[1] Jiang G, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze Platform in South China: Implications for a large surface-to-deep ocean δ13C gradient[J]. Earth & Planetary Science Letters, 2007, 261(1/2): 303-320.
[2] Li C, Shi W, Cheng M, et al. The redox structure of Ediacaran and early Cambrian oceans and its controls[J]. Science Bulletin, 2020, 65(24): 2141-2149.
[3] Och L M, Shields-Zhou G A, Poulton S W, et al. Redox changes in early Cambrian black shales at Xiaotan section, Yunnan province, South China[J]. Precambrian Research, 2013, 225: 166-189.
[4] 任影,钟大康,邰俊伟,等. 寒武纪第4期古海洋氧化还原条件与生物协同演化研究进展:以华南板块为例[J]. 沉积学报,2022,40(3):701-714.

Ren Ying, Zhong Dakang, Tai Junwei, et al. Research progress in paleo-marine redox conditions and their co-evolution with biology during the Cambrian stage 4 in South China[J]. Acta Sedimentologica Sinica, 2022, 40(3): 701-714.
[5] Guo Q J, Strauss H, Zhu M Y, et al. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian transition[J]. Precambrian Research, 2013, 225: 209-217.
[6] Sato T, Isozaki Y, Hitachi T, et al. A unique condition for early diversification of small shelly fossils in the lowermost Cambrian in Chengjiang, South China: Enrichment of phosphorus in restricted embayments[J]. Gondwana Research, 2014, 25(3): 1139-1152.
[7] Li C, Jin C S, Planavsky N J, et al. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian?[J]. Geology, 2017, 45(8): 743-746.
[8] Li D, Ling H F, Shields-Zhou G A, et al. Carbon and strontium isotope evolution of seawater across the Ediacaran–Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China[J]. Precambrian Research, 2013, 225: 128-147.
[9] 张明亮,郭伟,沈俊,等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报,2017,36(4):95-106.

Zhang Mingliang, Guo Wei, Shen Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106.
[10] 王冠民,钟建华,姜在兴,等. 从济阳坳陷沙一段古盐度的横向变化看古近纪的海侵方向[J]. 世界地质,2005,24(3):243-247.

Wang Guanmin, Zhong Jianhua, Jiang Zaixing, et al. Possible transgressive channel in Paleogene deduced by lateral change of palaeosalinity in 1st member of Shahejie Formation in Jiyang Depression[J]. World Geology, 2005, 24(3): 243-247.
[11] Li D, Ling H F, Jiang S Y, et al. New carbon isotope stratigraphy of the Ediacaran–Cambrian boundary interval from SW China: Implications for global correlation[J]. Geological Magazine, 2009, 146(4): 465-484.
[12] 王新强,史晓颖, Jiang Ganqing,等. 华南埃迪卡拉纪—寒武纪过渡期的有机碳同位素梯度和海洋分层[J]. 中国科学:地球科学,2014,44(6):1142-1160.

Wang Xinqiang, Shi Xiaoying, Jiang Ganqing, et al. Organic carbon isotope gradient and ocean stratification across the Late Ediacaran-early Cambrian Yangtze Platform[J]. Science China: Earth Sciences, 2014, 44(6): 1142-1160.
[13] 曹金鑫,陈吉艳,赵威,等. 云南白龙潭磷块岩元素地球化学特征及其指示意义[J]. 桂林理工大学报,2022,42(2):320-332.

Cao Jinxin, Chen Jiyan, Zhao Wei, et al. Elemental geochemical characteristics of phosphorite and its indicative significance in Bailongtan of Yunnan[J]. Journal of Guilin University of Technology, 2022, 42(2): 320-332.
[14] 陈志明,陈其英. 扬子地台早寒武世梅树村早期的古地理及其磷块岩展布特征[J]. 地质科学,1987,22(3):246-257.

Chen Zhiming, Chen Qiying. Paleogenography of Yangzi Platform and the characteristics of the phosphorite distribution of early Meishucun stage, early Cambrian[J]. Chinese Journal of Geology, 1987, 22(3): 246-257.
[15] 田升平. 滇东早寒武世梅树村期沉积相及磷块岩沉积环境分析[J]. 化工地质,1990(1):54-63.

Tian Shengping. Analysis of sedimentary facies and sedimentary environment of phosphorite in early Cambrian Meishucun age in eastern Yunnan[J]. Geology of Chemical Minerals, 1990(1): 54-63.
[16] 穆丹. 会理—会泽—东川地区下寒武统黑色岩系地球化学特征与沉积物源分析[D]. 北京:中国地质大学(北京),2016.

Mu Dan. Geochemical characteristics and sedimentary source analysis of black shale series of lower Cambrian of the Huili-Huize-Dongchuan[D]. Beijing: China University of Geosciences (Beijing), 2016.
[17] 周肖贝,李江海,王洪浩,等. 寒武纪全球板块构造与古地理环境再造[J]. 海相油气地质,2014,19(2):1-7.

Zhou Xiaobei, Li Jianghai, Wang Honghao, et al. Reconstruction of Cambrian global paleo-plates and paleogeography[J]. Marine Origin Petroleum Geology, 2014, 19(2): 1-7.
[18] 易雨昊,李先昀,冯庆来. 滇东北会泽蜂子箐剖面寒武系纽芬兰统生物地层学和年代地层学[J]. 地质科技情报,2019,38(5):115-125.

Yi Yuhao, Li Xianyun, Feng Qinglai. Biostratigraphy and chronostratigraphy of the Cambrian Terreneuvian from the Fengziqing section in Huize area, northeast Yunnan[J]. Geological Science and Technology Information, 2019, 38(5): 115-125.
[19] 侯阳红,康志宏,赵晨君,等. 下扬子地区下寒武统幕府山组黑色岩系地球化学特征及其地质意义[J]. 沉积学报,2020,38(4):886-897.

Hou Yanghong, Kang Zhihong, Zhao Chenjun, et al. Geochemical characteristics and geological significance of the black rock series at the bottom of the Mufushan Formation in the lower Cambrian, Lower Yangtze area[J]. Acta Sedimentologica Sinica, 2020, 38(4): 886-897.
[20] 陈飞扬. 滇东地区寒武系第二统化石保存、演替及洲际对比研究[D]. 西安: 西北大学,2020.

Chen Feiyang. Fossil composition and succession of Cambrian series 2 in eastern Yunnan, and its global correlation across continents[D]. Xi’an: Northwest University, 2020.
[21] 苏旭楠. 云南寻甸大湾下寒武统渔户村组磷矿富集规律及控制因素[D]. 徐州:中国矿业大学,2018.

Su Xunan. Enrichment law and control factors of lower Cambrian Yuhucun Formation phosphate ore in Dawan, Xundian, Yunnan province[D]. Xuzhou: China University of Mining and Technology, 2018.
[22] 曹金鑫,陈吉艳,汪龙波. 扬子区寒武系底部含磷岩系沉积特征对比与成矿规律[J]. 地质与资源,2022,31(1):47-58,27.

Cao Jinxin, Chen Jiyan, Wang Longbo. Sedimentary characte-ristics and metallogenic regularity of phosphoric rock series at the bottom of Cambrian strata in Yangtze region[J]. Geology and Resources, 2022, 31(1): 47-58, 27.
[23] 邓倩. 震旦系—下寒武统沉积地球化学记录及有机质富集保存机制探讨:以华南和塔里木盆地研究为例[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2021.

Deng Qian. Sedimentary geochemical records and organic matter accumulation mechanisms in the Sinian-lower Cambrian strata: Case studies in South China and the Tarim Basin, NW China[D]. University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2021.
[24] 杨虎城,林良彪,余瑜,等. 川西南天全地区中二叠统碳酸盐岩地球化学特征及其古环境意义[J]. 矿物岩石,2022,42(2):47-59.

Yang Hucheng, Lin Liangbiao, Yu Yu, et al. Geochemical characteristics and paleo-environmental significance of Middle Permian carbonate rocks in Tianquan area, southwestern Sichuan province, China[J]. Mineralogy and Petrology, 2022, 42(2): 47-59.
[25] 白翔宇,马郡伟,夏清萍,等. 北京西山下苇甸第三统/芙蓉统界线附近碳酸盐岩地球化学特征及古环境意义[J]. 现代地质,2022,36(2):729-741.

Bai Xiangyu, Ma Junwei, Xia Qingping, et al. Geochemistry of carbonates near the Cambrian series 3-Furongian boundary and its paleoenvironmental constraints[J]. Geoscience, 2022, 36(2): 729-741.
[26] 杨永祯,郭岭,方泽鑫,等. 康滇古陆东缘筇竹寺组沉积物源的风化特征研究:以云南省楚雄市武定县乌龙村剖面为例[J]. 沉积学报,2024,42(1);324-341.

Yang Yongzhen, Guo Ling, Fang Zexin, et al. Weathering characteristics of sedimentary source area of Qiongzhusi Formation, eastern margin of ancient Kangding-Yunnan land: Case study of the Wulongcun section of Wuding district, Chuxiong city, Yunnan province, China[J]. Acta Sedimentologica Sinica, 2024, 42(1); 324-341.
[27] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publication, 1985.
[28] Gromet L P, Haskin L A, Korotev R L, et al. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482.
[29] 胡宝群,高海东,申玉科,等. 玲珑金矿大开头矿区Bi特征及指示意义[J]. 物探与化探,2014,38(6):1134-1139.

Hu Baoqun, Gao Haidong, Shen Yuke, et al. Bi anomaly of the Dakaitou ore district in the Linglong gold mine and its indication significance[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1134-1139.
[30] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.
[31] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[32] 程涌,胡煜昭,李丕优,等. 滇东会泽地区下寒武统筇竹寺组黑色岩系微量元素地球化学特征及其古环境演化[J]. 地质找矿论丛,2019,34(3):416-422.

Cheng Yong, Hu Yuzhao, Li Piyou, et al. The geochemical characteristics of trace elements and paleoenvironmental evolution of black rock series in the lower Cambrian Qiongzhusi Formation from Huize area, eastern Yunnan province[J]. Contributions to Geology and Mineral Resources Research, 2019, 34(3): 416-422.
[33] 张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报,2016,90(12):3454-3472.

Zhang Tianfu, Sun Lixin, Zhang Yun, et al. Geochemical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472.
[34] 雷开宇,刘池洋,张龙,等. 鄂尔多斯盆地北部侏罗系泥岩地球化学特征:物源与古沉积环境恢复[J]. 沉积学报,2017,35(3):621-636.

Lei Kaiyu, Liu Chiyang, Zhang Long, et al. Element geochemical characteristics of the Jurassic mudstones in the northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration[J]. Acta Sedimentologica Sinica, 2017, 35(3): 621-636.
[35] 杨兵,金承胜,刘欣,等. 云南昆明寒武纪早期浅水相磷块岩的氧化还原环境及成因机制[J]. 地质学报,2021,95(12):3858-3868.

Yang Bing, Jin Chengsheng, Liu Xin, et al. Redox environment and formation mechanism of phosphorite in the early Cambrian shallow shelf, South China[J]. Acta Geologica Sinica, 2021, 95(12): 3858-3868.
[36] 黄俨然,肖正辉,余烨,等. 湘西北下寒武统黑色岩系元素地球化学特征及地质意义[J]. 地球化学,2020,49(5):516-527.

Huang Yanran, Xiao Zhenghui, Yu Ye, et al. Geological significance of the elemental geochemistry of lower Cambrian black shales from northwestern Hunan[J]. Geochimica, 2020, 49(5): 516-527.
[37] Peng S C, Babcock L E, Cooper R. Chapter 19 - The Cambrian period[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The geologic time scale. Amsterdam: Elsevier, 2012: 437-488.
[38] 杨帆,肖荣阁,夏学惠. 昆阳磷矿沉积环境与矿床地球化学[J]. 地质与勘探,2011,47(2):294-303.

Yang Fan, Xiao Rongge, Xia Xuehui. Sedimentary environment and geochemistry of the Kunyang phosphorite deposit in eastern Yunnan province[J]. Geology and Exploration, 2011, 47(2): 294-303.
[39] 陈兰. 湘黔地区早寒武世黑色岩系沉积学及地球化学研究[D]. 贵阳:中国科学院研究生院(地球化学研究所),2006.

Chen Lan. Sedimentology and geochemistry of the early Cambrian black rock series in the Hunan-Guizhou area, China[D]. Guiyang: University of Chinese Academy of Sciences (Institute of Geochemistry, Chinese Academy of Sciences), 2006.
[40] 郭若舜,叶思源,何磊,等. 全新世以来辽河三角洲地区的化学风化及其对气候变化的响应[J]. 海洋科学,2018,42(9):38-50.

Guo Ruoshun, Ye Siyuan, He Lei, et al. Chemical weathering and its implications regarding climate changes in the Liaohe delta since the Holocene[J]. Marine Sciences, 2018, 42(9): 38-50.
[41] 文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,2008,28(1):114-120.

Wen Huaguo, Zheng Rongcai, Tang Fei, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2008, 28(1): 114-120.
[42] 钱焕菊,陆现彩,张雪芬,等. 东营凹陷沙四段上部泥质烃源岩元素地球化学及其古盐度的空间差异性[J]. 岩石矿物学杂志,2009,28(2):161-168.

Qian Huanju, Lu Xiancai, Zhang Xuefen, Spatial paleosalinity distribution and element geochemistry of argillaceous source rocks in the upper part of 4th member of Tertiary Shahejie Formation in Dongying Sag[J]. Acta Petrologica et Mineralogica, 2009, 28(2): 161-168.
[43] 刘俊田,梁浩,侯全政,等. 三塘湖盆地晚石炭世沉积环境中的古盐度恢复[J]. 新疆石油天然气,2011,7(1):1-5.

Liu Juntian, Liang Hao, Hou Quanzheng, et al. Paleosalinity recovering of environment deposition in Later Carboniferous of Santanghu Basin[J]. Xinjiang Oil & Gas, 2011, 7(1): 1-5.
[44] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
[45] 唐良栋. 云南东部早寒武世沉积相古地理[J]. 云南地质,1994(3):240-252.

Tang Liangdong. On the palaeogeography of the early Cambrian sedimentary facies in east Yunnan[J]. Yunnan Geology, 1994(3): 240-252.
[46] 杨宗玉,罗平,刘波,等. 早寒武世早期热液沉积特征:以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例[J]. 地球科学,2019,44(11):3845-3870.

Yang Zongyu, Luo Ping, Liu Bo, et al. Depositional characteristics of early Cambrian hydrothermal fluid: A case study of siliceous rocks from Yurtus Formation in Aksu area of Tarim Basin, northwest China[J]. Earth Science, 2019, 44(11): 3845-3870.
[47] 吕俊,让昊,郭阳,等. 云南镇雄县羊场磷矿地质特征及沉积环境浅析[J]. 云南地质,2021,40(1):76-82.

Jun Lü, Hao Rang, Guo Yang, et al. The gelogical feature and a preliminary analysis of sedimentary environment of Yangchang P deposit in Zhenxiong, Yunnan[J]. Yunnan Geology, 2021, 40(1): 76-82.
[48] 刘洁,温汉捷,刘世荣,等. 贵州织金磷块岩结构及其沉积环境[J]. 矿物学报,2016,36(2):253-259.

Liu Jie, Wen Hanjie, Liu Shirong, et al. Structures and sedimentary environment of phosphorite in Zhijin county, Guizhou province, China[J]. Acta Mineralogica Sinica, 2016, 36(2): 253-259.