[1] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
[2] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
[3] Clarke F W. The data of geochemistry[M]. 2nd ed. Washington: Government Printing Office, 1924: 1-770.
[4] Wickman F E. The “total” amount of sediments and the composition of the “average igneous rock”[J]. Geochimica et Cosmochimica Acta, 1954, 5(3): 97-110.
[5] Sorby H C. On the application of quantitative methods to the study of the structure and history of rocks[J]. Quarterly Journal of the Geological Society, 1908, 64(1/2/3/4): 171-233.
[6] Krumbein W C. The mechanical analysis of fine-grained sediments[J]. Journal of Sedimentary Research, 1932, 2(3): 140-149.
[7] 陈世悦,张顺,王永诗,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208.

Chen Shiyue, Zhang Shun, Wang Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208.
[8] 邹才能,杨智,张国生,等. 常规—非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,2014,41(1):14-27.

Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Conventional and unconventional petroleum "orderly accumulation": Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 40(1): 14-27.
[9] Lewan M D. Laboratory classification of very fine grained sedimentary rocks[J]. Geology, 1978, 6(12): 745-748.
[10] Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744.
[11] Jiang Z X, Duan H J, Liang C, et al. Classification of hydrocarbon-bearing fine-grained sedimentary rocks[J]. Journal of Earth Science, 2017, 28(6): 693-976.
[12] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
[13] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199.
[14] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
[15] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968.
[16] Flemming B W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams[J]. Continental Shelf Research, 2000, 20(10/11): 1125-1137.
[17] Folk R L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature[J]. The Journal of Geology, 1954, 62(4): 344-359.
[18] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980: 1-182.
[19] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607.

Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
[20] 周立宏,蒲秀刚,陈长伟,等. 陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例[J]. 地球科学,2018,43(10):3625-3639.

Zhou Lihong, Pu Xiugang, Chen Changwei, et al. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the Second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3625-3639.
[21] 邹才能,朱如凯,白斌,等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报,2015,34(1):1-17.

Zou Caineng, Zhu Rukai, Bai Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 1-17.
[22] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184.

Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
[23] 高岗,向宝力,都鹏燕,等. 准噶尔盆地玛湖凹陷风城组泥岩与泥质白云岩热模拟产物特征对比[J]. 地球科学与环境学报,2016,38(1):93-103.

Gao Gang, Xiang Baoli, Du Pengyan, et al. Comparison of thermal simulation product characteristics of mudstone and argillaceous dolomite from Fengcheng Formation in Mahu Sag of Junggar Basin[J]. Journal of earth Sciences and Environment, 2016, 38(1): 93-103.
[24] Williams H, Turner F J, Gilbert C M. Petrography: An introduction to the study of rocks in thin section[M]. 2nd ed. San Francisco: W. H. Freeman and Company, 1982.
[25] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980.
[26] Bates R L, Jackson J A. Glossary of geology[M]. 3rd ed. Alexandria: American Geological Institute, 1987.
[27] Alexander T, Baihly J, Boyer C, et al. The shale gas revolution[J]. New Technology of Oilfield, 2011, 23(3): 40-55.
[28] 国家石油和化学工业局. SY/T 5368—2000 岩石薄片鉴定 [S]. 北京:石油工业出版社,2000.

State Administration of Petroleum and Chemical Industry. SY/T 5368-2000 thin section examination of rock [S]. Beijing: Petroleum Industry Press, 2000.
[29] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010.

Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010.
[30] 王成云,匡立春,高岗,等. 吉木萨尔凹陷芦草沟组泥质岩类生烃潜力差异性分析[J]. 沉积学报,2014,32(2):385-390.

Wang Chengyun, Kuang Lichun, Gao Gang, et al. Difference in hydrocarbon generation potential of the shaly source rocks in Jimusar Sag, Permian Lucaogou Formation[J]. Acta Sedimentologica Sinica, 2014, 32(2): 385-390.
[31] 王勇,刘惠民,宋国奇,等. 济阳坳陷泥页岩细粒沉积体系[J]. 石油学报,2019,40(4):395-410.

Wang Yong, Liu Huimin, Song Guoqi, et al. Lacustrine shale fine-grained sedimentary system in Jiyang Depression[J]. Acta Petrolei Sinica, 2019, 40(4): 395-410.
[32] 卢双舫,李俊乾,张鹏飞,等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436-444.

Lu Shuangfang, Li Junqian, Zhang Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444.
[33] 聂海宽,张培先,边瑞康,等. 中国陆相页岩油富集特征[J]. 地学前缘,2016,23(2):55-62.

Nie Haikuan, Zhang Peixian, Bian Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62.
[34] 宋国奇,张林晔,卢双舫,等. 页岩油资源评价技术方法及其应用[J]. 地学前缘,2013,20(4):221-228.

Song Guoqi, Zhang Linye, Lu Shuangfang, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4): 221-228.
[35] 支东明,唐勇,郑孟林,等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探,2019,24(5):615-623.

Zhi Dongming, Tang Yong, Zheng Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623.
[36] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10.

Zhao Wenzhi, Hu Suyun, Hou Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
[37] 赵文智,胡素云,侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发,2018,45(4):537-545.

Zhao Wenzhi, Hu Suyun, Hou Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545.
[38] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26.

Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
[39] 柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828-838.

Liu Bo, Shi Jiaxin, Fu Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in First member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838.
[40] 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534.

Zhi Dongming, Tang Yong, Yang Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534.
[41] 赵贤正,周立宏,蒲秀刚,等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破:以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发,2018,45(3):361-372.

Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372.
[42] 王民,马睿,李进步,等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发,2019,46(4):789-802.

Wang Min, Ma Rui, Li Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802.
[43] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[44] Mavor M. Barnett shale gas-in-place volume including sorbed and free gas volume[R]. Texas: AAPG Southwest Section Meeting, 2003.
[45] Tourtelot H A. Theuseof theword “shale”[J]. American Journal of Science, 1960, 258: 335-343.
[46] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. New York: Springer, 2005: 1-297.
[47] O'Brien N R, Slatt R M. Argillaceous rock atlas[M]. New York: Springer, 1990: 1-156.
[48] Weaver C E. Clays, muds, and shales: Developments in sedimentology, 44[M]. Amsterdam: Elsevier, 1989: 1-819.
[49] Boggs S. Mudstones and shales[M]//Boggs S Jr. Petrology of sedimentary rocks. 2nd ed. New York: Cambridge University Press, 2009: 194-219.
[50] Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks[M]. Dordrecht: Springer, 2003: 1-821.
[51] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale[M]. New York: Springer, 1980: 1-310.
[52] Weaver C E. Fine-grained rocks: Shales or physilites[J]. Sedimentary Geology, 1980, 27(4): 301-313.
[53] 邹才能,陶士振,袁选俊,等. “连续型”油气藏及其在全球的重要性:成藏、分布与评价[J]. 石油勘探与开发,2009,36(6):669-682.

Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669-682.
[54] 周立宏,蒲秀刚,邓远,等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏,2016,28(1):6-15.

Zhou Lihong, Pu Xiugang, Deng Yuan, et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28(1): 6-15.
[55] 钟建华,刘圣鑫,马寅生,等. 页岩宏观破裂模式与微观破裂机理[J]. 石油勘探与开发,2015,42(2):242-250.

Zhong Jianhua, Liu Shengxin, Ma Yinsheng, et al. Macro-fracture mode and micro-fracture mechanism of shale[J]. Petroleum Exploration and Development, 2015, 42(2): 242-250.
[56] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
[57] Hickey J J, Bo H. Lithofacies summary of the Mississippian barnett shale, mitchell 2 T.P. sims well, wise county, texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.
[58] Mitra A, Warrington D S, Sommer A. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals[C]//Proceedings of the SPE western regional meeting. Anaheim: Society of Petroleum Engineers, 2010.
[59] Wang G C, Carr T R. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian Basin[J]. Computers & Geosciences, 2012, 49: 151-163.
[60] Bhattacharya S, Carr T R, Pal M. Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus Shale, USA[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1119-1133.
[61] Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22.
[62] McKee E D, Weir G W. Terminology for stratification and cross-stratification in sedimentary rocks[J]. GSA Bulletin, 1953, 64(4): 381-390.
[63] Trabucho-Alexandre J, Dirkx R, Veld H, et al. Toarcian black shales in the dutch central graben: Record of energetic, variable depositional conditions during an oceanic anoxic event[J]. Journal of Sedimentary Research, 2012, 82(2): 104-120.
[64] Schieber J. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York[J]. Journal of Sedimentary Research, 1999, 69(4): 909-925.
[65] Schieber J. Early diagenetic silica deposition in algal cysts and spores: A source of sand in black shales?[J]. Journal of Sedimentary Research, 1996, 66(1): 175-183.
[66] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
[67] Camp W K, Egenhoff S, Schieber J, et al. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks — discussion[J]. Journal of Sedimentary Research, 2016, 86(1): 1-5.
[68] Milliken K L. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks—reply[J]. Journal of Sedimentary Research, 2016, 86(1): 6-10.
[69] 李新景,吕宗刚,董大忠,等. 北美页岩气资源形成的地质条件[J]. 天然气工业,2009,29(5):27-32.

Li Xinjing, Zonggang Lü, Dong Dazhong, et al. Geologic controls on accumulation of shale gas in North America[J]. Natural Gas Industry, 2009, 29(5): 27-32.
[70] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
[71] 李昌伟,陶士振,董大忠,等. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学,2015,26(5):986-1000.

Li Changwei, Tao Shizhen, Dong Dazhong, et al. Comparison of the formation condition of shale gas between domestic and abroad and favorable areas evaluation[J]. Natural Gas Geoscience, 2015, 26(5): 986-1000.
[72] 孟楚洁,胡文瑄,贾东,等. 宁镇地区上奥陶统五峰组—下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析[J]. 地学前缘,2017,24(6):300-311.

Meng Chujie, Hu Wenxuan, Jia Dong, et al. Analyses of geochemistry features and sedimentary environment in the Upper Ordovician Wufeng-Lower Silurian Gaojiabian Formations in Nanjing-Zhenjiang area[J]. Earth Science Frontiers, 2017, 24(6): 300-311.
[73] 徐文礼,郑荣才,颜雪,等. 下扬子地区早古生代黑色岩系地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版),2014,44(4):1108-1122.

Xu Wenli, Zheng Rongcai, Yan Xue, et al. Trace and rare earthelement geochemistry of the Early Paleozoic black shales in the Lower Yangtze area and its geological significances[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1108-1122.
[74] 姜在兴,孔祥鑫,杨叶芃,等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发,2021,48(1):26-37.

Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37.
[75] Dimberline A J, Bell A, Woodcock N H. A laminated hemipelagic facies from the Wenlock and Ludlow of the Welsh Basin[J]. Journal of the Geological Society, 1990, 147(4): 693-701.
[76] Lemons D R, Chan M A. Facies architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of Late Pleistocene Lake bonneville, northern Utah and southern Idaho[J]. AAPG Bulletin, 1999, 83(4): 635-665.
[77] 吴靖,姜在兴,梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报,2017,38(10):1110-1122.

Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies characteristics of fine-grained sedimentary rocks in the upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica, 2017, 38(10): 1110-1122.
[78] 张顺,刘惠民,陈世悦,等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨:以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报,2017,91(5):1108-1119.

Zhang Shun, Liu Huimin, Chen Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5): 1108-1119.
[79] 郑荣才,文华国,范铭涛,等. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J]. 岩石学报,2006,22(12):3027-3038.

Zheng Rongcai, Wen Huaguo, Fan Mingtao, et al. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin[J]. Acta Petrologica Sinica, 2006, 22(12): 3027-3038.
[80] 柳益群,周鼎武,焦鑫,等. 一类新型沉积岩:地幔热液喷积岩:以中国新疆三塘湖地区为例[J]. 沉积学报,2013,31(5):773-781.

Liu Yiqun, Zhou Dingwu, Jiao Xin, et al. A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites, Santanghu area, Xinjiang, NW China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 773-781.
[81] Jiao X, Liu Y Q, Yang W, et al. A magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation, Santanghu Basin, NW China ⁃ The volcanogenic origin of fine-grained clastic sedimentary rocks[J]. Journal of Asian Earth Sciences, 2018, 156: 11-25.
[82] 刘惠民,王勇,杨永红,等. 东营凹陷细粒混积岩发育环境及其岩相组合:以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学,2020,45(10):3543-3555.

Liu Huimin, Wang Yong, Yang Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es4 [J]. Earth Science, 2020, 45(10): 3543-3555.
[83] 姜在兴,王雯雯,王俊辉,等. 风动力场对沉积体系的作用[J]. 沉积学报,2017,35(5):863-876.

Jiang Zaixing, Wang Wenwen, Wang Junhui, et al. The influence of wind field on depositional systems[J]. Acta Sedimentologica Sinica, 2017, 35(5): 863-876.
[84] 张少敏,操应长,朱如凯,等. 湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘,2018,25(4):198-209.

Zhang Shaomin, Cao Yingchang, Zhu Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209.
[85] 焦鑫,柳益群,周鼎武,等. 湖相烃源岩中的火山—热液深源物质与油气生成耦合关系研究进展[J]. 古地理学报,2021,23(4):789-809.

Jiao Xin, Liu Yiqun, Zhou Dingwu, et al. Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks[J]. Journal of Palaeogeography, 2021, 23(4): 789-809.
[86] Wohletz K H, Sheridan M F. Hydrovolcanic explosions. II. Evolution of basaltic tuff rings and tuff cones[J]. American Journal of Science, 1983, 283(5): 385-413.
[87] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434.
[88] Smith J V. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints[J]. Journal of Volcanology and Geothermal Research, 2018, 349: 311-322.
[89] 李增学,宋明水,李莹,等. 湖相细粒岩二级指标划分法岩相分类及其应用实例[J]. 现代地质,2021,35(2):365-377.

Li Zengxue, Song Mingshui, Li Ying, et al. Petrographic classification of lacustrine fine-grained rocks using a two-level index division method and a case study of its application[J]. Geoscience, 2021, 35(2): 365-377.
[90] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.

Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
[91] 陈世悦,张顺,刘惠民,等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报,2017,19(2):271-284.

Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of finegrained sediments in lacustrine deep water[J]. Journal of Palaeogeography, 2017, 19(2): 271-284.
[92] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomania⁃Turonian Kaskapau Formation, western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822.
[93] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
[94] Frébourg G, Ruppel S C, Loucks R G, et al. Depositional controls on sediment body architecture in the Eagle Ford/Boquillas system: Insights from outcrops in west Texas, United States[J]. Aapg Bulletin, 2016, 100(4): 657-682.
[95] 刘招君,孟庆涛,柳蓉. 中国陆相油页岩特征及成因类型[J]. 古地理学报,2009,11(1):105-114.

Liu Zhaojun, Meng Qingtao, Liu Rong. Characteristics and genetic types of continental oil shales in China[J]. Journal of Palaeogeography, 2009, 11(1): 105-114.
[96] Hutton A C. Petrographic classification of oil shales[J]. International Journal of Coal Geology, 1987, 8(3): 203-231.
[97] 刘招君,孙平昌,柳蓉,等. 中国陆相盆地油页岩成因类型及矿床特征[J]. 古地理学报,2016,18(4):525-534.

Liu Zhaojun, Sun Pingchang, Liu Rong, et al. Genetic types and deposit features of oil shale in continental basin in China[J]. Journal of Palaeogeography, 2016, 18(4): 525-534.
[98] 赵隆业,陈基娘,王天顺. 关于中国油页岩的工业成因分类[J]. 煤田地质与勘探,1991,19(5):2-6.

Zhao Longye, Chen Jiniang, Wang Tianshun. Industrial-original classification of Chinese oil shales[J]. Coal Geology & Exploration, 1991, 19(5): 2-6.
[99] 李宝毅,王建鹏,徐银波,等. 断陷和坳陷盆地富有机质泥岩测试参数及研究意义[J]. 世界地质,2012,31(4):778-784.

Li Baoyi, Wang Jianpeng, Xu Yinbo, et al. Testing parameters of organic-rich mudstone in faulted basin and depressed basin and their significance[J]. Global Geology, 2012, 31(4): 778-784.
[100] 刘招君,孟庆涛,贾建亮,等. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. 吉林大学学报(地球科学版),2012,42(5):1286-1297.

Liu Zhaojun, Meng Qingtao, Jia Jianliang, et al. Metallogenic regularity of oil shale in continental basin: Case study in the Meso-Cenozoic basins of Northeast China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1286-1297.
[101] 刘招君,柳蓉,孙平昌,等. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版),2020,50(2):313-325.

Liu Zhaojun, Liu Rong, Sun Pingchang, et al. Oil shale characteristics and distribution in typical basins of China[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 313-325.
[102] 张锦泉,叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报,1989,16(2):87-92.

Zhang Jinquan, Ye Hongzhuan. A study on carbonate and siliciclastic mixed sediments[J]. Journal of Chengdu College of Geology, 1989, 16(2): 87-92.
[103] 沙庆安. 混合沉积和混积岩的讨论[J]. 古地理学报,2001,3(3):63-66.

Sha Qing’an. Discussion on mixing deposit and hunji rock[J]. Journal of Palaeogeography, 2001, 3(3): 63-66.
[104] 郑绵平. 盐湖学的研究与展望[J]. 地质论评,2006,52(6):737-746.

Zheng Mianping. Salinology: Research and prospects[J]. Geological Review, 2006, 52(6): 737-746.
[105] 金强,朱光有. 中国中新生代咸化湖盆烃源岩沉积的问题及相关进展[J]. 高校地质学报,2006,12(4):483-492.

Jin Qiang, Zhu Guangyou. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation[J]. Geological Journal of China Universities, 2006, 12(4): 483-492.
[106] Chen A D, Zheng M P, Yao H T, et al. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications[J]. Geoscience Frontiers, 2018, 9(3): 943-953.
[107] 谭先锋,王萍,王佳,等. 早始新世极热气候时期咸化湖盆混合沉积作用:以渤海湾盆地东营凹陷孔店组为例[J]. 石油与天然气地质,2018,39(2):340-354.

Tan Xianfeng, Wang Ping, Wang Jia, et al. Mixed sedimentation in saline lacustrine basins during initial Eocene thermal maximum period: A case study on Kongdian Formation in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2018, 39(2): 340-354.
[108] Liang C, Cao Y C, Jiang Z X, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: Implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858.
[109] 刘惠民,孙善勇,操应长,等. 东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J]. 油气地质与采收率,2017,24(1):1-10.

Liu Huimin, Sun Shanyong, Cao Yingchang, et al. Lithofacies characteristics and distribution model of fine-grained sedimentary rock in the lower Es3 member, Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 1-10.
[110] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
[111] 张君峰,徐兴友,白静,等. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践[J]. 石油勘探与开发,2020,47(4):637-652.

Zhang Junfeng, Xu Xingyou, Bai Jing, et al. Enrichment and exploration of deep lacustrine shale oil in the First member of Cretaceous Qingshankou Formation, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2020, 47(4): 637-652.
[112] 付晓飞,石海东,蒙启安,等. 构造和沉积对页岩油富集的控制作用:以松辽盆地中央坳陷区青一段为例[J]. 大庆石油地质与开发,2020,39(3):56-71.

Fu Xiaofei, Shi Haidong, Meng Qi’an, et al. Controlling effects of the structure and deposition on the shale oil enrichment: Taking Formation qn1, in the Central Depression of Songliao Basin as an instance[J]. Petroleum Geology & Oilfield Development in Daqin, 2020, 39(3): 56-71.
[113] 林森虎,袁选俊,杨智. 陆相页岩与泥岩特征对比及其意义:以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质,2017,38(3):517-523.

Lin Senhu, Yuan Xuanjun, Yang Zhi. Comparative study on lacustrine shale and mudstone and its significance: A case from the 7th member of Yanchang Formation in the Ordos Basin[J]. Oil & Gas Geology, 2017, 38(3): 517-523.
[114] 解习农,叶茂松,徐长贵,等. 渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理[J]. 地球科学,2018,43(10):3526-3539.

Xie Xinong, Ye Maosong, Xu Changgui, et al. High quality reservoirs characteristics and forming mechanisms of mixed siliciclastic-carbonate sediments in the Bozhong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-3539.
[115] 周立宏,陈长伟,韩国猛,等. 渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力[J]. 地球科学,2019,44(8):2736-2750.

Zhou Lihong, Chen Changwei, Han Guomeng, et al. Geological characteristics and shale oil exploration potential of lower First member of Shahejie Formation in Qikou Sag, Bohai Bay Basin[J]. Earth Science, 2019, 44(8): 2736-2750.
[116] 潘树新,梁苏娟,史永苏,等. 松辽盆地上白垩统青山口组介形虫群集性死亡事件成因[J]. 古地理学报,2010,12(4):409-414.

Pan Shuxin, Liang Sujuan, Shi Yongsu, et al. Origin of ostracod extinction event of the Upper Cretaceous Qingshankou Formation in Songliao Basin[J]. Journal of Palaeogeography, 2010, 12(4): 409-414.
[117] 陈能贵,王艳清,徐峰,等. 柴达木盆地新生界湖盆咸化特征及沉积响应[J]. 古地理学报,2015,17(3):371-380.

Chen Nenggui, Wang Yanqing, Xu Feng, et al. Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin[J]. Journal of Palaeogeography, 2015, 17(3): 371-380.
[118] 张敏,尹成明,寿建峰,等. 柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相[J]. 古地理学报,2004,6(4):391-400.

Zhang Min, Yin Chengming, Shou Jianfeng, et al. Sedimentary facies of carbonate rocks of the Paleogene and Neogene in western Qaidam Basin[J]. Journal of Palaeogeography, 2004, 6(4): 391-400.
[119] Chiarella D, Longhitano S G, Tropeano M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments[J]. Marine and Petroleum Geology, 2017, 88: 617-627.
[120] Doyle L J, Roberts H H. Carbonate-clastic transitions[M]. Amsterdam: Elsevier, 1988.
[121] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435.
[122] 张雄华. 混积岩的分类和成因[J]. 地质科技情报,2000,19(4):31-34.

Zhang Xionghua. Classification and origin of mixosedimentite[J]. Geological Science and Technology Information, 2000, 19(4): 31-34.
[123] 杨朝青,沙庆安. 云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J]. 沉积学报,1990,8(2):59-66.

Yang Chaoqing, Sha Qing’an. Sedimentary environment of the Middle Devonian Qujing Formation, Qujing, Yunnan province: A kind of mixing sedimentation of terrigenous clastics and carbonate[J]. Acta Sedimentologica Sinica, 1990, 8(2): 59-66.
[124] 李祥辉. 层序地层中的混合沉积作用及其控制因素[J]. 高校地质学报,2008,14(3):395-404.

Li Xianghui. Mixing of siliciclastic-carbonate sediments within systems tracts of depositional sequences and its controlling factors[J]. Geological Journal of China Universities, 2008, 14(3): 395-404.
[125] 彭丽,陆永潮,彭鹏,等. 渤海湾盆地渤南洼陷沙三下亚段泥页岩非均质性特征及演化模式:以罗69井为例[J]. 石油与天然气地质,2017,38(2):219-229.

Peng Li, Lu Yongchao, Peng Peng, et al. Heterogeneity and evolution model of the lower Shahejie member 3 mud-shale in the Bonan subsag, Bohai Bay Basin: An example from well Luo 69[J]. Oil & Gas Geology, 2017, 38(2): 219-229.
[126] 朱毅秀,金振奎,金科,等. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征:以四川盆地元坝地区下侏罗统大安寨段为例[J]. 石油与天然气地质,2021,42(2):494-508.

Zhu Yixiu, Jin Zhenkui, Jin Ke, et al. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks incontinental lacustrine basins: A case study on the Lower Jurassic Da’anzhai member of Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(2): 494-508.
[127] 朱彤,龙胜祥,王烽,等. 四川盆地湖相泥页岩沉积模式及岩石相类型[J]. 天然气工业,2016,36(8):22-28.

Zhu Tong, Long Shengxiang, Wang Feng, et al. Sedimentary models and lithofacies types of lacustrine mud shale in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(8): 22-28.
[128] 刘忠宝,刘光祥,胡宗全,等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义:以四川盆地中下侏罗统为例[J]. 天然气工业,2019,39(12):10-21.

Liu Zhongbao, Liu Guangxiang, Hu Zongquan, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21.
[129] 梁超,姜在兴,杨镱婷,等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发,2012,39(6):691-698.

Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698.
[130] 李卓,姜振学,唐相路,等. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J]. 地球科学,2017,42(7):1116-1123.

Li Zhuo, Jiang Zhenxue, Tang Xianglu, et al. Lithofacies characteristics and its effect on pore structure of the marine shale in the low Silurian Longmaxi Formation, southeastern Chongqing[J]. Earth Science, 2017, 42(7): 1116-1123.
[131] 李书琴,印森林,高阳,等. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学,2020,31(2):235-249.

Li Shuqin, Yin Senlin, Gao Yang, et al. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 235-249.
[132] 葸克来,操应长,朱如凯,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507.

Xi Kelai, Cao Yingchang, Zhu Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507.
[133] 陈世悦,刘金,马帅,等. 柴北缘东段克鲁克组泥页岩储层特征[J]. 地学前缘,2016,23(5):56-65.

Chen Shiyue, Liu Jin, Ma Shuai, et al. Characteristics of Keluke shale reservoirs in northeast margin of Qaidam Basin[J]. Earth Science Frontiers, 2016, 23(5): 56-65.
[134] 康志宏,周磊,任收麦,等. 柴北缘中侏罗统大煤沟组七段泥页岩储层特征[J]. 地学前缘,2015,22(4):265-276.

Kang Zhihong, Zhou Lei, Ren Shoumai, et al. Characteristics of shale of the 7th member of the Middle Jurassic Dameigou Formation in northern Qaidam Basin[J]. Earth Science Frontiers, 2015, 22(4): 265-276.
[135] 刘占国,张永庶,宋光永,等. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制[J]. 石油勘探与开发,2021,48(1):68-80.

Liu Zhanguo, Zhang Yongshu, Song Guangyong, et al. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 68-80.
[136] 徐雄飞,于祥春,卿忠,等. 三塘湖盆地芦草沟组岩相特征及其与页岩油藏的关系[J]. 新疆石油地质,2020,41(6):677-684.

Xu Xiongfei, Yu Xiangchun, Zhong Qing, et al. Lithofacies characteristics and its relationship with shale oil reservoirs of Lucaogou Formation in Santanghu Basin[J]. Xinjiang Petroleum Geology, 2020, 41(6): 677-684.
[137] Finthan B, Mamman Y D. The lithofacies and depositional paleoenvironment of the Bima Sandstone in Girei and Environs, Yola Arm, Upper Benue Trough, Northeastern Nigeria[J]. Journal of African Earth Sciences, 2020, 169: 103863.
[138] Borka S. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems[J]. Open Geosciences, 2016, 8(1): 45-51.
[139] Könitzer S F, Davies S J, Stephenson M H, et al. Depositional controls on mudstone lithofacies in a basinal setting: Implications for the delivery of sedimentary organic matter[J]. Journal of Sedimentary Research, 2014, 84(3): 198-214.
[140] 聂银兰,谢庆宾,朱筱敏,等. 基于岩相表征的细粒沉积物沉积机制和研究展望[J]. 断块油气田,2021,28(3):305-310.

Nie Yinlan, Xie Qingbin, Zhu Xiaomin, et al. The sedimentary mechanism and research prospect of fine grain sediments based on lithofacies characterization[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 305-310.
[141] 宁方兴,王学军,郝雪峰,等. 东营凹陷细粒沉积岩岩相组合特征[J]. 西南石油大学学报(自然科学版),2020,42(4):55-65.

Ning Fangxing, Wang Xuejun, Hao Xuefeng, et al. Fine-grained sedimentary rock lithofacies assemblage characteristics in Dongying Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(4): 55-65.
[142] Jones R W. Organic facies[M]//Brooks J, Welte D. Advance in petroleum geochemistry. London: Academic Press, 1987: 1-90.
[143] 施振生,邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报,2021,39(1):181-196.

Shi Zhensheng, Qiu Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196.
[144] Lobza V, Schieber J. Biogenic sedimentary structures produced by worms in soupy, soft muds; observations from the Chattanooga Shale (Upper Devonian) and experiments[J]. Journal of Sedimentary Research, 1999, 69(5): 1041-1049.
[145] 钟摇,朱利东,杨文光,等. 重庆云阳地区沙溪庙组软沉积物变形构造及其地质意义[J]. 成都理工大学学报(自然科学版),2021,48(2):165-177.

Zhong Yao, Zhu Lidong, Yang Wenguang, et al. Soft sediment deformation structures in Shaximiao Formation and its geological significance in Yunyang area, Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(2): 165-177.
[146] Rodrı́guez-Pascua M A, Calvo J P, De Vicente G, et al. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene[J]. Sedimentary Geology, 2000, 135(1/2/3/4): 117-135.
[147] Neuendorf K K E, Mehl J P, Jackson A. Glossary of geology[M]. 5th ed. Alexandria: American Geological Institute, 2005.
[148] Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
[149] 刘庆,曾翔,王学军,等. 东营凹陷沙河街组沙三下—沙四上亚段泥页岩岩相与沉积环境的响应关系[J]. 海洋地质与第四纪地质,2017,37(3):147-156.

Liu Qing, Zeng Xiang, Wang Xuejun, et al. Lithofacies of mudstone and shale deposits of the Es 3z-Es 4s Formation in Dongying Sag and their depositional environment[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 147-156.
[150] 刘姝君,操应长,梁超. 渤海湾盆地东营凹陷古近系细粒沉积岩特征及沉积环境[J]. 古地理学报,2019,21(3):479-489.

Liu Shujun, Cao Yingchang, Liang Chao. Lithologic characteristics and sedimentary environment of fine-grained sedimentary rocks of the Paleogene in Dongying Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2019, 21(3): 479-489.
[151] 邓远,陈世悦,蒲秀刚,等. 渤海湾盆地沧东凹陷孔店组二段细粒沉积岩形成机理与环境演化[J]. 石油与天然气地质,2020,41(4):811-823,890.

Deng Yuan, Chen Shiyue, Pu Xiugang, et al. Formation mechanism and environmental evolution of fine-grained sedimentary rocks from the Second member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(4): 811-823, 890.
[152] 周立宏,韩国猛,马建英,等. 歧口凹陷西南缘沙河街组一段下亚段古环境特征与沉积模式[J]. 石油学报,2020,41(8):903-917.

Zhou Lihong, Han Guomeng, Ma Jianying, et al. Palaeoenvironment characteristics and sedimentary model of the lower submember of member 1 of Shahejie Formation in the southwestern margin of Qikou Sag[J]. Acta Petrolei Sinica, 2020, 41(8): 903-917.
[153] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
[154] 滕建彬,刘惠民,邱隆伟,等. 东营凹陷古近系湖相细粒混积岩沉积成岩特征[J]. 地球科学,2020,45(10):3808-3826.

Teng Jianbin, Liu Huimin, Qiu Longwei, et al. Sedimentary and diagenetic characteristics of lacustrine fine-grained hybrid rock in Paleogene formation in Dongying Sag[J]. Earth Science, 2020, 45(10): 3808-3826.
[155] Boles J R, Franks S J. Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 49(1): 55-70.
[156] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J]. Marine and Petroleum Geology, 2010, 27(8): 1752-1764.
[157] Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150.
[158] 王小军,宋永,郭旭光,等. 陆相咸化湖盆细粒沉积岩分类及其石油地质意义[J]. 沉积学报,2023,41(1):303-317.

Wang Xiaojun, Song Yong, Guo Xuguang, et al. Classification of fine-grained sedimentary rocks in saline lacustrine basins and its petroleum geological significance[J]. Acta Sedimentologica Sinica,2023,41(1):303-317.
[159] 张顺,陈世悦,鄢继华,等. 东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J]. 天然气地球科学,2015,26(2):320-332.

Zhang Shun, Chen Shiyue, Yan Jihua, et al. Characteristics of shale lithofacies and reservoir space in the 3rd and 4th members of Shahejie Formation, the west of Dongying Sag[J]. Natural Gas Geoscience, 2015, 26(2): 320-332.
[160] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.

Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.
[161] 王岚,曾雯婷,夏晓敏,等. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学,2019,30(8):1125-1133.

Wang Lan, Zeng Wenting, Xia Xiaomin, et al. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong Depression, Songliao Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133.
[162] 柳波,孙嘉慧,张永清,等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发,2021,48(3):521-535.

Liu Bo, Sun Jiahui, Zhang Yongqing, et al. Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535.
[163] 耳闯,罗安湘,赵靖舟,等. 鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征[J]. 地学前缘,2016,23(2):108-117.

Chuang Er, Luo Anxiang, Zhao Jingzhou, et al. Lithofacies features of organic-rich shale of the Triassic Yanchang Formation in Huachi aera, Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2): 108-117.
[164] 范柏江,梅启亮,王小军,等. 泥岩与页岩地化特征对比:以鄂尔多斯盆地安塞地区延长组7段为例[J]. 石油与天然气地质,2020,41(6):1119-1128.

Fan Bojiang, Mei Qiliang, Wang Xiaojun, et al. Geochemical comparison of mudstone and shale: A case study of the 7th member of Yanchang Formation in Ansai area, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(6): 1119-1128.
[165] 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发,2020,47(6):1079-1089.

Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089.
[166] 刘群,袁选俊,林森虎,等. 鄂尔多斯盆地延长组湖相黏土岩分类和沉积环境探讨[J]. 沉积学报,2014,32(6):1016-1025.

Liu Qun, Yuan Xuanjun, Lin Senhu, et al. The classification of lacustrine mudrock and research on its’ depositional environment[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1016-1025.
[167] 吴松涛. 松辽盆地青山口组页岩纹层结构与储集性能评价[C]//中国石油学会石油地质专业委员会,中国地质学会石油地质专业委员会,中国石油学会非常规油气专业委员会,等. 第六届非常规油气地质评价暨新能源学术研讨会. 2021:7.

Wu Songtao. Shale laminar structure and reservoir performance evaluation of Qingshankou Formation in Songliao Basin[C]//Petroleum Geology Committee of China Petroleum Society, Petroleum Geology Committee of China Geological Society, Unconventional Oil and Gas Committee of China Petroleum Society, et al. The 6th symposium on unconventional oil and gas geological evaluation and new energy. 2021: 7.
[168] 付金华,邓秀芹,楚美娟,等. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义[J]. 沉积学报,2013,31(5):928-938.

Fu Jinhua, Deng Xiuqin, Chu Meijuan et al. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance[J]. Acta Sedimentologica Sinica, 2013, 31(5): 928-938.
[169] 李森,朱如凯,崔景伟,等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境:以铜川地区瑶页1井为例[J]. 沉积学报,2020, 38(3):554-570.

Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and paleo-environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570.
[170] 白静,徐兴友,陈珊,等. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复:以吉页油1井为例[J]. 中国地质,2020,47(1):220-235.

Bai Jing, Xu Xingyou, Chen Shan, et al. Sedimentary characteristics and paleo-environment restoration of the First member of Qingshankou Formation in Qian’an area, Changling Sag, Songliao Basin: A case study of Jiyeyou 1 well[J]. Geology in China, 2020, 47(1): 220-235.
[171] Calvert S E, Bustin R M, Ingall E D. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales[J]. Geochimica et Cosmochimica Acta, 1996, 60(9): 1577-1593.
[172] Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466.
[173] Selvaraj K, Lin B Z, Lou J Y, et al. Lacustrine sedimentological and geochemical records for the last 170 years of climate and environmental changes in southeastern China[J]. Boreas, 2016, 45(1): 165-179.
[174] Thill A, Moustier S, Garnier J M, et al. Evolution of particle size and concentration in the Rhône river mixing zone: Influence of salt flocculation[J]. Continental Shelf Research, 2001, 21(18/19): 2127-2140.
[175] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water: Revisiting the delivery system. Tulsa: AAPG Studies in Geology, 2011: 1-30.
[176] Curran K J, Hill P S, Milligan T G. Fine-grained suspended sediment dynamics in the Eel River flood plume[J]. Continental Shelf Research, 2002, 22(17): 2537-2550.
[177] 范二平,唐书恒,张成龙,等. 湘西北下古生界黑色页岩扫描电镜孔隙特征[J]. 古地理学报,2014,16(1):133-142.

Fan Erping, Tang Shuheng, Zhang Chenglong, et al. Scanning-electron-microscopic micropore characteristics of the Lower Paleozoic black shale in northwestern Hunan province[J]. Journal of Palaeogeography, 2014, 16(1): 133-142.
[178] Wolanski E, Gibbs R J. Flocculation of suspended sediment in the Fly River estuary, Papua New Guinea[J]. Journal of Coastal Research, 1995, 11(3): 754-762.
[179] Tourney J, Ngwenya B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132.
[180] Malarkey J, Baas J H, Hope J A, et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications, 2015, 6: 6257.
[181] Eisma D. Flocculation and de-flocculation of suspended matter in estuaries[J]. Netherlands Journal of Sea Research, 1986, 20(2/3): 183-199.
[182] Parsons D R, Schindler R J, Hope J A, et al. The role of biophysical cohesion on subaqueous bed form size[J]. Geophysical Research Letters, 2016, 43(4): 1566-1573.
[183] Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183.
[184] Schindler R J, Parsons D R, Ye L P, et al. Sticky stuff: Redefining bedform prediction in modern and ancient environments[J]. Geology, 2015, 43(5): 399-402.
[185] Kranck K, Smith P C, Milligan T G. Grain-size characteristics of fine-grained unflocculated sediments I: ‘One-round’ distributions[J]. Sedimentology, 1996, 43(3): 589-594.
[186] Asmolov E S. Numerical simulation of rarefied suspension sedimentation in a container[J]. Fluid Dynamics, 2007, 42(3): 410-418.
[187] 黄建维. 粘性泥沙在静水中沉降特性的试验研究[J]. 泥沙研究,1981(2):30-41.

Huang Jianwei. Experimental study of settling properties of cohesive sediment in still water[J]. Journal of Sediment Research, 1981(2): 30-41.
[188] 谢宗奎. 柴达木台南地区第四系细粒沉积岩相与沉积模式研究[J]. 地学前缘,2009,16(5):245-250.

Xie Zongkui. Research on the Quaternary fine-fraction lithofacies and sedimentation model in Tainan area, Qaidam Basin[J]. Earth Science Frontiers, 2009, 16(5): 245-250.
[189] McCave I N. Transport and escape of fine-grained sediment from shelf areas[M]//Swift D J P, Duane D B, Pilkey O H. Shelf sediment transport: Process and pattern. Stroudsburg: Dowden, Hutchinson & Ross, 1972.
[190] Nittrouer C A, Wright L D. Transport of particles across continental shelves[J]. Reviews of Geophysics, 1994, 32(1): 85-113.
[191] Arthur M A, Sageman B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551.
[192] 逄勇,颜润润,余钟波,等. 风浪作用下的底泥悬浮沉降及内源释放量研究[J]. 环境科学,2008,29(9):2456-2464.

Pang Yong, Yan Runrun, Yu Zhongbo, et al. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu affected by wind[J]. Environmental Science, 2008, 29(9): 2456-2464.
[193] 胡开明,王水,逄勇. 太湖不同湖区底泥悬浮沉降规律研究及内源释放量估算[J]. 湖泊科学,2014,26(2):191-199.

Hu Kaiming, Wang Shui, Pang Yong. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu[J]. Journal of Lake Sciences, 2014, 26(2): 191-199.
[194] 杨茜,杨庶,宋娴丽,等. 桑沟湾夏、秋季悬浮颗粒物的沉降通量及再悬浮的影响[J]. 海洋学报,2014,36(12):85-90.

Yang Qian, Yang Shu, Song Xianli, et al. Vertical flux and resuspension of settling particulate matter of Sanggou Bay in summer and autumn[J]. Acta Oceanologica Sinica, 2014, 36(12): 85-90.
[195] 徐志刚. 长江口细颗粒泥沙的絮凝特性试验[J]. 东海海洋,1984(3):45-50.

Xu Zhigang. Experiment on flocculation characteristics of fine sediments from the Changjiang estuary[J]. Journal of Marine Sciences, 1984(3): 45-50.
[196] 陈洪松,邵明安. NaCl对细颗粒泥沙静水絮凝沉降动力学模式的影响[J]. 水利学报,2002(8):63-67.

Chen Hongsong, Shao Ming’an. Effect of NaCl concentration on dynamic model of fine sediment flocculation and settling in still water[J]. Journal of Hydraulic Engineering, 2002(8): 63-67.
[197] Heiskanen A S. Contamination of sediment trap fluxes by vertically migrating phototrophic micro-organisms in the coastal Baltic Sea[J]. Marine Ecology Progress, 1995, 122: 45-58.
[198] 柴朝晖,方红卫,姚仕明,等. 黏性泥沙絮凝—沉降—再悬浮运动过程数学模型研究[J]. 水利学报,2016,47(12):1540-1547.

Chai Zhaohui, Fang Hongwei, Yao Shiming, et al. A model for the flocculation-settling-resuspension process of cohesive sediment[J]. Journal of Hydraulic Engineering, 2016, 47(12): 1540-1547.
[199] Yoshida H, Nurtono T, Fukui K. A new method for the control of dilute suspension sedimentation by horizontal movement[J]. Powder Technology, 2005, 150(1): 9-19.
[200] Allen J R L. Current ripples: Their relation to patterns of water and sediment motion[M]. Amsterdam: North Holland Publishing Company, 1968: 1-433.
[201] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
[202] Schieber J, Southard J B. Bedload transport of mud by floccule ripples: Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
[203] 金成志,董万百,白云风,等. 松辽盆地古龙页岩岩相特征与成因[J]. 大庆石油地质与开发,2020,39(3):35-44.

Jin Chengzhi, Dong Wanbai, Bai Yunfeng, et al. Lithofacies characteristics and genesis analysis of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 35-44.
[204] Tripsanas E K, Piper D J W, Jenner K A, et al. Submarine mass-transport facies: New perspectives on flow processes from cores on the eastern North American margin[J]. Sedimentology, 2008, 55(1): 97-136.
[205] 潘树新,陈彬滔,刘华清,等. 陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J]. 天然气地球科学,2014,25(10):1577-1585.

Pan Shuxin, Chen Bintao, Liu Huaqing, et al. Deepwater bottom current rework sand (BCRS) in lacustrine basins: Sedimentary characteristics, identification criterion, formation mechanism and its significance for unconventional oil/gas exploration[J]. Natural Gas Geoscience, 2014, 25(10): 1577-1585.
[206] Sturm M, Matter A. Turbidites and varves in lake brienz (Switzerland): Deposition of clastic detritus by density currents[M]//Matter A, Tucker M E. Modern and ancient lake sediments. Oxford: Blackwell Scientific, 1978.
[207] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deep water sedimentation: Short course lecture notes, Part I. California: Los Angeles, 1973.
[208] Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
[209] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
[210] 姜在兴,王俊辉,张元福,等. “风—源—盆”三元耦合油气储集体预测方法及其应用:对非主力物源区储集体的解释与预测[J]. 石油学报,2020,41(12):1465-1476.

Jiang Zaixing, Wang Junhui, Zhang Yuanfu, et al. Ternary “Windfield-Source-Basin” system for the prediction of hydrocarbon reservoirs:interpretation and prediction of hydrocarbon reservoirs deviated from the main provenance areas[J]. Acta Petrolei Sinica, 2020, 41(12): 1465-1476.
[211] Curran K J, Hill P S, Schell T M, et al. Inferring the mass fraction of floc-deposited mud: Application to fine-grained turbidites[J]. Sedimentology, 2004, 51(5): 927-944.
[212] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
[213] Baas J H, Manica R, Puhl E, et al. Processes and products of turbidity currents entering soft muddy substrates[J]. Geology, 2014, 42(5): 371-374.
[214] Shanmugam G. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 316-324.
[215] 李相博,刘化清,潘树新,等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921.

Li Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
[216] 宋博,闫全人,向忠金,等. 广西凭祥盆地深水底流沉积类型及其研究意义[J]. 沉积学报,2016,34(1):58-69.

Song Bo, Yan Quanren, Xiang Zhongjin, et al. Sedimentary types and significance of deep-water bottom currents deposit in the Pingxiang Basin, Guangxi[J]. Acta Sedimentologica Sinica, 2016, 34(1): 58-69.
[217] 孙福宁,杨仁超,李冬月. 异重流沉积研究进展[J]. 沉积学报,2016,34(3):452-462.

Sun Funing, Yang Renchao, Li Dongyue. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462.
[218] Tran D, Strom K. Suspended clays and silts: Are they independent or dependent fractions when it comes to settling in a turbulent suspension?[J]. Continental Shelf Research, 2017, 138: 81-94.
[219] Stow D A V, Bowen A J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents[J]. Sedimentology, 1980, 27(1): 31-46.
[220] Schieber J, Yawar Z. A new twist on mud deposition-mud ripples in experiment and rock record[J]. The Sedimentary Record, 2009, 7(2): 4-8.
[221] Schieber J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331: 162-169.
[222] Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
[223] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer-Verlag, 2004: 1-976.
[224] Boggs Jr S. Principles of sedimentology and stratigraphy[M]. 4th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006: 1-688.
[225] Chen C, Mu C L, Zhou K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175.
[226] Shinn E A, Steinen R P, Dill R F, et al. Lime-mud layers in high-energy tidal channels: A record of hurricane deposition[J]. Geology, 1993, 21(7): 603-606.
[227] Schieber J, Southard J B, Kissling P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032.
[228] Tyson R V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339.
[229] Ma Y Q, Fan M J, Lu Y C, et al. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter accumulation[J]. Marine and Petroleum Geology, 2016, 75: 291-309.
[230] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
[231] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
[232] Chen G, Gang W Z, Liu Y Z, et al. Organic matter enrichment of the Late Triassic Yanchang Formation (Ordos Basin, China) under dysoxic to oxic conditions: Insights from pyrite framboid size distributions[J]. Journal of Asian earth sciences, 2019, 170: 106-117.
[233] Zou C N, Qiu Z, Wei H Y, et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 1-11.
[234] Röhl H J, Schmid-Röhl A, Oschmann W, et al. Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate”: [Palaeogeogr., Palaeoclimatol., Palaeocol. 165 (2001) 27⁃52][J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 273-299.
[235] Zhang W Z, Yang H, Xie L Q, et al. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4): 424-429.
[236] Xie S C, Pancost R D, Wang Y B, et al. Cyanobacterial blooms tied to volcanism during the 5-million-year Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
[237] Procesi M, Ciotoli G, Mazzini A, et al. Sediment-hosted geothermal systems: Review and first global mapping[J]. Earth-Science Reviews, 2019, 192: 529-544.
[238] Santillan-Jimenez E, Pace R, Morgan T, et al. Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking[J]. Fuel Processing Technology, 2019, 188: 164-171.
[239] Langmann B, Zakšek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3891-3899.
[240] Lovell C J, Rose C W. Measurement of soil aggregate settling velocities. 1. A modified bottom withdrawal tube method[J]. Australian Journal of Soil Research, 1988, 26(1): 55-71.
[241] 王倩茹,陶士振,关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学,2020,31(3):417-427.

Wang Qianru, Tao Shizhen, Guan Ping. Progress in research and exploration & development of shale oil in continental basins in China[J]. Natural Gas Geoscience, 2020, 31(3): 417-427.
[242] 胡涛,庞雄奇,姜福杰,等. 陆相断陷咸化湖盆有机质差异富集因素探讨:以东濮凹陷古近系沙三段泥页岩为例[J]. 沉积学报,2021,39(1):140-152.

Hu Tao, Pang Xiongqi, Jiang Fujie, et al. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: A case study of Third member Shahejie Fm in Dongpu Depression[J]. Acta Sedimentologica Sinica, 2021, 39(1): 140-152.
[243] Zimmerle W. New aspects on the formation of hydrocarbon source rocks[J]. Geologische Rundschau, 1985, 74(2): 385-416.
[244] 刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(D辑):地球科学,2019,49(3):499-520.

Liu Quanyou, Zhu Dongya, Meng Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Seri. D): Earth Sciences, 2019, 49(3): 499-520.
[245] Wright V P. Lacustrine carbonates in rift settings: The interaction of volcanic and microbial processes on carbonate deposition[J]. Geological Society, London, Special Publications, 2012, 370(1): 39-47.
[246] 庞军刚,李赛,杨友运,等. 湖盆深水区细粒沉积成因研究进展:以鄂尔多斯盆地延长组为例[J]. 石油实验地质,2014,36(6):706-711,724.

Pang Jungang, Li Sai, Yang Youyun, et al. Study progress of origin of fine-grained sedimentary rocks in deep-water area of lacustrine basin: Taking Yangchang Formation in Ordos Basin as an example[J]. Petroleum Geology & Experiment, 2014, 36(6): 706-711, 724.
[247] 梁超. 含油气细粒沉积岩沉积作用与储层形成机理[D]. 北京:中国地质大学(北京),2015.

Liang Chao. The sedimentation and reservoir formation mechanism of hydrocarbon-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2015.
[248] 朱筱敏,钟大康,袁选俊,等. 中国含油气盆地沉积地质学进展[J]. 石油勘探与开发,2016,43(5):820-829.

Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, et al. Development of sedimentary geology of petroliferous basins in China[J]. Petroleum Exploration and Development, 2016, 43(5): 820-829.
[249] 赵贤正,蒲秀刚,韩文中,等. 细粒沉积岩性识别新方法与储集层甜点分析:以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油勘探与开发,2017,44(4):492-502.

Zhao Xianzheng, Pu Xiugang, Han Wenzhong, et al. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(4): 492-502.
[250] 刘可禹,刘畅. “化学—沉积相”分析:一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质,2019,40(3):491-503.

Liu Keyu, Liu Chang, “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2019, 40(3): 491-503.
[251] 郭英海,赵迪斐,陈世悦. 细粒沉积物及其古地理研究进展与展望[J]. 古地理学报,2021,23(2):263-283.

Guo Yinghai, Zhao Difei, Chen Shiyue. Research progress and prospect of fine-grained sediments and palaeogeography[J]. Journal of Palaeogeography, 2021, 23(2): 263-283.
[252] Slatt R M, Rodriguez N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84.
[253] 李圯,刘可禹,蒲秀刚,等. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境[J]. 地球科学,2020,45(10):3779-3796.

Li Yi, Liu Keyu, Pu Xiugang, et al. Lithofacies characteristics and formation environments of mixed finegrained sedimentary rocks in Second member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin[J]. Earth Science, 2020, 45(10): 3779-3796.
[254] Hammes U, Frébourg G. Haynesville and Bossier mudrocks: A facies and sequence stratigraphic investigation, East Texas and Louisiana, USA[J]. Marine and Petroleum Geology, 2012, 31(1): 8-26.
[255] 李鹏,刘全有,毕赫,等. 火山活动与海侵影响下的典型湖相页岩有机质保存差异分析[J]. 地质学报,2021,95(3):632-642.

Li Peng, Liu Quanyou, Bi He, et al. Analysis of the difference in organic matter preservation in typical lacustrine shale under the influence of volcanism and transgression[J]. Acta Geologica Sinica, 2021, 95(3): 632-342.
[256] Bradley W H, Eugster H P. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming[R]. U.S. Geological Survey Professional Paper 496-B, Washington: United States Government Printing Office, 1969: 53.
[257] Hill P S, Fox J M, Crockett J S, et al. Sediment delivery to the seabed on continental margins[M]//Nittrouer C A, Austin J A, Field M E, et al. Continental margin sedimentation: From sediment transport to sequence stratigraphy. Malden: Blackwell Publishing Ltd., 2007.
[258] Snedden J W, Nummedal D. Origin and geometry of storm-deposited sand beds in modern sediments of the texas continental shelf[M]//Swift D J P, Oertel G F, Tillman R W, et al. Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy. Oxford: Blackwell Publishing Ltd., 1991.
[259] Eugster H P, Surdam R C. Depositional environment of the Green River Formation of wyoming: A preliminary report[J]. Geological Society of America Bulletin, 1973, 84(4): 1115-1120.
[260] Desborough G A. A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation: An alternative to the playa-lake model[J]. Geological Society of America Bulletin, 1978, 89(7): 961-971.
[261] 柳蓉,张坤,刘招君,等. 中国油页岩富集与地质事件研究[J]. 沉积学报,2021,39(1):10-28.

Liu Rong, Zhang Kun, Liu Zhaojun, et al. Oil shale mineralization and geological events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28.
[262] 李友川. 中国近海湖相优质烃源岩形成的主要控制因素[J]. 中国海上油气,2015,27(3):1-9.

Li Youchuan. Main controlling factors for the development of high quality lacustrine hydrocarbon source rocks in offshore China[J]. China Offshore Oil and Gas, 2015, 27(3): 1-9.
[263] 杨仁超,尹伟,樊爱萍,等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报,2017,19(5):791-806.

Yang Renchao, Yin Wei, Fan Aiping, et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806.
[264] Shiah F K, Liu K K, Kao S J, et al. The coupling of bacterial production and hydrography in the southern East China Sea: Spatial patterns in spring and fall[J]. Continental Shelf Research, 2000, 20(4/5): 459-477.
[265] Fishman N, Guthrie J, Honarpour M. The stratigraphic distribution of hydrocarbon storage and its effect on producible hydrocarbons in the Eagle Ford Formation, South Texas[C]//Proceedings of the unconventional resources technology conference. Denver: SEG, 2013.
[266] Hemmesch N T, Harris N B, Mnich C A, et al. A sequence-stratigraphic framework for the Upper Devonian Woodford Shale, Permian Basin, west Texas[J]. AAPG Bulletin, 2014, 98(1): 23-47.
[267] Houseknecht D W, Rouse W A, Paxton S T, et al. Upper Devonian⁃Mississippian stratigraphic framework of the Arkoma Basin and distribution of potential source-rock facies in the Woodford⁃Chattanooga and Fayetteville⁃Caney shale-gas systems[J]. AAPG Bulletin, 2014, 98(9): 1739-1759.
[268] 张凯棣. 东海陆架近代泥质沉积源汇过程的矿物学响应[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2017.

Zhang Kaidi. Mineralogical response of source to sink processes in modern muddy sediments of the East China Sea continental shelf[D]. Qingdao: Institute of Oceanology, Chinese Academy of Science, 2017.
[269] Breyer J A, Denne R, Kosanke T, et al. Facies, fractures, pressure and production in the eagle ford shale (Cretaceous) between the Maverick Basin and the San Marcos Arch, Texas, USA[C]//Proceedings of the unconventional resources technology conference. Denver: SEG, 2013.
[270] Kelts K, Talbot M. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions[M]//Tilzer M M, Serruya C. Large lakes: Ecological structure and function. Berlin Heidelberg: Springer, 1990.
[271] 蒋宜勤,柳益群,杨召,等. 准噶尔盆地吉木萨尔凹陷凝灰岩型致密油特征与成因[J]. 石油勘探与开发,2015,42(6):741-749.

Jiang Yiqin, Liu Yiqun, Yang Zhao, et al. Characteristics and origin of tuff-type tight oil in Jimusar Depression, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 741-749.
[272] Soulsby R L, Manning A J, Spearman J, et al. Settling velocity and mass settling flux of flocculated estuarine sediments[J]. Marine Geology, 2013, 339: 1-12.
[273] Zhang Y, Ren J, Zhang W Y. Flocculation under the control of shear, concentration and stratification during tidal cycles[J]. Journal of Hydrology, 2020, 586: 124908.
[274] 钱宁,万兆慧. 泥沙运动力学[J]. 北京:科学出版社,2003.

Qian Ning, Wan Zhaohui. Mechanics of sediment transport[J]. Beijing: Science Press, 2003.
[275] Wheatcroft R A, Ilhan I, Pink F X. Particle bioturbation in Massachusetts Bay: Preliminary results using a new deliberate tracer technique[J]. Journal of Marine Research, 1994, 52(6): 1129-1150.
[276] Amoudry L O, Souza A J. Deterministic coastal morphological and sediment transport modeling: A review and discussion[J]. Reviews of Geophysics, 2011, 49(2): RG2002.
[277] Zhang W Y, Harff J, Schneider R, et al. Holocene morphogenesis at the southern Baltic Sea: Simulation of multi-scale processes and their interactions for the Darss⁃Zingst peninsula[J]. Journal of Marine Systems, 2014, 129: 4-18.
[278] French J, Payo A, Murray B, et al. Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales[J]. Geomorphology, 2016, 256: 3-16.
[279] Zhang W Y. Sediment transport models[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 764-767.
[280] Diaz M, Grasso F, Le Hir P, et al. Modeling mud and sand transfers between a macrotidal estuary and the continental shelf: Influence of the sediment transport parameterization[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015643.
[281] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research: Oceans, 1979, 84(C4): 1797-1808.