[1] 刘朝全,姜学峰. 2019年国内外油气行业发展报告[M]. 北京:石油工业出版社,2020:7-12.

Liu Zhaoquan, Jiang Xuefeng. Development report of domestic and foreign oil and gas industry in 2019[M]. Beijing: Petroleum Industry Press, 2020: 7-12.
[2] 孙龙德,邹才能,朱如凯,等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发,2013,40(6):641-649.

Sun Longde, Zou Caineng, Zhu Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.
[3] 妥进才. 深层油气研究现状及进展[J]. 地球科学进展,2002,17(4):565-571.

Jincai Tuo. Research status and advances in deep oil and gas exploration[J]. Advance in Earth Sciences, 2002, 17(4): 565-571.
[4] 朱光有,张水昌. 中国深层油气成藏条件与勘探潜力[J]. 石油学报,2009,30(6):793-802.

Zhu Guangyou, Zhang Shuichang. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China[J]. Acta Petrolei Sinica, 2009, 30(6): 793-802.
[5] 庞雄奇. 中国西部叠合盆地深部油气勘探面临的重大挑战及其研究方法与意义[J]. 石油与天然气地质,2010,31(5):517-534,541.

Pang Xiongqi. Key challenges and research methods of petroleum exploration in the deep of superimposed basins in western China[J]. Oil & Gas Geology, 2010, 31(5): 517-534, 541.
[6] 中华人民共和国国土资源部. DZ/T 0217—2005石油天然气储量计算规范[S]. 北京:中国标准出版社,2005.[Ministry of Land and Resources of the People's Republic of China. DZ/T 0217-2005 Regulation of petroleum reserves estimation[S]. Beijing: China Standards Press, 2005.]
[7] Cao Y C, Yuan G H, Li X Y, et al. Characteristics and origin of abnormally high porosity zones in buried Paleogene clastic reservoirs in the Shengtuo area, Dongying Sag, East China[J]. Petroleum Science, 2014, 11(3): 346-362.
[8] Zhong D K, Zhu X M. Characteristics and genetic mechanism of deep-buried clastic eureservoir in China[J]. Science in China Series D: Earth Sciences, 2008, 51(2): 11-19.
[9] 陈丽华,赵澄林,友亮,等. 碎屑岩天然气储集层次生孔隙的三种成因机理[J]. 石油勘探与开发,1999,26(5):77-79.

Chen Lihua, Zhao Chenglin, You Liang, et al. Three formation mechanisms of secondary porosity in clastic gas reservoir rocks[J]. Petroleum Exploration and Development, 1999, 26(5): 77-79.
[10] Huang C G, Zhao F, Yuan J Y, et al. Acid fluids reconstruction clastic reservoir experiment in Qaidam saline lacustrine basin, China[J]. Carbonates and Evaporites, 2016, 31(3): 319-328.
[11] Shock E L. Organic acid metastability in sedimentary basins[J]. Geology, 1988, 16(10): 886-890.
[12] Fisher J B. Distribution and occurrence of aliphatic acid anions in deep subsurface waters[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2459-2468.
[13] Seewald J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1641-1664.
[14] Franks S G, Dias R F, Freeman K H, et al. Carbon isotopic composition of organic acids in oil field waters, San Joaquin Basin, California, USA[J]. Geochimica et Cosmochimica Acta, 2001, 65(8): 1301-1310.
[15] Li J J, Ma Y, Huang K Z, et al. Quantitative characterization of organic acid generation, decarboxylation, and dissolution in a shale reservoir and the corresponding applications-A case study of the Bohai Bay Basin[J]. Fuel, 2018, 214: 538-545.
[16] Yang L L, Xu T F, Wei M C, et al. Dissolution of arkose in dilute acetic acid solution under conditions relevant to burial diagenesis[J]. Applied Geochemistry, 2015, 54: 65-73.
[17] Gong Q J, Deng J, Han M, et al. Dissolution of sandstone powders in deionised water over the range 50-350°C[J]. Applied Geochemistry, 2012, 27(12): 2463-2475.
[18] McCollom T M, Seewald J S. Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3645-3664.
[19] Andresen B, Throndsen T, Barth T, et al. Thermal generation of carbon dioxide and organic acids from different source rocks[J]. Organic Geochemistry, 1994, 21(12): 1229-1242.
[20] 薛莲,李东,刘建平,等. 泥岩有水热解产生低分子量有机酸实验研究[J]. 地球化学,2011,40(4):381-386.

Xue Lian, Li Dong, Liu Jianping, et al. Experimental study on the generation of low molecular organic acids from mudstone by hydrous pyrolysis[J]. Geochimica, 2011, 40(4): 381-386.
[21] Palmer D A, Drummond S E. Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 813-823.
[22] Seewald J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333.
[23] Boles J S, Crerar D A, Grissom G, et al. Aqueous thermal degradation of gallic acid[J]. Geochimica et Cosmochimica Acta, 1988, 52(2): 341-344.
[24] Ganor J, Reznik I J, Rosenberg Y O. Organics in water–rock interactions[J]. Reviews in Mineralogy and Geochemistry, 2009, 70(1): 259-369.
[25] 于兴河. 油气储层地质学基础[M]. 北京:石油工业出版社,2009:210-257.

Yu Xinghe. Basis of hydrocarbon reservoir geology [M]. Beijing: Petroleum Industry Press, 2009: 210-257.
[26] 周世新,邹红亮,解启来,等. 沉积盆地油气形成过程中有机—无机相互作用[J]. 天然气地球科学,2006,17(1):42-47.

Zhou Shixin, Zou Hongliang, Xie Qilai, et al. Organic-inorganic interactions during the formation of oils in sedimentary basin[J]. Natural Gas Geoscience, 2006, 17(1): 42-47.
[27] 蔡春芳,梅博文,马亭,等. 塔里木盆地有机酸来源、分布及对成岩作用的影响[J]. 沉积学报,1997,15(3):103-109.

Cai Chunfang, Mei Bowen, Ma Ting, et al. The source, distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim Basin[J]. Acta Sedimentologica Sinica, 1997, 15(3): 103-109.
[28] Li Y J, Zhou S X, Li J, et al. Experimental study of the decomposition of acetic acid under conditions relevant to deep reservoirs[J]. Applied Geochemistry, 2017, 84: 306-313.
[29] 王慧媛,郑海飞. 高温高压下草酸脱羧反应中的拉曼光谱研究[J]. 光谱学与光谱分析,2012,32(3):669-672.

Wang Huiyuan, Zheng Haifei. Research on Raman spectra of oxalic acid during decarboxylation under high temperature and high pressure[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 669-672.
[30] 夏青天. 脱羧反应的历程及其应用[J]. 黔南民族师范学院学报,2004,24(6):15-19.

Xia Qingtian. Mechanism and application of decarboxylation[J]. Journal of Qiannan Normal University of Nationalities, 2004, 24(6): 15-19.
[31] McTavish R A. The role of overpressure in the retardation of organic matter maturation[J]. Journal of Petroleum Geology, 1998, 21(2): 153-186.
[32] Quick J C, Tabet D E. Suppressed vitrinite reflectance in the Ferron coalbed gas fairway, central Utah: Possible influence of overpressure[J]. International Journal of Coal Geology, 2003, 56(1/2): 49-67.
[33] Chiaramonte M A, Novelli L. Organic matter maturity in northern Italy: Some determining agents[J]. Organic Geochemistry, 1986, 10(1/2/3): 281-290.
[34] Schito A, Corrado S, Aldega L, et al. Overcoming pitfalls of vitrinite reflectance measurements in the assessment of thermal maturity: The case history of the Lower Congo Basin[J]. Marine and Petroleum Geology, 2016, 74: 59-70.
[35] 付小东,秦建中,姚根顺,等. 两种温压体系下烃源岩生烃演化特征对比及其深层油气地质意义[J]. 地球化学,2017,46(3):262-275.

Fu Xiaodong, Qin Jianzhong, Yao Genshun, et al. The comparison of hydrocarbon generation and evolution characteristics between two temperature-pressure simulation systems and its geological significance for deep reservoir exploration[J]. Geochimica, 2017, 46(3): 262-275.
[36] Hao F, Zou H Y, Gong Z S, et al. Hierarchies of overpressure retardation of organic matter maturation: Case studies from petroleum basins in China[J]. AAPG Bulletin, 2007, 91(10): 1467-1498.
[37] Carr A D, Snape C E, Meredith W, et al. The effect of water pressure on hydrocarbon generation reactions: Some inferences from laboratory experiments[J]. Petroleum Geoscience, 2009, 15(1): 17-26.
[38] Uguna C N, Carr A D, Snape C E, et al. High pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions[J]. Organic Geochemistry, 2015, 78: 44-51.
[39] Uguna C N, Carr A D, Snape C E, et al. Impact of high water pressure on oil generation and maturation in Kimmeridge Clay and Monterey source rocks: Implications for petroleum retention and gas generation in shale gas systems[J]. Marine and Petroleum Geology, 2016, 73: 72-85.
[40] 周中毅. 塔里木盆地的地温梯度偏低深部有较大油气前景[J]. 石油与天然气地质,1985,6(增刊1):24-25.

Zhou Zhongyi. The Tarim Basin has a relatively low geothermal gradient and a great petroleum potential in deep formation[J]. Oil & Gas Geology, 1985, 6(Suppl.1): 24-25.