高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The Isotope Geochemistry of N2 in Natural Gas Pools

The Isotope Geochemistry of N2 in Natural Gas Pools[J]. 沉积学报, 1999, 17(2): 318-324.
引用本文: The Isotope Geochemistry of N2 in Natural Gas Pools[J]. 沉积学报, 1999, 17(2): 318-324.

The Isotope Geochemistry of N2 in Natural Gas Pools

详细信息
  • 中图分类号: P597.2

  • 摘要: The isotopic compositions of N2 (δ 15N,‰,ATM) imply the geochemical origins of molecular nitrogen in gas pools . N2 with -19‰≤δ15NN2≤-10‰ may be from immature sedimentar y organic matter.-10‰<δ15NN2≤-2‰ may indicate the N2 origina tes from mature (including high mature) sedimentary organic matter.-2‰<δ15 NN2<+1‰ implies the N2 may be from the deep crust or mantle. N2 with δ15NN2=0‰ and N2/Ar=38~84 suggests to come from the atm osphere.-1‰≤δ15NN2<+4‰ characterizes N2 from ammonium clay m inerals in shale and mudrock during metamorphism.δ15NN2=+4‰ is t he typical feature of N2 from saltpeter in evaporite.+4‰<δ15NN2 ≤+18‰ indicates N2 may derive from post-mature sedimentary organic matter, which is the main source of N2-high gas (N2>60%) pools.N2-high gas pools,which occurs in a large scale in peroliferous basin, suggests that it is mainly the post-mature gas trapped in the reservoir. N2 with δ15NN2 varying from -10‰ to -2‰ is the main source of N2-rich gas (N2>15%) pool s,and with δ15NN2 varying from +1‰ to +4‰ may form either the N 2-high or the N2-rich gas pools.
  • [1] Baxby M,Patience R L, Bartle K D.The origin and diagenesis of sediment ary organic nitrogenD[J] .Journal of Petroleum Geology,1994.17 (20):211~230
    [2] Boigk H,Hagemann H W,Stahl W, Wollanke G.Isotopenphysikalische Untersu chungen:Erdoel and Kohle-Erdgas-Petrochemie Vereinigt mit Brennstoff Chemie,1976 .29:103~112
    [3] Bokhoven C, Theeuween H J. Determination of the abundance of carbon and nitrogen isotopes in Dutch coals and natural gas[J] .Nature,1966,211 (5052):927~929
    [4] Cooper J E, Evans W S.Ammonium-nitrogen in Green River formatio n Oil shale[J] .Science,1983,219:492~493
    [5] Dai J X. Coal-formed gas in West Siberian Basin and its control ing accumulation rules[J] .Natural Gas Industry,1985.(1):4~11 (in Chinese)
    [6] Du J G,Liu W H,Shao B, Faber E.Geochemical characteristics of nitrogen in natural gases[J] .Acta Sedimentlogica Sinica,1996.14(1):143-147 (in Chinese)
    [7] Getz F A,Clue in coal-derived-methane hunt[J] .The Oil and Gas Journal,25 Apri 1987,l:220~221
    [8] Headlee A G W,Carbon dioxide,nitrogen crucial to oil migration?[J]. World Oil,October:1962,126~131,144
    [9] Hoering T C, Moore H.The isotopic composition of the nitr ogen in natural gases and associated crude oils[J] .Geochimica et Cosmochimica Acta,1958,13:225~232
    [10] Huang F T.Studies on the distribution of natural gases in the nor thern part of Songliao basin[J] .Natural Gas Geoscience,1995.6(6):36-40 (in Chi nese).
    [11] Jenden P D,Kaplan I R,Poreda R J, Craig H.Origin of nitrog en-rich natural gases in the California Great Valley:Evidence from helium,carbo n and nitrogen isotope ratios[J] .Geochimica et Cosmochimica Acta,1988a,52:851 ~861
    [12] Jenden P D,Newell K D,Kaplan I R,Watney W L.Composition and sta ble-isotope geochemistry of natural gases from Kansas,midcontinent,USA[J] .Ch emical Geology,1988b,71:117~147
    [13] Kreular R, Schuiling R K.N2-CH4-CO2 fluids during formation of the Dome de I'Agout,France[J] .Geochimica et Cosmochimica Acta,1982,46:193~20 3
    [14] Krooss B M,Littke R,Mǜller B,Frielingsdorf J,Schwochau K,Idiz E F.Ge neration of nitrogen and methane from sedimentary organic matter:Implication on the dynamics of natural gas accumulations[J] .Chemical Geology,1995,126:291 ~318
    [15] Krouse H R.Stable isotope geochemistry of non-hydrocarbon c onstitutents of natural gas. Proceeding of the 10th World Petroleum Congress[C].PD 1979,16(5):85~91
    [16] Littke R,Krooss B,Idiz E, Frielingsdorf J.Molecular nitro gen in natural gas accumulations:Generation from sedimentary organic matter at high temperatures[J] .AAPG Bulletin,1995,79 (3):410~430
    [17] Macko S A,Foge (Estep) M L, Hare P E.Isotopic fraction of nitrogen and carbon in the synthesis of amino-acides by microoganisms[J] .Chemical Geology (Isotope Geoscience),1987,65:79~92
    [18] Maksimov S P,Mǜller E P,Botneva T A,Goldbecher K,Zorkin K M, Pankina R G.Origin of high nitrogen gas pools[J] .International Geology Review,1975,1 8(5):551~556
    [19] Oh M S,Taylor R W,Coburn T T, Crawford R W.Ammonia evolution during oi l shale pyrolysis[J] .Energy Fuels,1988,2:100~105
    [20] Prasolov E M,Subbotin S S,Travnikova V A.Isotopic composition of gases of the salt-bearimg sediments,nitrogen and carbon[J] .Geokhimiya,19 87,(4):524~531 (in Russian)
    [21] Prasolov E M,Subbotin E S, Tikhmirov V V.Isotopic composition of molecu lar nitrogen in natural gases of USSR[J] .Geokhimiya,1990,(7):926~937 (in Russian)
    [22] Sano Y, Pillinger C T,Nitrogen isotopes and N2/Ar ratios in cherts:An attempt to measure time evolution of atmospheric δ15N valus[J] .Geochem ical Journal,1990,24:315~325
    [23] Stahl W J.Carbon and nitrogen isotope in hydrocarbon research and exploration[J] .Chemical Geology,1977,20:121~149
    [24] Wang Y T, Jiang S B.Origin of nitrogen-bearing gases in the central pa rt of Zhuenggaer basin[J] .Xinjiang Petroleum Geology (China),1997,18(1):46~4 9 (in Chinese)
    [25] Weinlich F H.Genese und Verteilung der freien Gase im Stassfurt Karbona t der Lausitz[J] :Zeitschrift fuer angewandte Geologie,1991,37:14~20
    [26] Whelan J K,Solomen P R,Desphande G V, Carangelo R M.Thermogravimetric f ourier transform infrared spectroscopy (TG-FTIR) of Petroleum Source rocks[J] . Energyls Fuels,1988,2:65~73
    [27] Whiticar M J.Correlation of natural gases with their sources[A] .In: Magoon,L B,and Dow,W G eds:The Petroleum System-from source to trap[C] .AAPG Me moir, 1994,60: 281~283
    [28] Xu Y C.The Theory of Natural Gas Generation and Application[M] .Beij ing:Science Press,1994,291~312 (in Chinese)
    [29] Zeng G Y. Distribution and occurence of non-hydrocarbongases in Guangdo ng Province,China[J] .Journal of olil & Gas Geology,1986,7 (4):404~410 (in Chi nese)
    [30] Zhang Y X, Zindler A.Noble gas constraints on the evolution of earth's atmosphere[J] .Journal of Geophysical Research,1989,94(B10):13 719~13 737
    [31] Zhang Z S.Introduction to World Giant Gas Fields[M] .Beijing:Petrolcu m Industry Press,1990,28~96 (in Chinese)
    [32] Zhu Y N.Development in geochemistry of non-hydrocarbon constitue nts of natural gases[J] .Advance in Earth Science,1994,9(4):50~57 (in Chinese)
  • [1] 邓守伟.  松辽盆地德惠断陷火石岭组天然气成藏机理 . 沉积学报, 2019, 37(2): 432-442. doi: 10.14027/j.issn.1000-0550.2018.131
    [2] 有机质碳同位素热力学分馏与天然气碳同位素组成 . 沉积学报, 2012, 30(3): 588-593.
    [3] 张长春.  吐哈盆地丘东次凹低熟气的生成与动力学研究 . 沉积学报, 2008, 26(5): 857-863.
    [4] 柴北缘地区天然气~(40)Ar/~(36)Ar特征及其地质意义 . 沉积学报, 2008, 26(1): 158-162.
    [5] 赵东升.  柴达木盆地天然气的碳同位素地球化学特征及成因分析 . 沉积学报, 2006, 24(1): 135-140.
    [6] 赵必强, 肖贤明, 胡忠良, 黄保家.  莺歌海盆地东方1—1气田天然气来源与运聚模式 . 沉积学报, 2005, 23(1): 156-161.
    [7] 冯子辉, 冯志强, 刘伟, 王雪, 关秋华.  松辽盆地北部深层凝析油及油型气的成因研究 . 沉积学报, 2004, 22(S1): 45-49.
    [8] 刘成林, 刘人和, 罗霞, 谢增业, 李剑, 曾庆猛.  天然气资源评价重点参数研究 . 沉积学报, 2004, 22(S1): 79-83.
    [9] 陈传平, 梅博文.  油藏原油微生物降解的氮同位素分馏效应 . 沉积学报, 2004, 22(4): 707-710.
    [10] 付锁堂, 冯乔, 张文正.  鄂尔多斯盆地苏里格庙与靖边天然气单体碳同位素特征及其成因 . 沉积学报, 2003, 21(3): 528-532,538.
    [11] 谢增业, 蒋助生, 张英, 李剑, 胡国艺, 王春怡, 李志生, 罗霞.  全岩热模拟新方法及其在气源岩评价中的应用 . 沉积学报, 2002, 20(3): 510-514.
    [12] 陈践发, 徐永昌, 黄第藩.  塔里木盆地东部地区天然气地球化学特征及成因探讨(之二) . 沉积学报, 2001, 19(1): 141-144.
    [13] 黄第藩.  二十一世纪初我国油气地球化学面临的任务和展望 . 沉积学报, 2001, 19(1): 1-6.
    [14] 傅宁, 李友川.  估算天然气成熟度的新指标——金刚烷指标 . 沉积学报, 2001, 19(1): 145-149.
    [15] 陈践发, 陈振岩, 季东民, 于深, 赵长虹, 王先彬.  辽河盆地天然气中重烃异常富集重碳同位素的成因探讨 . 沉积学报, 1998, 16(2): 5-8.
    [16] 柳广弟, 黄志龙, 郝石生, 周兴熙.  塔里木盆地天然气运聚系统与运聚模式 . 沉积学报, 1998, 16(1): 58-63.
    [17] 黄志龙, 柳广弟, 郝石生.  东方1-1气田天然气运移地球化学特征 . 沉积学报, 1997, 15(2): 66-69.
    [18] 沈平, 徐永昌, 王晋江, 王兰生.  天然气中硫化氢硫同位素组成及沉积地球化学相 . 沉积学报, 1997, 15(2): 216-219.
    [19] 刘文彬, 李节通, 伏万军.  陕甘宁盆地上古生界天然气泥质岩直接盖层的毛管压力封闭特征 . 沉积学报, 1996, 14(1): 80-85.
    [20] 王万春.  天然气、原油、干酪根的氢同位素地球化学特征 . 沉积学报, 1996, 14(S1): 131-135.
  • 加载中
计量
  • 文章访问数:  468
  • HTML全文浏览量:  21
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  1999-03-09
  • 刊出日期:  1999-06-10

目录

    The Isotope Geochemistry of N2 in Natural Gas Pools

    • 中图分类号: P597.2

    摘要: The isotopic compositions of N2 (δ 15N,‰,ATM) imply the geochemical origins of molecular nitrogen in gas pools . N2 with -19‰≤δ15NN2≤-10‰ may be from immature sedimentar y organic matter.-10‰<δ15NN2≤-2‰ may indicate the N2 origina tes from mature (including high mature) sedimentary organic matter.-2‰<δ15 NN2<+1‰ implies the N2 may be from the deep crust or mantle. N2 with δ15NN2=0‰ and N2/Ar=38~84 suggests to come from the atm osphere.-1‰≤δ15NN2<+4‰ characterizes N2 from ammonium clay m inerals in shale and mudrock during metamorphism.δ15NN2=+4‰ is t he typical feature of N2 from saltpeter in evaporite.+4‰<δ15NN2 ≤+18‰ indicates N2 may derive from post-mature sedimentary organic matter, which is the main source of N2-high gas (N2>60%) pools.N2-high gas pools,which occurs in a large scale in peroliferous basin, suggests that it is mainly the post-mature gas trapped in the reservoir. N2 with δ15NN2 varying from -10‰ to -2‰ is the main source of N2-rich gas (N2>15%) pool s,and with δ15NN2 varying from +1‰ to +4‰ may form either the N 2-high or the N2-rich gas pools.

    English Abstract

    The Isotope Geochemistry of N2 in Natural Gas Pools[J]. 沉积学报, 1999, 17(2): 318-324.
    引用本文: The Isotope Geochemistry of N2 in Natural Gas Pools[J]. 沉积学报, 1999, 17(2): 318-324.
    参考文献 (32)

    目录

      /

      返回文章
      返回