高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喀斯特地区瀑布效应产生的自然水软化过程

章典 Mervyn Peart 师长兴 张英俊 朱安 程星

章典, Mervyn Peart, 师长兴, 张英俊, 朱安, 程星. 喀斯特地区瀑布效应产生的自然水软化过程[J]. 沉积学报, 2004, 22(2): 288-294.
引用本文: 章典, Mervyn Peart, 师长兴, 张英俊, 朱安, 程星. 喀斯特地区瀑布效应产生的自然水软化过程[J]. 沉积学报, 2004, 22(2): 288-294.
ZHANG Dian, Mervyn PEART, SHI Chang-xing, ZHANG Ying-jun, ZHU An, CHENG Xing. Natural Water Softening Processes Associated with Waterfall Effects in Karst Areas[J]. Acta Sedimentologica Sinica, 2004, 22(2): 288-294.
Citation: ZHANG Dian, Mervyn PEART, SHI Chang-xing, ZHANG Ying-jun, ZHU An, CHENG Xing. Natural Water Softening Processes Associated with Waterfall Effects in Karst Areas[J]. Acta Sedimentologica Sinica, 2004, 22(2): 288-294.

喀斯特地区瀑布效应产生的自然水软化过程

基金项目: 香港政府研究基金会资助(HKU7123102P)
详细信息
    作者简介:

    章典,男 1956年出生,博士香港大学副教授,岩溶、地貌、水化学

  • 中图分类号: P642.25

Natural Water Softening Processes Associated with Waterfall Effects in Karst Areas

  • 摘要: 在喀斯特地区,水流过瀑布后硬度会发生降低,这种现象一般称为瀑布效应,其中包括汽化,射流和低压作用。瀑布效应会引起两种河水物理性质的变化,即气水界面面积和涡流的增加。为了弄清瀑布效应和这些物理性质变化是否会减少水的硬度,本研究设计并进行了一系列的试验。通过改变气水界面面积试验,发现界面面积越大,导电率降低的速率越快,由此造成Ca2+的沉淀。利用自行设计的气泡生成器进行试验,发现有气泡发生的地方,水的硬度降低很快。试验还发现,从射流器喷出的超饱和溶液的硬度快速减小,而pH值增大。鸭河和滴水岩瀑布的实际观测证实,有汽化现象发生的地方,水的硬度降低很快,钙沉淀的平均速率也最高。
  • [1] Usdowski E, Hoefs J and Menschel G. Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring-A model of chemical variations with inorganic CaCO3 precipitation. Earth and Planetary Science Letters, 1979, 42: 267~276
    [2] Zhang Y , Mo Z. The origin and evolution of Orange Fall. Acta Geographica Sinica, 1982, 37(3): 303~316
    [3] Chafetz H S, Folk R L. Travertines: Depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 1984, 54: 289~316
    [4] Lorah M M, Herman J S. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions. Water Resources Research, 1988, 24 (9): 1541~1552
    [5] Dandurand J L, Gout R, Hoefs J, Menschel G, Schott J and Usdowski E. Kinetically controlled variations of major components and carbon isotopes in a calcite-precipitating spring. Chemical Geology, 1982, 36:299~315
    [6] Ford T D. Tufa: a freshwater limestone. Geology Today, 1989, 5(2): 60~63
    [7] Cheng X, Zhang Y. Thin-water effects on speleothems in caves of Guizhou, China. In: Proceedings of the 11th International Congress of Speleology, International Union of Speleology, Beijing, 1993, 68~69
    [8] Nielsen A E. Kinetics of precipitation. Macmillan, New York, 1964
    [9] Berner R A. The role of magnesium in crystal growth of calcite and aragonite from seawater. Geochimica et Cosmochimica Acta, 1980, 39:489~504
    [10] Reddy M M. Crystallization of calcium carbonate in presence of trace concentration of phosphorus-contained anions, I, Inhibition of phosphate and glycerophorus ions at pH 8.8 and 25℃. Journal of Crystal Growth, 1977, 41:287~295
    [11] Stumm W, Morgan J J. Aquatic Chemistry. New York: John Wiley & Sons, 1996
    [12] Reddy M M. Characterization of calcite dissolution and precipitation using an improved experimental technique. Science of Geology Memoir, 1983, 71:109~117
    [13] Morse J W. The kinetics of calcium carbonate dissolution and precipitation. In: Reeder R J, ed. Carbonates: Mineralogy and Chemistry, Reviews in Mineralogy, Vol. 11, Mineralogical Society of America, Washington, D. C. , 1983. 227~264
    [14] Buhmann D, Dreybrodt W. Calcite dissolution kinetics in the system H2O-CO2-CaCO3 with participation of foreign ions. Chemical Geology, 1987, 64: 89~102
    [15] Jacobson R L, Usdowski E. Geochemical controls on a calcite precipitating spring. Contributions to Mineralogy and Petrology, 1975, 51: 65~74
    [16] Maker M E. Tufa formation in the Transvaal, South Africa. Z. Geomorphol., N.F., 1973, 17:460~473
    [17] Liu Z, Svensson U, Dreybrodt W, Yuan D and Buhmann D. Hydrodynamic control of inorganic calcite precipitation in Huanglong Revine, China; field measurements and theoretical prediction of deposition rates. Geochimica et Cosmochimica Acta, 1995, 59 (15):3087~3097
    [18] Pedley H M. Classification and environmental models of cool freshwater tufas. Sedimentary Geology, 1990, 60: 143~154
    [19] Dreybrodt W, Buhmann D, Michaelis J and Usdowski E. Geochemically controlled calcite precipitation by CO2 out gassing: Field measurements of precipitation rates in comparison to theoretical predications. Chemical Geology, 1992, 97:285~294
    [20] Plummer L N, Wigley T M and Parkhurst D L. Kinetics of calcite dissolution in CO2-water systems at 5℃ to 60℃ and 0.0 to 1.0 atm CO2. American Journal of Science, 1978, 278:179~216
    [21] Dreybrodt W, Buhmann D. A masstransfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chemical Geology, 1991, 90:107~122
  • [1] 杨仁超, 董亮, 张吉, 王一, 樊爱萍.  苏里格气田西区地层水成因、分布规律与控制因素 . 沉积学报, 2022, 40(1): 267-280. doi: 10.14027/j.issn.1000-0550.2020.079
    [2] 伍坤宇, 熊鹰, 谭秀成, 刘向君, 张云峰, 陈晓冬, 李亚锋, 郭荣涛, 曹喆, 王鹏.  储层孔隙系统“水—岩”反应结晶动力学研究进展 . 沉积学报, 2022, 40(4): 996-1009. doi: 10.14027/j.issn.1000-0550.2021.029
    [3] 王勇, 施泽进, 孟兴平, 刘沛杰, 田亚铭, Hairuo Qing.  川东南龙王庙组埋藏及混合水白云岩化作用 . 沉积学报, 2021, 39(6): 1517-1531. doi: 10.14027/j.issn.1000-0550.2021.065
    [4] 古强, 邢凤存, 钱红杉, 孙汉骁.  川东北飞仙关组鲕粒特征与水动力相关性研究 . 沉积学报, 2021, 39(6): 1371-1386. doi: 10.14027/j.issn.1000-0550.2021.059
    [5] 杜怡星, 时志强.  川西北地区上三叠统卡尼阶古喀斯特的发现及研究意义 . 沉积学报, 2017, 35(3): 460-469. doi: 10.14027/j.cnki.cjxb.2017.03.004
    [6] 松辽盆地北部地层水同位素特征及其地质意义 . 沉积学报, 2012, 30(2): 399-404.
    [7] 沈忠民.  川西坳陷中段陆相地层水纵向变化特征及水—岩相互作用初探 . 沉积学报, 2011, 29(3): 495-502.
    [8] 李建星.  吕梁山西麓红粘土和水成堆积物之间的关系 . 沉积学报, 2009, 27(3): 518-524.
    [9] 张朝晖.  桂西南喀斯特瀑布水生苔藓植物生物多样性与生态沉积类型研究 . 沉积学报, 2007, 25(4): 603-611.
    [10] 彭晓彤, 周怀阳, 叶瑛, 陈光谦.  珠江河口沉积物粒度特征及其对底层水动力环境的指示 . 沉积学报, 2004, 22(3): 487-493.
    [11] 刘学锋, 钟广法, 孟令奎, 喻国荣, 黄长青.  水载荷及其对盆地沉降的影响 . 沉积学报, 2004, 22(3): 481-486.
    [12] 付广, 张云峰, 陈章明.  有效水溶释放气量及其研究意义 . 沉积学报, 2000, 18(1): 157-161.
    [13] 张美良, 林玉石, 覃嘉铭.  桂林水南洞石笋的沉积学特征 . 沉积学报, 1999, 17(2): 233-239.
    [14] 魏文寿.  沙漠表层粒度与水热变化的环境效应分析──以古尔班通古特沙漠为例 . 沉积学报, 1998, 16(1): 152-156.
    [15] 严俊君, 金之钧.  广东三水残留盆地特征及油气地质条件 . 沉积学报, 1997, 15(1): 141-146.
    [16] 楼章华, 曾允孚.  扶杨油层孔隙水成因与砂岩成岩相研究 . 沉积学报, 1995, 13(S1): 63-70.
    [17] 张建林, 陶一川, 王昌桂.  酒西盆地水动力学特征与油气运移聚集 . 沉积学报, 1992, 10(2): 109-118.
    [18] 刘钦甫, 张鹏飞.  湖南测水组沉积环境及其对煤层的控制作用 . 沉积学报, 1991, 9(4): 96-104.
    [19] 于联生.  现代沉积构造的水动力解析尝试——潮流沉积一例 . 沉积学报, 1988, 6(2): 97-105.
    [20] 高健, 严钦尚, 许世远.  滦河中游现代河流沉积构造与水动力的关系 . 沉积学报, 1983, 1(1): 27-41.
  • 加载中
计量
  • 文章访问数:  553
  • HTML全文浏览量:  12
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-04-25
  • 修回日期:  2003-06-26
  • 刊出日期:  2004-06-10

目录

    喀斯特地区瀑布效应产生的自然水软化过程

      基金项目:  香港政府研究基金会资助(HKU7123102P)
      作者简介:

      章典,男 1956年出生,博士香港大学副教授,岩溶、地貌、水化学

    • 中图分类号: P642.25

    摘要: 在喀斯特地区,水流过瀑布后硬度会发生降低,这种现象一般称为瀑布效应,其中包括汽化,射流和低压作用。瀑布效应会引起两种河水物理性质的变化,即气水界面面积和涡流的增加。为了弄清瀑布效应和这些物理性质变化是否会减少水的硬度,本研究设计并进行了一系列的试验。通过改变气水界面面积试验,发现界面面积越大,导电率降低的速率越快,由此造成Ca2+的沉淀。利用自行设计的气泡生成器进行试验,发现有气泡发生的地方,水的硬度降低很快。试验还发现,从射流器喷出的超饱和溶液的硬度快速减小,而pH值增大。鸭河和滴水岩瀑布的实际观测证实,有汽化现象发生的地方,水的硬度降低很快,钙沉淀的平均速率也最高。

    English Abstract

    章典, Mervyn Peart, 师长兴, 张英俊, 朱安, 程星. 喀斯特地区瀑布效应产生的自然水软化过程[J]. 沉积学报, 2004, 22(2): 288-294.
    引用本文: 章典, Mervyn Peart, 师长兴, 张英俊, 朱安, 程星. 喀斯特地区瀑布效应产生的自然水软化过程[J]. 沉积学报, 2004, 22(2): 288-294.
    ZHANG Dian, Mervyn PEART, SHI Chang-xing, ZHANG Ying-jun, ZHU An, CHENG Xing. Natural Water Softening Processes Associated with Waterfall Effects in Karst Areas[J]. Acta Sedimentologica Sinica, 2004, 22(2): 288-294.
    Citation: ZHANG Dian, Mervyn PEART, SHI Chang-xing, ZHANG Ying-jun, ZHU An, CHENG Xing. Natural Water Softening Processes Associated with Waterfall Effects in Karst Areas[J]. Acta Sedimentologica Sinica, 2004, 22(2): 288-294.
    参考文献 (21)

    目录

      /

      返回文章
      返回