]. 三峡大学学报(自然科学版),2019,41(1):1-4.

Chen Yue, Wang Cheng, Yin Wenzhong. Deformation partitioning of super-high arch dam based on Kohonen clustering[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(1): 1-4.