高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热成因甲烷碳同位素分布的形成机制

关平 伍天洪

关平, 伍天洪. 热成因甲烷碳同位素分布的形成机制[J]. 沉积学报, 2003, 21(1): 175-182.
引用本文: 关平, 伍天洪. 热成因甲烷碳同位素分布的形成机制[J]. 沉积学报, 2003, 21(1): 175-182.
GUAN Ping, WU Tian-hong. The Mechanism of Carbon Isotope Fractionation During Thermogenic Methane Generation[J]. Acta Sedimentologica Sinica, 2003, 21(1): 175-182.
Citation: GUAN Ping, WU Tian-hong. The Mechanism of Carbon Isotope Fractionation During Thermogenic Methane Generation[J]. Acta Sedimentologica Sinica, 2003, 21(1): 175-182.

热成因甲烷碳同位素分布的形成机制

详细信息
  • 中图分类号: P593

The Mechanism of Carbon Isotope Fractionation During Thermogenic Methane Generation

  • 摘要: 很多学者从不同的角度用不同的方法模拟了从有机母质 (包括煤和干酪根等气源 )形成天然气 (甲烷 )时的碳同位素分馏效应 ,建立了碳同位素分馏效应的很多模型 ,同时也讨论了催化作用和成烃后作用对天然气碳同位素的影响。但这些理论模型和模拟实验结果都还不能完全地拟合自然界中热成因甲烷碳同位素的分布 ,也未能从本质上完全阐明其碳同位素的分馏机制。其原因是各种模型的前提假设都未能完全满足复杂的自然界条件。今后工作的重点应放在用化学动力学的方法建立更完善的模型上 ,同时也应当重点考虑催化作用和成烃后作用对天然气同位素的影响。
  • [1] [1]刘文汇,余心科,张柏生等.沉积有机质芳核与侧链碳同位素组成分布特征[J].科学通报,1995,40(2):145~147[Liu Wenhui, Yu Xinke, Zhang Baisheng , Carbon isotope distribution in aromatic and aliphatic side chains of sedimenta ry organic matter[J]. Chinese Science Bulletin, 1995,40(9):753~757]

    [2]Rooney M A, Claypool G E, Chung H M. Modeling thermogenic gas generatio n using carbon isotope ratios of natural gas hydrocarbons[A]. In: Rice D D and Schoell M, eds. Processes of natural gas formation[C]. Chemical Geology,1995, 126(3-4):219~232

    [3]Galimov E M. Sources and mechanisms of formation of gaseous hydrocarbon s in sedimentary rocks[A]. In: Schoell M,ed. Origins of methane in the Earth[ C]. Chemical Geology, 1988, 71(1-3):77~95

    [4]刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报 ,1998,43(11):1187~1191[Liu Jinzhong, Tang Yongchun. Kinetics of early meth ane generation from Green River shale[J]. Chinese Science Bulletin, 1998, 43(2 2):1908~1913]

    [5]Hunt J M. Petroleum geochemistry and geology[M]. Freeman W H, San Fra ncisco, Calif, 1979, 617

    [6]Parparova G M, Neruchev S G, Shukova A B, et al. Katagenesis and oi l and gas bearing capacity[M]. Nedn. Leningrad, 1981.240

    [7]Rogozina E A. Gas formation during katagenesis of organic matter in sed imentary rocks[M]. Nedra Len ingrad, 1983. 164

    [8]Trofimuk A A, et al. stages and zonality of oil and gas formation i n basins of different types[R]. Proc 27th Int Geol Congr, Moscow, 1984, 13:81~ 88

    [9]Rice D D. Relation of natural gas composition to thermal maturity and s ource rock type in San Juan Basin, northwestern New Mexico and southwestern Colo rado[J]. AAPG Bull, 1983,67:1199~1218

    [10]Tissot B P, Welte D H. petroleum formation and occurrence[M]. Springer Ber lin, 2nd ed.,1984,699

    [11]James A T. Correlation of reservoired gases using the carbon isotopic compo sitions of wet gas components[J]. AAPG Bull, 1990,74(9): 1441~1458

    [12]Stahl W J. carbon isotope ratios of German natural gases in comparison with isotopic data of gaseous hydrocarbons from other parts of the world[A]. In: Ti ssot B and Bienner F, eds. Advances in Organic Geochemistry, Technique[C]. Pa ris, 1973.453~462

    [13]Burwood R, Drozd R J, Halpern H I, Sedivy R A. Carbon isotopic variations of kerogen pyrolyzates[J]. Org Geochem, 1988, 12(2):195~205

    [14]Berner U, Faber E, Scheeder G. Panten D. Primary cracking of algal and landp lant kerogens; kinetic models of isotope variations in methane, ethane and propa ne[A]. In: Rice D D and Schoell M,eds. Processes of natural gas formation[C ]. Chemical Geology, 1995, 126(3-4):233~245

    [15]Cramer B, Krooss B M, Littke R. Modelling isotope fractionation during pri mary cracking of natural gas: a reaction kinetic approach[J]. Chemical Geology ,1998, 149(3-4):235~250

    [16]Chung H M, Sackett W M. Use of stable isotope compositions of pyrolytically derived methane as maturity indices for carbonaceous materials[J]. Geochim. Co smochim.Acta,1979,43:1979~1988

    [17]Sackett W M. Carbon isotope composition of natural methane occurrences[J] .AAPG Bull, 1968, 52:853~857

    [18]Sackett W M, Nakaparksin S, Dalrymple D. Carbon isotope effects in methane p roduction by thermal cracking[A]. In: Hobson G D and Speers G C ,eds.Advances in organic geochemistry[C]. 1970.37~53

    [19]Franck D J, Sackett W M. Kinetic isotope effects in the thermal cracking of neopentane[J]. Geochim Cosmochim Acta, 1969, 33:811~820

    [20]Franck D J, Smith J O, Sackett W M. Reevaluation of carbon-isotope composit ions of natural methanes[J]. AAPG Bull, 1974, 58:2319~2325

    [21]Chung H M, Sackett W M. Carbon isotope fractionation during methane generati on from coal[J]. Soc.Am.Annual Mtng.(Abs),1975.

    [22]Sackett W M. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J]. Geochim C osmochim Acta, 1978,42(6B):571~580

    [23]Tang Y, Jenden P D, Nigrini A, Teerman S C. Moldeling early methane generati on in coal[J]. Engery & Fuels,1996,10:659~671

    [24]Gaveau B, Letolle R, Monthioux M. Evaluation of kinetic parameters from 13C isotopic effect during coal pyrolysis[J]. Fuel,1987,66:228~231

    [25]Tang Y, Perry J K, Jenden P D, Schoell M. Mathematical modeling of stable ca rbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta, 2000 ,64(15):2673~2687

    [26]Jeffrey A W A. Thermal and clay catalysed cracking in the formation of natur al gas[D]. 1989, Ph.D.dissertation. Texas A&M University, 100~107

    [27]Behar F. Artificial coalification of a fossil wood from brown coal by confi ned system pyrolysis[J]. Energy & Fuels, 1995, 9:984~994

    [28]Lorant F, Prinzhofer A, Behar F, Huc A Y. Carbon isotopic and molecular cons traints on the formation and the expulsion of thermogenic hydrocarbon gases[J] . Chemical Geology, 1998,147(3-4):249~264

    [29]Behar F, Vandenbroucke M, Teermann S C, Hatcher P G, Leblond C. Experimental simulation of gas generation from coals and a marine kerogen[J]. Chemical Geo logy,1995, 126:247~260

    [30]Behar F, Vandenbroucke M, Tang Y, Marquis F. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J]. Org Geochem, 1997a, 26(5/6):321~33 9

    [31]Behar F, Tang Y, Liu J. Comparison of rate constants for some molecular trac ers generated during artificial maturation of kerogens: influence of kerogen typ e[J]. Org Geochem, 1997b, No.3/4:281~287

    [32]Mansuy L, Landais P, Ruau O. Importance of the reacting medium in artificial maturation of a coal by confined pyrolysis.1.hydrocarbons and polarpounds[J]. Energy & Fuels, 1995:691~703

    [33]Andresen B, Throndsen T, Rheim A, Bolstad J. A comparison of pyrolysis prod ucts with models for natural gas generation[J]. Chemical Geology, 1995, 126: 2 61~280

    [34]Mango F D. Transition metal catalysis in the generation of petroleum and nat ural gas[J]. Geochim Cosmochim Acta, 1992, 56:553~555

    [35]Mango F D, et al. Role of transition-metal catalysis in the formation of natural gas[J]. Nature,1994, 368:536~538

    [36]Mango F D. Transition metal catalysis in the generation of natural gas[A ]. In: Horsfield B, Claypool G, Telnaes N, et al.,eds. Proceedings of the 1 7th international meeting on Organic chemistry: Part Ⅲ, Origin of natural gase s: petroleum geochemistry, impact of organic geochemistry on exploration, migrat ion and expulsion of oil and gas[C]. Organic Geochemistry, 1996, 24(10-11):977 ~984

    [37]Urey H C. The thermodynamic properties of isotopic substances[J]. J Am Che m Soc, 1947,57:562~581

    [38]Botao G, Casanova G. Separation factors in isotopic phase equilibria. In: Is otopic and Cosmic Chemistry[A].In: Craig H , Miller S L and Wasserburg G J,eds . North-Holl and Publishing[C]. Amsterdam, 1964. 16~33

    [39]Galimov E M. Carbon isotope in oil-gas geology[R]. NASA Technical Transla tion. NASA TT F-682, Washington. D. C. June 1975:395

    [40]Galimov E M, et al. on the conditions of formation of gas deposits in th e eastern part of the Turan Plate as revealed by the carbon isotopic compositon of the gases[J]. Geochim. Int.,1973, 10(6):1259~1271

    [41]James A T. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components[J]. AAPG Bull, 1983, 67(7):1176~1191

    [42]Hood A, Gutjahr C C M, Heacock R L. Organic metamorphism and generation o f petroleum[J]. AAPG Bull, 1975, 59(6):986~996

    [43]Jenden P D, Kaplan I R. Origin of natural gas in the Sacramento Basin, Calif ornia[J]. AAPG Bull, 1988,73:431~453

    [44]Jenden P D, Newell K D, Kaplan I R, Watney W L. Composition and stable-isot ope geochemistry of natural gases from Kansas, Midcontinent U.S.A[J]. Chemical Geology, 1988, 71:117~147

    [45]Clayton C. Carbon isotope fractionation during natural gas generation from k erogen[J]. Marine and Petroleum Geology, 1991, 8(2):232~240

    [46]Galimov E M, Posyagin V I, Prokhorov V S. Carbon isotope fractionation as a function of temperature in the CH4-C2H6-C3H8-C4H10 system[J] . Geokhimiya, 1972, 8:977~987

    [47]Berner U, Faber E, Stahl W J. Mathematical simulation of the carbon isotopic fractionation coals and related methane[J]. Chemical Geology, 1992, 94:315~3 19

    [48]Waples D W, Tornheim L. Mathematical models for petroleum-forming processes : carbon isotope fractionation[J]. Geochim Cosmochim Acta, 1978b, 42:467~472

    [49]Waples D W, Tornheim L. Mathematical model for petroleum-forming process: n-paraffins and isoprenoid hydrocarbon[J]. Geochim Cosmochim Acta, 1978a, 42:457~465

    [50]Burnham A K. A simple kinetic model of petroleum formation and cracking[R] . Lawrence Livermore Natl. Lab., Livermore, Calif., Intern. Publ. UCID-21665, 1 989. 11

    [51]Smith J E, Erdman J G, Morris D A. Migration accumulation and retention of p etroleum in the earth[R]. 8th World Pet Cong Poc, 1971, 2:13~26

    [52]Sundberg K R and Bennett C R. Carbon isotope paleothermometry of natural gas .In: Bjoroy M, et al, eds. Advances in Organic Geochemistry[C]. Wiley Chic hester, 1981.769~774

    [53]Faber I. Zur Isotope en geochemeags formiger Kohlenwasserstoffe[J]. Erdl E dgas Kohle, 1987, 103:210~218

    [54]Schoell M. Genetic characterization of natural gases[J]. AAPG Bull, 1983,6 7(12):2225~2238

    [55]Bernard B B. Light hydrocarbons in marine sediments[D]. Doctoral, Texas A& M University, 1978, 154

    [56]Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments; CO2 reduction vs. acetate fermentation; isotope evid ence[J]. Geochim Cosmochim Acta, 1986, 50(5):693~709

    [57]Chung H M, Gormly J R, Squires R M. Origin of gaseous hydrocarbons in subsur face environments; theoretical considerations of carbon isotope distribution[A ]. In: Schoell M ,ed. Origins of methane in the Earth[C]. Chemical Geology, 1 988, 71(1~3):97~103

    [58]戴金星等.我国煤成烃气的δ13C-Ro关系[J].科学通报,1989,34(9): 690~692[Dai Jinxing, et al. The δ13C-Ro relationship of coal s ource hydrocarbon gases in China[J]. Chinese Science Bulletin, 1989,34(9):69 0~692]

    [59]戴金星.各类烷烃气的鉴别[J].中国科学(B辑),1992,B(2):185~193[Dai Jinxi ng, Identification of various hydrocarbon gases[J]. Science in China (series B ),1992,B(2):185~193]

    [60]徐永昌,沈平.中原、华北油气区煤型气地化特征初探[J].沉积学报,1985,3(2) :37~46[Xu Yongchang, Shen Ping. A preliminary study on geochemical characteris tics of coal-type gas in Zhongyuan-huabei oil-gas area[J]. Acta sedimentolo gica sinica,1985,3(2):37~46]

    [61]徐永昌等.中国化石燃料的同位素地球化学[J].中国科学(B 辑),1990,22(4): 409~418[Xu Yongchang, et al. Isotope geochemistry of fossil fuels of China [J]. Science in China (series B), 1990,22(4):409~418]

    [62]戴金星,戚厚发,宋岩.鉴别煤成气和油型气若干指标的初步探讨[J].石油学报,1985 ,6(2):31~38[Dai Jinxing, Qi Houfa, Song Yan. On the indicators for identify ing gas from oil and gas in coal measure[J]. Acta Petrolei Sinica,1985,6(2 ):31~38]

    [63]徐永昌等.天然气成因及大中型气田形成的地学基础[M].北京:科学出版社,20 00[Xu Yongchang,et al. Origin of natural gases and geological basis of generati on of large-middle scale gas field[M]. Beijing: Science Press,2000]

    [64]徐永昌等.辽河盆地天然气的形成与演化[M].北京:科学出版社,1993[Xu Yongchan g,et al. Generation and evolution of natural gases in Liaohe Basin[M]. Beij ing: Science Press,1993]

    [65]关平,徐永昌,刘文汇等.甲烷碳同位素分布数理模型的探讨[J].科学通报,1998,4 3:576~578[Guan Ping, Xu Yongchang, Liu Wenhui, Wang Darui. A model for carbo n isotope distribution of methane during diagenesis[J]. Chinese Science Bulle tin, 1998,43(7):576~578]

    [66]任磊夫,关平.油气生成过程中的微粒质点矿物[M].北京:地质出版社,1992[Ren L eifu, Guan Ping. Micrograin-particle minerals in genesis of oil and gas[M]. B eijing: Geological Publishing House,1992]

    [67]关平等.烃源岩有机质的不同赋存状态及定量估算[J].科学通报,1998,43:1~4[Gu an Ping, et al. Different occurrences of organic matter in source rocks and their quantitative estimate[J]. Chinese Science Bulletin, 1998,43:1~4]

    [68]Prinzhofer A A, Huc A Y. Genetic and post~genetic molecular and isotopic fra ctions in natural gases[J]. Chemical Geology,1995,126:281~290

    [69]关平等.辽河盆地泥岩成岩作用过程中天然气的初次运移和排气量计算[J].石油勘探与开发,1992,19:48~54[Guan Ping, et al. Diagenesis of mudstone and a model of gas primary migration in Liaohe basin[J]. Petrolium Exploration and Developm ent, 1992,19:48~54]

    [70]徐永昌等.天然气成因新模式--Ⅱ:多阶连续、主阶定名[J].中国科学(B 辑),1 993,23(7):751~755[Xu Yongchang, et al. A new model of natural gas orig in-II: several stages develop continuously and major stage determines the name [J]. Science in China (series B), 1993,23(7):751~755]
  • [1] 有机质碳同位素热力学分馏与天然气碳同位素组成 . 沉积学报, 2012, 30(3): 588-593.
    [2] 碳酸盐岩溶解—沉淀热力学模型及其在塔北地区的应用 . 沉积学报, 2012, 30(2): 219-230.
    [3] 于炳松.  油气储层埋藏成岩过程中的地球化学热力学 . 沉积学报, 2009, 27(5): 896-903.
    [4] 靳永斌.  正构二十四烷裂解成气碳同位素动力学模拟及其地质意义 . 沉积学报, 2009, 27(3): 537-545.
    [5] 刘会平.  无机盐类对天然矿物低温催化混合酯生烃反应的影响 . 沉积学报, 2008, 26(5): 886-890.
    [6] 祖小京.  矿物在油气形成过程中的作用 . 沉积学报, 2007, 25(2): 298-306.
    [7] 卢双舫.  密闭体系与开放体系模拟实验结果的比较研究及其意义 . 沉积学报, 2006, 24(2): 282-288.
    [8] 超压背景下粘土矿物转化的化学动力学模型及应用 . 沉积学报, 2006, 24(4): 461-467.
    [9] 米敬奎, 刘新华, 杨孟达, 杨荣丰.  利用生烃动力学和碳同位素生烃动力学探索油气田气体来源 . 沉积学报, 2005, 23(3): 537-541.
    [10] 冯子辉, 迟元林, 杜洪文, 霍秋立, 侯读杰.  原油在储层介质中的加水裂解生气模拟实验 . 沉积学报, 2002, 20(3): 505-509.
    [11] 田春志, 卢双舫, 李启明, 付晓泰, 薛海涛.  塔里木盆地原油高压条件下裂解成气的化学动力学模型及其意义 . 沉积学报, 2002, 20(3): 488-492.
    [12] 李术元, 郭绍辉, 沈润梅.  沥青质催化降解特征及动力学研究 . 沉积学报, 2001, 19(1): 136-140.
    [13] 卢双舫, 刘晓艳, 付晓泰, 冯亚丽, 王振平, 薛海涛.  未熟—低熟油生成机理的化学动力学研究及其初步应用 . 沉积学报, 2001, 19(1): 130-135.
    [14] 卢双舫, 陈昕, 付晓泰.  台北凹陷煤中有机质的成烃动力学模型及其初步应用 . 沉积学报, 1997, 15(2): 126-129.
    [15] 曹正林, 赵锡奎, 王英民, 姜峰.  鄂尔多斯盆地北部古风化壳岩石—流体反应动力学模拟研究 . 沉积学报, 1997, 15(4): 91-96,77.
    [16] 李术元, 郭绍辉, 徐红喜, 王剑秋.  烃源岩热解生烃动力学及其应用 . 沉积学报, 1997, 15(2): 138-141.
    [17] 孟元林, 肖丽华, 王建国, 周书欣, 姜贵周.  粘土矿物转化的化学动力学模型与应用 . 沉积学报, 1996, 14(2): 110-116.
    [18] 卢双舫, 王子文, 付晓泰, 王振平.  镜质体成烃反应动力学模型的标定及其在热史恢复中的应用 . 沉积学报, 1996, 14(4): 24-30.
    [19] 张平中, 王先彬, 申歧祥, 张谦, 文启彬, 邵波.  土壤甲烷及其碳同位素地球化学特征 . 沉积学报, 1993, 11(4): 73-77.
    [20] 吴明清, 宋云华, 欧阳自远.  介壳生物化石矿物组合的热力学分析 . 沉积学报, 1991, 9(1): 129-135.
  • 加载中
计量
  • 文章访问数:  788
  • HTML全文浏览量:  2
  • PDF下载量:  987
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-12-26
  • 修回日期:  2003-01-10
  • 刊出日期:  2003-03-10

目录

    热成因甲烷碳同位素分布的形成机制

    • 中图分类号: P593

    摘要: 很多学者从不同的角度用不同的方法模拟了从有机母质 (包括煤和干酪根等气源 )形成天然气 (甲烷 )时的碳同位素分馏效应 ,建立了碳同位素分馏效应的很多模型 ,同时也讨论了催化作用和成烃后作用对天然气碳同位素的影响。但这些理论模型和模拟实验结果都还不能完全地拟合自然界中热成因甲烷碳同位素的分布 ,也未能从本质上完全阐明其碳同位素的分馏机制。其原因是各种模型的前提假设都未能完全满足复杂的自然界条件。今后工作的重点应放在用化学动力学的方法建立更完善的模型上 ,同时也应当重点考虑催化作用和成烃后作用对天然气同位素的影响。

    English Abstract

    关平, 伍天洪. 热成因甲烷碳同位素分布的形成机制[J]. 沉积学报, 2003, 21(1): 175-182.
    引用本文: 关平, 伍天洪. 热成因甲烷碳同位素分布的形成机制[J]. 沉积学报, 2003, 21(1): 175-182.
    GUAN Ping, WU Tian-hong. The Mechanism of Carbon Isotope Fractionation During Thermogenic Methane Generation[J]. Acta Sedimentologica Sinica, 2003, 21(1): 175-182.
    Citation: GUAN Ping, WU Tian-hong. The Mechanism of Carbon Isotope Fractionation During Thermogenic Methane Generation[J]. Acta Sedimentologica Sinica, 2003, 21(1): 175-182.
    参考文献 (1)

    目录

      /

      返回文章
      返回