[1] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627.
[2] Taylor S R, McLennan S M. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford, UK: Blackwell Scientific Publications, 1985: 1-312.
[3] 刘本立. 地球化学基础[M]. 北京:北京大学出版社,1994:186-187.

Liu Benli. Geochemical basis[M]. Beijing: Peking University Press, 1994: 186-187.
[4] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182.
[5] McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J]. The Journal of Geology, 1991, 99(1): 1-21.
[6] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
[7] 代辉,钟摇,熊璨,等. 重庆云阳地区中侏罗世新田沟组底部细粒碎屑岩地球化学特征及意义[J]. 矿物岩石,2021,41(1):32-43.

Dai Hui, Zhong Yao, Xiong Can, et al. The geochemistry characteristics and significance of fine-grained clastic rocks from the Xintiangou Formation in Yunyang county, Chongqing[J]. Journal of Mineralogy and Petrology, 2021, 41(1): 32-43.
[8] 赵太平,徐勇航,翟明国. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境:事实与争议[J]. 高校地质学报,2007,13(2):191-206.

Zhao Taiping, Xu Yonghang, Zhai Mingguo. Petrogenesis and tectonic setting of the Paleoproterozoic Xiong'er Group in the southern part of the North China Craton: A review[J]. Geological Journal of China Universities, 2007, 13(2): 191-206.
[9] 庞岚尹,祝禧艳,胡国辉,等. 华北克拉通南缘中:新元古代年代地层格架和沉积演化过程研究的新进展[J]. 地层学杂志,2021,45(2):180-195.

Pang Lanyin, Zhu Xiyan, Hu Guohui, et al. Advances in the study of Meso-Neoproterozoic stratigraphic chronology and sedimentary evolution in the southern margin of the North China Craton[J]. Journal of Stratigraphy, 2021, 45(2): 180-195.
[10] 赵太平,邓小芹,胡国辉,等. 华北克拉通古/中元古代界线和相关地质问题讨论[J]. 岩石学报,2015,31(6):1495-1508.

Zhao Taiping, Deng Xiaoqin, Hu Guohui, et al. The Paleoproterozoic-Mesoproterozoic boundary of the North China Craton and the related geological issues: A review[J]. Acta Petrologica Sinica, 2015, 31(6): 1495-1508.
[11] 赵太平,庞岚尹,仇一凡,等. 古/中元古代界线:1.8Ga[J]. 岩石学报,2019,35(8):2281-2298.

Zhao Taiping, Pang Lanyin, Qiu Yifan, et al. The Paleo-Mesoproterozoic boundary: 1.8Ga[J]. Acta Petrologica Sinica, 2019, 35(8): 2281-2298.
[12] 胡受奚,林潜龙. 华北与华南古板块拼合带地质和成矿(以东秦岭)—桐柏为例)[M]. 南京:南京大学出版社,1988:215-229.

Hu Shouxi, Lin Qianlong. The geology and metallogeny of the amalgamation zone between the North China Block and the South China Block: Taking Qinling-Tongbai as an example[M]. Nanjing: Nanjing University Press, 1988: 215-229.
[13] 孙枢,张国伟,陈志明. 华北断块区南部前寒武纪地质演化[M]. 北京:冶金工业出版社,1985:90-149.

Sun Shu, Zhang Guowei, Chen Zhiming. Precambrian geological evolution of the southern North China Block[M]. Beijing: Metallurgical Industry Press, 1985: 90-149.
[14] 陈衍景,富士谷,强立志. 评熊耳群和西洋河群形成的构造背景[J]. 地质论评,1992,38(4):325-333.

Chen Yanjing, Fu Shigu, Qiang Lizhi. The tectonic environment for the formation of the Xionger Group and the Xiyanghe Group[J]. Geological Review, 1992, 38(4): 325-333.
[15] Lu S N, Yang C L, Li H K, et al. A group of rifting events in the terminal Paleoproterozoic in the North China Craton[J]. Gondwana Research, 2002, 5(1): 123-131.
[16] Peng P, Zhai M G, Ernst R E, et al. A 1.78 Ga large igneous province in the North China Craton: The Xiong'er volcanic province and the North China dyke swarm[J]. Lithos, 2008, 101(3/4): 260-280.
[17] Wang C M, He X Y, Carranza E J M, et al. Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: Implications for the Columbia supercontinent[J]. Geoscience Frontiers, 2019, 10(4): 1543-1560.
[18] 赵太平,周美夫,金成伟,等. 华北陆块南缘熊耳群形成时代讨论[J]. 地质科学,2001,36(3):326-334.

Zhao Taiping, Zhou Meifu, Jin Chengwei, et al. Discussion on age of the Xiong’er Group in southern margin of North China Craton[J]. Chinese Journal of Geology, 2001, 36(3): 326-334.
[19] 徐勇航,赵太平,张玉修,等. 华北克拉通南部古元古界熊耳群大古石组碎屑岩的地球化学特征及其地质意义[J]. 地质论评,2008,54(3):316-326.

Xu Yonghang, Zhao Taiping, Zhang Yuxiu, et al. Geochemical characteristics and geological significances of the Dagushi Formation siliciclastic rocks, the Paleoproterozoic Xiong’er Group from the southern North China Craton[J]. Geological Review, 2008, 54(3): 316-326.
[20] 魏丹峰. 豫西济源地区中元古界大古石组物源示踪及其构造意义[J]. 能源与环保,2021,43(5):112-118,251.

Wei Danfeng. Constrains on provenance and its tectonic implication of Mesoproterozoic Dagushi Formation in Jiyuan, western Henan province[J]. China Energy and Environmental Protection, 2021, 43(5): 112-118, 251.
[21] 徐勇航,赵太平,陈伟. 华北克拉通南部古元古界熊耳群中海绿石的发现及其地质意义[J]. 沉积学报,2010,28(4):671-675.

Xu Yonghang, Zhao Taiping, Chen Wei. The discovery and geological significance of glauconites from the Palaeoproterozoic Xiong’er Group in the southern part of the North China Craton[J]. Acta Sedimentologica Sinica, 2010, 28(4): 671-675.
[22] 赵太平,原振雷,关保德. 豫晋陕熊耳群沉积岩夹层特征与沉积环境[J]. 河南地质,1998,16(4):22-33.

Zhao Taiping, Yuan Zhenlei, Guan Baode. The characteristics and sedimentary environment of sedimentary interbeds of Xiong'er Group distributed in the juncture of Henan-Shanxi-Shaanxi provinces[J]. Henan Geology, 1998, 16(4): 22-33.
[23] 韩菲,郑德顺,王昕,等. 河南济源地区中元古界熊耳群大古石组下段沉积相分析[J]. 河南理工大学学报(自然科学版),2021,40(5):45-55.

Han Fei, Zheng Deshun, Wang Xin, et al. Analysis of sedimentary facies of the lower segment of Dagushi Formation in Mesoproterozoic Xiong’er Group in Jiyuan area, Henan province[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(5): 45-55.
[24] Ding Q F, Jiang S Y, Sun F Y. Zircon U-Pb geochronology, geochemical and Sr-Nd-Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the eastern Kunlun orogen, NW China: Petrogenesis and Tectonic implications[J]. Lithos, 2014, 205: 266-283.
[25] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2014, 4: 1-51.
[26] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[27] Sun F B, Zheng D S, Zuo P F, et al. Stratigraphy and zircon provenance of a Late Paleoproterozoic terrestrial sequence underlying the Xiong'er volcanics in the southern North China Craton[J]. Acta Geologica Sinica, 2022, 96(5): 1502-1515.
[28] Zhou Y Y, Zhao T P, Sun Q Y, et al. Geochronological and geochemical constraints on the petrogenesis of the 2.6 -2.5 Ga amphibolites, low- and high-Al TTGs in the Wangwushan area, southern North China Craton: Implications for the Neoarchean crustal evolution[J]. Precambrian Research, 2018, 307: 93-114.
[29] Zhou Y Y, Zhao T P, Sun Q Y, et al. Petrogenesis of the Neoarchean diorite-granite association in the Wangwushan area, southern North China Craton: Implications for continental crust evolution[J]. Precambrian Research, 2019, 326: 84-104.
[30] Deng H, Kusky T, Polat A, et al. A Neoarchean arc-backarc pair in the Linshan massif, southern North China Craton[J]. Precambrian Research, 2020, 341: 105649.
[31] 孙大中,李惠民,林源贤,等. 中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究[J]. 地质学报,1991,65(3):216-231.

Sun Dazhong, Li Huimin, Lin Yuanxian, et al. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao mountains[J]. Acta Geological Sinica, 1991, 65(3): 216-231.
[32] 张瑞英,张成立,第五春荣,等. 中条山前寒武纪花岗岩地球化学、年代学及其地质意义[J]. 岩石学报,2012,28(11):3559-3573.

Zhang Ruiying, Zhang Chengli, Chunrong Diwu, et al. Zircon U-Pb geochronology, geochemistry and its geological implications for the Precambrian granitoids in Zhongtiao mountain, Shanxi province[J]. Acta Petrologica Sinica, 2012, 28(11): 3559-3573.
[33] 赵凤清,李惠民,左义成,等. 晋南中条山古元古代花岗岩的锆石U-Pb年龄[J]. 地质通报,2006(4):442-447.

Zhao Feng-qing, Li Huimin, Zuo Yicheng, et al. Zircon U-Pb ages of Paleoproterozoic granitoids in the Zhongtiao mountains, southern Shanxi, China[J]. Geological Bulletin of China, 2006, 25(4): 442-447.
[34] 段庆松,宋会侠,杜利林,等. 古元古代全球静寂期岩浆活动:以华北克拉通南缘中条山~2.3 Ga横岭关花岗岩为例[J]. 地球科学,2020,45(9):3372-3385.

Duan Qingsong, Song Hui-xia, Du Lilin, et al. The magmatic activity in Paleoproterozoic global magmatic quiescence: Take the ~2.3 Ga Henglingguan Granites from Zhongtiao mountains in the southern North China Craton as an example[J]. Earth Science, 2020, 45(9): 3372-3385.
[35] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock che-mistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
[36] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[37] 王良忱,张金亮. 沉积环境和沉积相[M]. 北京:石油工业出版社,1996:1-273.

Wang Liangchen, Zhang Jinliang. Sedimentary environment and sedimentary facies[M]. Beijing: Petroleum Industry Press, 1996: 1-273.
[38] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
[39] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310,314.

Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment:Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.
[40] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[41] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147.
[42] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
[43] Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2199-2220.
[44] 郑杰,阳正熙,刘石磊,等. 黔东北地区南华系两界河组CIA指数特征及意义[J]. 沉积与特提斯地质,2019,39(1):50-59.

Zheng Jie, Yang Zhengxi, Liu Shilei, et al. The chemical alteration indexes and their significance for the Nanhuan Liangjiehe Formation in northeastern Guizhou[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(1): 50-59.
[45] 王自强,尹崇玉,高林志,等. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论[J]. 地质论评,2006,52(5):577-585.

Wang Ziqiang, Yin Chongyu, Gao Linzhi, et al. The character of the chemical index of alteration and discussion of subdivision and correlation of the Nanhua System in Yichang area[J]. Geological Review, 2006, 52(5): 577-585.
[46] 张振凯,周瑶琪,彭甜明,等. 山东灵山岛莱阳群粉砂岩地球化学特征及意义[J]. 地球科学,2017,42(3):357-377.

Zhang Zhenkai, Zhou Yaoqi, Peng Tianming, et al. Geochemical characteristics and signatures of siltstones from Laiyang Group at Lingshan Island, Qingdao, Shandong[J]. Earth Science, 2017, 42(3): 357-377.
[47] 陈力为. 华北克拉通在Columbia超大陆中的古地理位置及古元古代岩墙群的构造环境研究[D]. 北京:中国科学院大学,2014.

Chen Liwei. The paleogeographic position of North China Craton during the Columbia supercontinent period and tectonic setting of Paleoproterozoic dyke swarms[D]. Beijing: The University of Chinese Academy of Sciences, 2014.
[48] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
[49] Zhang S H, Liu S W, Zhao Y, et al. The 1.7 5-1.6 8 Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen[J]. Precambrian Research, 2007, 155(3/4): 287-312.
[50] Xiao L L, Liu F L, Chen Y. Metamorphic P-T-t paths of the Zanhuang metamorphic complex: Implications for the Paleoproterozoic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2014, 255: 216-235.
[51] Lu J S, Wang G D, Wang H, et al. Zircon SIMS U-Pb geochronology of the Lushan terrane: Dating metamorphism of the southwestern terminal of the Palaeoproterozoic Trans-North China Orogen[J]. Geological Magazine, 2015, 152(2): 367-377.
[52] Hou G T, Santosh M, Qian X L, et al. Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms[J]. Gondwana Research, 2008, 14(3): 395-409.
[53] 庄育勋,王新社,徐洪林,等. 泰山地区早前寒武纪主要地质事件与陆壳演化[J]. 岩石学报,1997,13(3):313-330.

Zhuang Yuxun, Wang Xinshe, Xu Honglin, et al. Main geological events and crustal evolution in Early Precambrian of Taishan region[J]. Acta Petrologica Sinica, 1997, 13(3): 313-330.
[54] 李铁胜. 冀东太平寨—遵化新太古代古岛弧地体及其大陆生长[D]. 北京:中国科学院地质与地球物理研究所,1999.

Li Tiesheng. Taipingzai-Zunhua Neo-Archaean island arc terrain and continental growth in eastern Hebei, North China[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), 1999.
[55] 周鼎武,张成立,刘良,等. 秦岭造山带及相邻地块元古代基性岩墙群研究综述及相关问题探讨[J]. 岩石学报,2000,16(1):22-28.

Zhou Dingwu, Zhang Chengli, Liu Liang, et al. Synthetic study on Proterozoic basic dyke swarms in the Qinling orogenic belt and its adjacent block as well as a discussion about some questions related to them[J]. Acta Petrologica Sinica, 2000, 16(1): 22-28.
[56] 彭澎,翟明国,张华锋,等. 华北克拉通1.8Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例[J]. 岩石学报,2004,20(3):439-456.

Peng Peng, Zhai Mingguo, Zhang Huafeng, et al. Geochemistry and geological significance of the 1.8 Ga mafic dyke swarms in the North China Craton: An example from the juncture of Shanxi, Hebei and Inner Mongolia[J]. Acta Petrologica Sinica, 2004, 20(3): 439-456.
[57] Zhao T P, Zhou M F, Zhai M G, et al. Paleoproterozoic rift-related volcanism of the Xiong’er Group, North China Craton: Implications for the breakup of Columbia[J]. International Geo-logy Review, 2002, 44(4): 336-351.
[58] Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chemical Geology, 1981, 32(1/2/3/4): 139-154.
[59] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[60] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[61] Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A.[J]. Chemical Geology, 1987, 63(3/4): 275-297.
[62] Condie K C. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531.
[63] 杨守业,李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展,1999,14(2):164-167.

Yang Shouye, Li Congxian. Research progress in REE tracer for sediment source[J]. Advances in Earth Science, 1999, 14(2): 164-167.
[64] 许中杰,程日辉,王嘹亮,等. 闽西南地区晚三叠—中侏罗世沉积岩矿物和元素地球化学特征:对盆地构造背景转变的约束[J]. 岩石学报,2013,29(8):2913-2924.

Xu Zhongjie, Cheng Rihui, Wang Liaoliang, et al. Mineralogical and element geochemical characteristics of the Late Triassic-Middle Jurassic sedimentary rocks in southwestern Fujian province: Constraints on changes of basin tectonic settings[J]. Acta Petrologica Sinica, 2013, 29(8): 2913-2924.