[1] Blott S J, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248.
[2] 王随继,闫云霞,颜明,等. 张家界甘溪砾石沉积物粒度的空间变化及其原因[J]. 地理科学进展,2014,33(1):34-41.

Wang Suiji, Yan Yunxia, Yan Ming, et al. Spatial variations of gravel sediment granularities and their causes in Ganxi stream of Zhangjiajie[J]. Progress in Geography, 2014, 33(1): 34-41.
[3] Yatsu E. On the longitudinal profile of the graded river[J]. Eos, Transactions American Geophysical Union, 1955, 36(4): 655-663.
[4] Smith G H S, Ferguson R I. The gravel-sand transition along river channels[J]. Journal of Sedimentary Research, 1995, 65(2a): 423-430.
[5] Shaw J, Kellerhals R. The composition of recent alluvial gravels in Alberta river beds[R]. Edmonton, Alberta: Alberta Research Council, 1982.
[6] Frings R M. Sedimentary characteristics of the gravel-sand transition in the River Rhine[J]. Journal of Sedimentary Research, 2011, 81(1): 52-63.
[7] Lamb M P, Venditti J G. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout[J]. Geophysical Research Letters, 2016, 43(8): 3777-3785.
[8] Ferguson R, Hoey T, Wathen S, et al. Field evidence for rapid downstream fining of river gravels through selective transport[J]. Geology, 1996, 24(2): 179-182.
[9] Knighton A D. The gravel-sand transition in a disturbed catchment[J]. Geomorphology, 1999, 27(3/4): 325-341.
[10] Venditti J G, Church M. Morphology and controls on the position of a gravel-sand transition: Fraser River, British Columbia[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(9): 1959-1976.
[11] Knighton A D. Channel bed adjustment along mine-affected rivers of northeast Tasmania[J]. Geomorphology, 1991, 4(3/4): 205-219.
[12] Gibson S, Comport B, Corum Z. Calibrating a sediment transport model through a gravel-sand transition: Avoiding equifinality errors in HEC-RAS models of the Puyallup and white rivers[M]//Dunn C N, Van Weele B. World environmental and water resources congress 2017. Sacramento, California: American Society of Civil Engineers, 2017: 179-191.
[13] Quick L, Sinclair H D, Attal M, et al. Conglomerate recycling in the Himalayan foreland Basin: Implications for grain size and provenance[J]. GSA Bulletin, 2020, 132(7/8): 1639-1656.
[14] Maselli V, Pellegrini C, Del Bianco F, et al. River morphodynamic evolution under dam-induced backwater: An example from the Po River (Italy)[J]. Journal of Sedimentary Research, 2018, 88(10): 1190-1204.
[15] Smith G H S, Ferguson R I. The gravel-sand transition: Flume study of channel response to reduced slope[J]. Geomorphology, 1996, 16(2): 147-159.
[16] Luo X X, Yang S L, Zhang J. The impact of the Three Gorges Dam on the downstream distribution and texture of sediments along the Middle and Lower Yangtze River (Changjiang) and its estuary, and subsequent sediment dispersal in the East China Sea[J]. Geomorphology, 2012, 179: 126-140.
[17] Ashmore P. Contemporary erosion of the Canadian landscape[J]. Progress in Physical Geography: Earth and Environment, 1993, 17(2): 190-204.
[18] Ferguson R I. Emergence of abrupt gravel to sand transitions along rivers through sorting processes[J]. Geology, 2003, 31(2): 159-162.
[19] Elliott C M, Jacobson R B, Bulliner IV E A. Characterization of a gravel to sand transition on the Lower Yellowstone River, Montana[C]//American geophysical union, fall meeting 2018. Washington, D. C., United States: AGU, 2018.
[20] Venditti J G, Domarad N, Church M, et al. The gravel-sand transition: Sediment dynamics in a diffuse extension[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(6): 943-963.
[21] Stewart M D, Talling P J. The gravel-sand transition: Quantitative field data from the River Enza, Italy[C]//Proceedings of the BSRG, imperial college. London: BSRG, 1998.
[22] Murillo-Muñoz R, Klaassen G J. Downstream fining of sediments in the Meuse river[M]. In: Ferreira, R.M., Alves, E.C.T.L., Leal, J.G.A.B., Cardoso, A.H. (Eds.), River Flow 2006, 1. Taylor & Francis, pp. 895-905.
[23] Dingle E, Attal M, Sinclair H D. Where does all the gravel go? Abrasion-set limits on Himalayan bedload flux[C]//American geophysical union, fall meeting 2016. San Francisco, United States: AGU, 2016.
[24] Labbe J M, Hadley K S, Schipper A M, et al. Influence of bank materials, bed sediment, and riparian vegetation on channel form along a gravel-to-sand transition reach of the Upper Tualatin River, Oregon, USA[J]. Geomorphology, 2011, 125(3): 374-382.
[25] Ferguson R I, Bloomer D J, Church M. Evolution of an advancing gravel front: Observations from Vedder Canal, British Columbia[J]. Earth Surface Processes and Landforms, 2011, 36(9): 1172-1182.
[26] Alcayaga H, Caamaño D, Palma S, et al. What tools do we have to study the morphological effects of hydroelectric plants in developing countries? The Chilean case[C]//Proceedings of the 19th EGU general assembly, EGU 2017. Vienna, Austria: EGU, 2017: 11186.
[27] DeVries P, Huang C, Aldrich R. Sediment transport modeling along the gravel-sand transition zone of the Snohomish River, WA[C]//American geophysical union, fall meeting 2014. San Francisco, United States: AGU, 2014.
[28] Rosser B J. Downstream fining in the Waipaoa River: An aggrading, gravel-bed river, East Coast, New Zealand[D]. Palmerston North: Massey University, 1997.
[29] Arbós C Y, Blom A, Viparelli E, et al. River response to anthropogenic modification: Channel steepening and gravel front fading in an incising river[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091338.
[30] Ashworth P J, Ferguson R I. Size-selective entrainment of bed load in gravel bed streams[J]. Water Resources Research, 1989, 25(4): 627-634.
[31] Robinson R A J, Slingerland R L. Origin of fluvial grain-size trends in a foreland Basin: The Pocono Formation on the central Appalachian Basin[J]. Journal of Sedimentary Research, 1998, 68(3): 473-486.
[32] Parker G, Cui Y T. The arrested gravel front: Stable gravel-sand transitions in rivers Part 1: Simplified analytical solution[J]. Journal of Hydraulic Research, 1998, 36(1): 75-100.
[33] Cui Y T, Parker G. The arrested gravel front: Stable gravel-sand transitions in rivers Part 2: General numerical solution[J]. Journal of Hydraulic Research, 1998, 36(2): 159-182.
[34] Dingle E, Venditti J. Experiments on the grain size gap across gravel-sand transitions[DB/CD]//Proceedings of the 22nd EGU general assembly. EGU, 2020.
[35] Quick L, Sinclair H, Attal M, et al. Stability of the gravel-sand transition of the Ganga Plains recorded in Siwalik stratigraphy; implications for extreme floods[DB/CD]//Proceedings of the 22nd EGU general assembly. EGU, 2020.
[36] Dingle E, Sinclair H, Attal M, et al. Abrupt sediment grain size transitions drive rapid changes in Himalayan channel dynamics[C]//Proceedings of the 22th EGU general assembly, EGU 2018. Vienna, Austria: EGU, 2018: 9300.
[37] Baumanis C, Kim W. Reverse migration of lithofacies boundaries and shoreline in response to sea-level rise[J]. Basin Research, 2018, 30(Suppl.1): 89-100.
[38] Blom A, Chavarrías V, Ferguson R I, et al. Advance, retreat, and halt of abrupt gravel-sand transitions in alluvial rivers[J]. Geophysical Research Letters, 2017, 44(19): 9751-9760.
[39] Parker G, Muto T, Akamatsy Y, et al. River response to post-glacial sea level rise: The fly-Strickland river system, Papua new guinea[C]//American geophysical union, spring meeting 2005. Montreal, Canada: AGU, 2005.
[40] Dingle E, Kusack K, Venditti J G. Controls on the global distribution of gravel-sand transitions[C]//American geophysical union, fall meeting 2019. San Francisco, United States: AGU, 2019.
[41] Dingle E H, Attal M, Sinclair H D. Abrasion-set limits on Himalayan gravel flux[J]. Nature, 2017, 544(7651): 471-474.
[42] Edmonds D A, Valenza J, Roy S, et al. Fingerprinting river avulsions[C]//American geophysical union, fall meeting 2018. Washington, D. C., United States: AGU, 2018.
[43] Frings R M, Döring R, Beckhausen C, et al. Fluvial sediment budget of a modern, restrained river: The Lower reach of the Rhine in Germany[J]. CATENA, 2014, 122: 91-102.
[44] Dubille M, Lave J. Rapid grain size fining in modern and Pliocene Himalayan rivers[C]//Proceedings of the EGU general assembly 2013. Vienna, Austria: EGU, 2013.
[45] Dingle E H, Sinclair H D, Venditti J G, et al. Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling[J]. Geology, 2020, 48(5): 468-472.
[46] 韩志勇,李徐生,陈英勇,等. 南京地区新近纪砂砾层的沉积环境演变[J]. 第四纪研究,2009,29(2):361-369.

Han Zhiyong, Li Xusheng, Chen Yingyong, et al. Evolution of sedimentary environment of Neogene gravel beds near Nanjing[J]. Quaternary Sciences, 2009, 29(2): 361-369.
[47] 何梦颖. 长江河流沉积物矿物学、地球化学和碎屑锆石年代学物源示踪研究[D]. 南京:南京大学,2014.

He Mengying. The provenance study on the Yangtze River sediments, based on mineralogy, geochemistry and detrital zircon dating[D]. Nanjing: Nanjing University, 2014.
[48] Venditti J G, Humphies R P, Allison M A, et al. Gravel-sand transition in a large, lowland alluvial channel[C]//American geophysical union, fall meeting 2008. San Francisco, United States: AGU, 2008.
[49] Wilcock P R. Two-fraction model of initial sediment motion in gravel-bed rivers[J]. Science, 1998, 280(5362): 410-412.
[50] An C, Parker G, Fu X, et al. Morphodynamics of downstream fining in rivers with unimodal sand-gravel feed[M]//Uijttewaal W, Franca M J, Valero D, et al. River flow 2020. London: CRC Press, 2020.
[51] Venditti J G, Church M A, Lamb M P, et al. Controls on the abruptness of gravel-sand transitions[C]//American geophysical union, fall meeting 2014. San Francisco, United States: AGU, 2014.
[52] Blom A, Borras V C, Viparelli E. The dynamics of a gravel-sand transition[C]//Proceedings of the 10th symposium on river coastal and estuarine morphodynamics. Trento-Padova, Italy: IAHR, 2017.
[53] Orrú C, Blom A, Chavarrías V, et al. A new technique for measuring the bed surface texture during flow and application to a degradational sand‐gravel laboratory experiment[J]. Water Resources Research, 2016, 52(9): 7005-7022.
[54] Singer M B. Hydraulic controls on bed material grain size[C]//American geophysical union, fall meeting 2009. San Francisco, United States: AGU, 2009.
[55] Singer M B. Downstream patterns of bed material grain size in a large, lowland alluvial river subject to low sediment supply[J]. Water Resources Research, 2008, 44(12): W12202.