[1] Mills P C. Genesis and diagnostic value of soft-sediment deformation structures:a review[J]. Sedimentary Geology, 1983, 35(2): 83-104.
[2] van Loon A J, Brodzikowski K. Problems and progress in the research on soft-sediment deformations[J]. Sedimentary Geology, 1987, 50(1/2/3): 167-193.
[3] van Loon A J. The recognition of soft-sediment deformations as early-diagenetic features:a literature review[J]. Developments in Sedimentology, 1992, 47: 135-189.
[4] Maltman A. The geological deformation of sediments[M]. London: Chapman and Hall, 1994: 1-362.
[5] Moretti M, Soria J M, Alfaro P, et al. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain)[J]. Facies, 2001, 44(1): 283-294.
[6] Liang Z, Zhou Y Q, van Loon A J. Soft-sediment deformation structures induced by rapid sedimentation in Early Cretaceous turbidites, Lingshan Island, eastern China[J]. Canadian Journal of Earth Sciences, 2018, 55(2): 118-129.
[7] Owen G. Deformation processes in unconsolidated sands[M]//Jones M E, Preston R M F. Deformation of sediments and sedimentary rocks. London: Geological Society, 1987: 11-24.
[8] Owen G. Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples[J]. Sedimentology, 1996, 43(2): 279-293.
[9] Sanders J E. Oriented phenomena produced by sedimentation from turbidity currents and in subaqueous slope deposits[J]. Journal of Paleontology, 1956, 26: 178-179.
[10] Dzulynski S, Walton E K. Sedimentary features of flysch and greywackes: Developments in sedimentology[M]. Amsterdam: Elsevier, 1965: 1-274.
[11] Stromberg S G, Bluck B. Turbidite facies, fluid-escape structures and mechanisms of emplacement of the Oligo-Miocene Aljibe Flysch, Gibraltar Arc, Betics, southern Spain[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 267-288.
[12] Lowe D R. Water escape structures in coarse-grained sediments[J]. Sedimentology, 1975, 22(2): 157-204.
[13] Allen J R L. Sedimentary structures: their character and physical basis Volume II[M]//Developments in sedimentology. Amsterdam: Elsevier, 1982: 1-663.
[14] Collinson J D, Thompson D B. Sedimentary structures[M]. London: Allen and Unwin, 1989: 1-194.
[15] Brenchley P J, Newall G. The significance of contorted bedding in Upper Ordovician sediments of the Oslo region, Norway[J]. Journal of Sedimentary Research, 1977, 47(2): 819-833.
[16] 栾光忠,李安龙,王建,等. 青岛主要海岛成因分类及其地质环境分析[J]. 中国海洋大学学报,2010,40(8):111-116.

Luan Guangzhong, Li Anlong, Wang Jian, et al. The geological origin division of the main sea island in Qingdao area and environment analysis[J]. Periodical of Ocean University of China, 2010, 40(8): 111-116.
[17] 李三忠,刘鑫,索艳慧,等. 华北克拉通东部地块和大别:苏鲁造山带印支期褶皱—逆冲构造与动力学背景[J]. 岩石学报,2009,25(9):2031-2049.

Li Sanzhong, Liu Xin, Suo Yanhui, et al. Triassic folding and thrusting in the eastern block of the North China Craton and the Dabie-Sulu orogen and its geodynamics[J]. Acta Petrologica Sinica, 2009, 25(9): 2031-2049.
[18] Zhu G, Wang Y S, Liu G S, et al. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 2005, 27(8): 1379-1398.
[19] 周瑶琪,张振凯,梁文栋,等. 山东东部晚中生代构造—岩浆活动及原型盆地恢复[J]. 地学前缘,2015,22(1):137-156.

Zhou Yaoqi, Zhang Zhenkai, Liang Wendong, et al. Late Mesozoic tectono-magmatic activities and prototype basin restoration in eastern Shandong province, China[J]. Earth Science Frontiers, 2015, 22(1): 137-156.
[20] 钟建华. 灵山岛中生代沉积岩是深水远源浊积岩、还是陆内三角洲沉积?:与吕洪波教授商榷[J]. 地质论评,2012,58(6):1180-1182.

Zhong Jianhua.Is the Mesozoic sedimentation of Lingshan Island a deep-water remote turbidite or an intracontinental delta deposit?—Argue with professor Lü Hongbo[J]. Geological Review, 2012, 58(6): 1180-1182.
[21] 钟建华,倪良田,邵珠福,等. 青岛灵山岛下白垩统风暴岩与风暴沉积的发现及意义[J]. 古地理学报,2016,18(3):381-398.

Zhong Jianhua, Ni Liangtian, Shao Zhufu, et al. Tempestites and storm deposites in the Lower Cretaceous from Lingshan Island, Qingdao[J]. Journal of Palaeogeography, 2016, 18(3): 381-398.
[22] 邵珠福,钟建华,李勇,等. 青岛灵山岛晚中生代重力流沉积特征及环境分析[J]. 地质论评,2014,60(3):555-566.

Shao Zhufu, Zhong Jianhua, Li Yong, et al. The sedimentary characteristics and environmental analysis of Late Mesozoic gravity flows in Lingshan Island[J]. Geological Review, 2014, 60(3): 555-566.
[23] 李守军,张祥玉,赵秀丽,等. 山东省青岛市灵山岛下白垩统中发现鱼类和叶肢介化石[J]. 地质论评,2017,63(1):1-6.

Li Shoujun, Zhang Xiangyu, Zhao Xiuli, et al. Discovery of fish and conchostracan fossils in Lower Cretaceous in Lingshan Island, Qingdao, Shandong[J]. Geological Review, 2017, 63(1): 1-6.
[24] 孟元库,李日辉. 青岛灵山岛及邻区早白垩世大地构造演化[J]. 地质论评,2019,65(2):385-388.

Meng Yuanku, Li Rihui. Early Cretaceous tectonic evolution on Lingshan Island, Qingdao, and adjacent regions[J]. Geological Review, 2019, 65(2): 385-388.
[25] 王安东. 山东灵山岛早白垩世地层软沉积物变形构造研究[D]. 青岛:中国石油大学(华东),2013:11-18.

Wang Andong. Research on the soft-sediment deformation structures in the Early Cretaceous strata at Lingshan Island, Shandong[D]. Qingdao: China University of Petroleum (East China), 2013: 11-18.
[26] 吕洪波,王俊,张海春. 山东灵山岛晚中生代滑塌沉积层的发现及区域构造意义初探[J]. 地质学报,2011,85(6):938-946.

Hongbo Lü, Wang Jun, Zhang Haichun. Discovery of the Late Mesozoic slump beds in Lingshan Island, Shandong, and a pilot research on the regional tectonics[J]. Acta Geologica Sinica, 2011, 85(6): 938-946.
[27] 张海春,吕洪波,李建国,等. 山东青岛早白垩世新地层单位:灵山岛组[J]. 地层学杂志,2013,37(2):216-222.

Zhang Haichun, Hongbo Lü, Li Jianguo, et al. The Lingshandao Formation: A new lithostratigraphic unit of the Early Cretaceous in Qingdao, Shandong, China[J]. Journal of Stratigraphy, 2013, 37(2): 216-222.
[28] Owen G, Moretti M, Alfaro P. Recognising triggers for soft-sediment deformation: Current understanding and future directions[J]. Sedimentary Geology, 2011, 235(3/4): 133-140.
[29] Suter F, Martínez J I, Vélez M I. Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?[J]. Sedimentary Geology, 2011, 235(3/4): 188-199.
[30] Kuenen H. Experiments in geology[J]. Transactions of the Geological Society of Glasgow, 1958, 23: 1-28.
[31] Butrym J, Cegla J, Dzulynski S, et al. New interpretation of periglacial structures[M]. Krakow: Folia Quaternaria, 1964: 1-34.
[32] Pope M C, Read J F, Bambach R, et al. Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: Sedimentary recorders of earthquakes in the Appalachian Basin[J]. Geological Society of America Bulletin, 1997, 109(4): 489-503.
[33] Jones A P, Omoto K. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: A case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan[J]. Sedimentology, 2000, 47(6): 1211-1226.
[34] Moretti M. Soft-sediment deformation structures interpreted as seismites in Middle-Late Pleistocene aeolian deposits (Apulian foreland, southern Italy)[J]. Sedimentary Geology, 2000, 135(1/2/3/4): 167-179.
[35] Moretti M, Sabato L. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (southern Italy): Seismic shock vs. overloading[J]. Sedimentary Geology, 2007, 196(1/2/3/4): 31-45.
[36] Spalluto L, Moretti M, Festa V, et al. Seismically-induced slumps in Lower-Maastrichtian peritidal carbonates of the Apulian Platform (southern Italy)[J]. Sedimentary Geology, 2007, 196(1/2/3/4): 81-98.
[37] 梁钊,周瑶琪. 山东省灵山岛下白垩统浊积岩中与滑塌作用相关的软沉积物变形构造[J]. 地球科学,2017,42(10):1715-1724.

Liang Zhao, Zhou Yaoqi. Soft-sediment deformation structures related to slumping in Lower Cretaceous turbidite in Lingshan Island, Shandong province[J]. Earth Science, 2017, 42(10): 1715-1724.