[1] Waters J V, Jones S J, Armstrong H A. Climatic controls on Late Pleistocene alluvial fans, Cyprus[J]. Geomorphology, 2010, 115(3/4): 228-251.
[2] Decelles P G, Gray M B, Ridgway K D, et al. Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana[J]. Sedimentology, 1991, 38(4): 567-590.
[3] Fidolini F, Ghinassi M, Aldinucci M, et al. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)[J]. Sedimentary Geology, 2013, 289: 19-39.
[4] Clarke L E. Experimental alluvial fans: Advances in understanding of fan dynamics and processes[J]. Geomorphology, 2015, 244: 135-145.
[5] Harvey A M. The role of base-level change in the dissection of alluvial fans: Case studies from southeast Spain and Nevada[J]. Geomorphology, 2002, 45(1/2): 67-87.
[6] Hornung J, Pflanz D, Hechler A, et al. 3-D architecture, depositional patterns and climate triggered sediment fluxes of an alpine alluvial fan (Samedan, Switzerland)[J]. Geomorphology, 2010, 115(3/4): 202-214.
[7] de Haas T, Braat L, Leuven J R F W, et al. Effects of debris flow composition on Runout, depositional mechanisms, and deposit morphology in laboratory experiments[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1949-1972.
[8] 刘大卫,纪友亮,高崇龙,等. 砾质辫状河型冲积扇沉积微相及沉积模式:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 古地理学报,2018,20(3):435-451.

Liu Dawei, Ji Youliang, Gao Chonglong, et al. Microfacies and sedimentary models of gravelly braided-river alluvial fan: A case study of modern Baiyanghe-river alluvial fan in northwestern margin of Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(3): 435-451.
[9] 靳军,刘大卫,纪友亮,等. 砾质辫状河型冲积扇岩相类型、成因及分布规律:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 沉积学报,2019,37(2):254-267.

Jin Jun, Liu Dawei, Ji Youliang, et al. Research on lithofacies types, cause mechanisms and distribution of a gravel braided-river alluvial fan: A case study of the modern Poplar River alluvial fan, northwestern Junggar Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 254-267.
[10] 印森林,吴胜和,冯文杰,等. 冲积扇储集层内部隔夹层样式:以克拉玛依油田一中区克下组为例[J]. 石油勘探与开发,2013,40(6):757-763.

Yin Senlin, Wu Shenghe, Feng Wenjie, et al. Patterns of inter-layers in the alluvial fan reservoirs: A case study on Triassic Lower Karamay Formation, Yizhong area, Karamay oilfield, NW China[J]. Petroleum Exploration and Development, 2013, 40(6): 757-763.
[11] 吴胜和,范铮,许长福,等. 新疆克拉玛依油田三叠系克下组冲积扇内部构型[J]. 古地理学报,2012,14(3):331-340.

Wu Shenghe, Fan Zheng, Xu Changfu, et al. Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay oilfield, Xinjiang[J]. Journal of Palaeogeography, 2012, 14(3): 331-340.
[12] 冯文杰,吴胜和,徐长福,等. 冲积扇储层窜流通道及其控制的剩余油分布模式:以克拉玛依油田一中区下克拉玛依组为例[J]. 石油学报,2015,36(7):858-870.

Feng Wenjie, Wu Shenghe, Xu Changfu, et al. Water flooding channel of alluvial fan reservoir and its controlling distribution pattern of remaining oil: A case study of Triassic Lower Karamay Formation, Yizhong area, Karamay oilfield, NW China[J]. Acta Petrolei Sinica, 2015, 36(7): 858-870.
[13] de Haas T, Ventra D, Carbonneau P E, et al. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering[J]. Geomorphology, 2014, 217: 165-181.
[14] Neton M J, Dorsch J, Olson C D, et al. Architecture and directional scales of heterogeneity in alluvial-fan aquifers[J]. Journal of Sedimentary Research, 1994, 64(2b): 245-257.
[15] Blair T C. Alluvial fan and catchment initiation by rock avalanching, Owens Valley, California[J]. Geomorphology, 1999, 28(3/4): 201-221.
[16] Kim B C, Lowe D R. Depositional processes of the gravelly debris flow deposits, South Dolomite alluvial fan, Owens Valley, California[J]. Geosciences Journal, 2004, 8(2): 153-170.
[17] Calvo R, Ramos E. Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain)[J]. Geosphere, 2015, 11(5): 1507-1529.
[18] 靳军,康逊,胡文瑄,等. 准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响[J]. 石油与天然气地质,2017,38(2):323-333,406.

Jin Jun, Kang Xun, Hu Wenxuan, et al. Diagenesis and its influence on coarse clastic reservoirs in the Baikouquan Formation of western slope of the Mahu Depression, Junngar Basin[J]. Oil & Gas Geology, 2017, 38(2): 323-333, 406.
[19] 操应长,燕苗苗,葸克来,等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素[J]. 沉积学报,2019,37(5): 945-956.

Cao Yingchang, Yan Miaomiao, Xi Kelai, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019, 37(5): 945-956.
[20] 张纪易. 粗碎屑洪积扇的某些沉积特征和微相划分[J]. 沉积学报,1985,3(3):75-85.

Zhang Jiyi. Some depositional characteristics and microfacies subdivision of coarse clastic alluvial fans[J]. Acta Sedimentologica Sinica, 1985, 3(3): 75-85.
[21] 胡杨,夏斌,郭峰,等. 新疆和什托洛盖盆地构造演化特征及其对油气成藏的影响[J]. 地质与资源,2012,21(4):380-385.

Hu Yang, Xia Bin, Guo Feng, et al. Tectonic evolution and its influence on hydrocarbon accumulation of Heshituoluogai Basin in Northwest Xinjiang[J]. Geology and Resources, 2012, 21(4): 380-385.
[22] 吕辉河. 新疆西准噶尔白杨河流域地貌特征及演化分析[D]. 济南:鲁东大学,2013.

Huihe Lü. Analysis of geomorphic features and evolution of Baiyanghe River in West Junggar, Xinjiang, China[D]. Jinan: Ludong University, 2013.
[23] Blair T C. Sedimentology and progressive tectonic unconformities of the sheetflood-dominated Hell's Gate alluvial fan, Death Valley, California[J]. Sedimentary Geology, 2000, 132(3/4): 233-262.
[24] 高崇龙. 长源河流型冲积扇沉积特征及其沉积模式:以和什托洛盖盆地北缘现代白杨河冲积扇为例[D]. 北京:中国石油大学(北京),2018.

Gao Chonglong. Sedimentary characteristics and depositional model of fluvial fan with far provenances — a case study of modern Baiyanghe alluvial fan in northern margin of Heishituoluogai Basin[D]. Beijing: China University of Petroleum(Beijing), 2018.
[25] 张月, 纪友亮, 高崇龙, 等. 冲积扇“颗粒支撑砾岩”的成因和分布及其油气地质意义[J]. 中国矿业大学学报, 2020, 49(2): 332-346.

Zhang Yue, Ji Youliang, Gao Chonglong, et al. Genetic mechanism, distribution and significance for hydrocarbon exploration of the grain-supported conglomerate in alluvial fan[J]. Journal of China University of Mining & Technology, 2020, 49(2): 332-346.