高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海盆地长江坳陷美人峰组烃源岩沉积环境与生烃潜力评价

袁灵聪 朱晓军 蔡进功 钟锴

袁灵聪, 朱晓军, 蔡进功, 钟锴. 东海盆地长江坳陷美人峰组烃源岩沉积环境与生烃潜力评价[J]. 沉积学报, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016
引用本文: 袁灵聪, 朱晓军, 蔡进功, 钟锴. 东海盆地长江坳陷美人峰组烃源岩沉积环境与生烃潜力评价[J]. 沉积学报, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016
YUAN LingCong, ZHU XiaoJun, CAI JinGong, ZHONG Kai. Sedimentary Environment and Hydrocarbon Generation Potential of Source Rocks from the Meirenfeng Formation in the Changjiang Depression, East China Sea Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016
Citation: YUAN LingCong, ZHU XiaoJun, CAI JinGong, ZHONG Kai. Sedimentary Environment and Hydrocarbon Generation Potential of Source Rocks from the Meirenfeng Formation in the Changjiang Depression, East China Sea Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016

东海盆地长江坳陷美人峰组烃源岩沉积环境与生烃潜力评价

doi: 10.14027/j.issn.1000-0550.2020.016
基金项目: 

国家科技重大专项 2016ZX05027⁃001⁃008

详细信息
    作者简介:

    袁灵聪,男,1995年出生,硕士,石油地质学,E⁃mail: yuanlc@tongji.edu.cn

    通讯作者:

    蔡进功,男,教授,E⁃mail: jgcai@tongji.edu.cn

  • 中图分类号: P618.13

Sedimentary Environment and Hydrocarbon Generation Potential of Source Rocks from the Meirenfeng Formation in the Changjiang Depression, East China Sea Basin

Funds: 

National Science and Technology Major Project 2016ZX05027⁃001⁃008

  • 摘要: 利用东海盆地长江坳陷古新统美人峰组烃源岩的元素、热解、干酪根δ13C、镜质体反射率、岩石薄片、X射线衍射等资料,对长江坳陷美人峰组不同层段烃源岩进行沉积环境分析及生烃潜力评价。研究结果表明:美人峰组烃源岩的沉积环境整体表现为温暖潮湿的弱氧化淡水环境,古盐度和古气候是控制美人峰组烃源岩发育的主要环境因素。美人峰组第一段和第二段沉积时期,气候温暖潮湿,有大量陆源有机质输入,水体盐度相对较高,有机质保存条件较好,有机质丰度高,有机质类型以Ⅲ型为主,含少量II型,有机质已进入低成熟—成熟演化阶段,是美人峰组最具生烃潜力的层段;第三段和第四段沉积时期,气候相对干热,陆源碎屑及有机质输入少于第一段和第二段,水体盐度较低,不利于有机质保存,有机质丰度较低,有机质类型以Ⅲ型为主,有机质以低成熟演化阶段为主,生烃潜力不大;第五段和第六段沉积时期,气候恢复为温湿状态,有机质丰度较第三段和第四段高,有机质类型为Ⅲ型,但有机质热演化程度低,处于未熟状态,为无效烃源岩。随着埋深增加,美人峰组烃源岩的有机质成熟度变高,具有更大的生烃潜力。
  • 图  1  长江坳陷构造纲要及美人峰组地层单元

    Figure  1.  Tectonic map of the Changjiang Depression and units of the Meirenfeng Formation

    图  2  长江坳陷美人峰组烃源岩显微薄片

    (a)粗颗粒含量较第一、二段明显变少,条带状、卵圆状黑色有机质,2 730.7 m,第四段;(b)透视光下的棕色有机质残片,杂乱分布于碎屑矿物间,3 802.4 m,第一段;(c)颗粒分选较第一段明显变好,3 526.3 m,第二段;(d)透视光下的棕色有机质残片,3 693.0 m,第一段;(e)颗粒分选差,多为棱角—次棱角状,3 802.4 m,第一段;(f)荧光下棕色有机质残片,橙色荧光反应,3 693.0 m,第一段

    Figure  2.  Thin-sections of source rocks in the Meirenfeng Formation, Changjiang Depression

    图  3  长江坳陷美人峰组烃源岩矿物相对含量

    Figure  3.  Relative content of mineral components in source rocks of the Meirenfeng Formation, Changjiang Depression

    图  4  长江坳陷美人峰组烃源岩不同层段有机碳分布(a:“x”代表均值;b:N为样品数)

    Figure  4.  Distribution of organic carbon abundance of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression: (a) average TOC of different members; (b) N is number of samples

    图  5  长江坳陷美人峰组烃源岩不同层段生烃潜力分布(“x”代表均值;N为样品数)

    Figure  5.  Distribution of hydrocarbon generation potential of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression: average S 1+S 2 of different members; N is the number of samples

    图  6  长江坳陷美人峰组烃源岩不同层段有机质类型

    Figure  6.  Organic matter types of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression

    图  7  长江坳陷美人峰组烃源岩不同层段镜质体反射率

    Figure  7.  Vitrinite reflectance of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression

    图  8  长江坳陷美人峰组烃源岩Sr含量与元素含量比Sr/Ba关系

    Figure  8.  Relationship between Sr and Sr/Ba in source rocks, Meirenfeng Formation, Changjiang Depression

    图  9  长江坳陷美人峰组烃源岩微量元素含量及其比值与TOC关系

    Figure  9.  Relationships between element content and elemental ratio and TOC of source rocks, Meirenfeng Formation, Changjiang Depression

    图  10  长江坳陷M1井美人峰组有机地化指标及古环境恢复

    Figure  10.  Organic geochemical indices and identification of paleoenvironment of source rocks by element content, Meirenfeng Formation, MRF⁃1 well, Changjiang Depression

    表  1  长江坳陷美人峰组烃源岩XRD矿物成分

    Table  1.   Mineral composition of source rocks in the Meirenfeng Formation, Changjiang Depression

    层段 深度/m 矿物含量/%
    石 英 钾长石 斜长石 黏土矿物 方解石 白云石 硬石膏 菱铁矿
    第六段 2 155.5 44 8 10 35 0 0 2 1
    第四段 2 730.7 37 8 18 32 0 2 3 0
    3 015.3 35 6 20 36 0 1 2 0
    3 016.2 36 11 15 36 0 0 2 0
    3 019.0 28 17 23 30 0 0 2 0
    第三段 3 260.6 33 8 18 36 0 0 2 3
    第二段 3 524.9 43 13 26 15 0 0 3 0
    3 526.3 37 7 16 35 2 0 3 0
    第一段 3 693.0 31 11 21 33 0 1 2 1
    3 724.6 35 11 21 30 0 0 3 0
    3 802.4 31 4 27 33 0 0 2 3
    下载: 导出CSV

    表  2  古盐度微量元素判断指标[14-15]

    Table  2.   Trace element indices for paleosalinity recognition[1415]

    判断指标 淡水 半咸水 咸水
    Sr含量/10-6 < 300 300~500 >500
    Sr/Ba < 0.6 0.6~1.0 >1.0
    下载: 导出CSV
  • [1] 姜亮. 东海陆架盆地油气资源勘探现状及含油气远景[J]. 中国海上油气(地质),2003,17(1):1-5.

    Jiang Liang. Exploration status and perspective of petroleum resources in East China Sea shelf basin[J]. China Offshore Oil and Gas (Geology), 2003, 17(1): 1-5.
    [2] 黄志超,叶加仁. 东海海域油气资源与选区评价[J]. 地质科技情报,2010,29(5):51-55.

    Huang Zhichao, Ye Jia ren. Petroleum resources and regional selection evaluation in the East China Sea[J]. Geological Science and Technology Information, 2010, 29(5): 51-55.
    [3] 陈建文,李刚,陈国威. 东海陆架盆地西部坳陷带的中生界和古新统油气远景[J]. 海洋地质动态,2003,19(8):17-19.

    Chen Jianwen, Li Gang, Chen Guowei. Petroleum prospects of Mesozoic and Paleocene in the western depression of the East China Sea shelf basin[J]. Marine Geology Letters, 2003, 19(8): 17-19.
    [4] 江涛,张莱. 东海陆架盆地西部凹陷带长江凹陷含煤层系分布特征分析与预测[J]. 地质科技情报,2012,31(3):77-81.

    Jiang Tao, Zhang Lai. Analysis and forecast of coal-bearing strata distribution in Yangtze Depression in western depression belt, East China Sea shelf basin[J]. Geological Science and Technology Information, 2012, 31(3): 77-81.
    [5] 赵艳秋. 东海陆架盆地长江凹陷生油岩研究[J]. 海洋石油,2003,23(增刊1):40-44.

    Zhao Yanqiu. The study on source rock of Changjiang Sag of the East China Sea shelf basin[J]. Offshore Oil, 2003, 23(Suppl.1): 40-44.
    [6] 张林晔. 湖相烃源岩研究进展[J]. 石油实验地质,2008,30(6):591-595.

    Zhang Linye. The progress on the study of lacustrine source rocks[J]. Petroleum Geology and Experiment, 2008, 30(6): 591-595.
    [7] 李浩,陆建林,李瑞磊,等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学,2017,42(10):1774-1786.

    Li Hao, Lu Jianlin, Li Ruilei, et al. Generation paleoenvironment and its controlling factors of Lower Cretaceous lacustrine hydrocarbon source rocks in Changling Depression, South Songliao Basin[J]. Earth Science, 2017, 42(10): 1774-1786.
    [8] 胡见义,黄第藩. 中国陆相石油地质理论基础[M]. 北京:石油工业出版社,1991.

    Hu Jianyi, Huang Difan. The bases of nonmarine petroleum geology in China[M]. Beijing: Petroleum Industry Press, 1991.
    [9] 付小东,秦建中,滕格尔,等. 烃源岩矿物组成特征及油气地质意义:以中上扬子古生界海相优质烃源岩为例[J]. 石油勘探与开发,2011,38(6):671-684.

    Fu Xiao dong, Qin Jianzhong, Tenger, et al. Mineral components of source rocks and their petroleum significance: A case from Paleozoic marine source rocks in the Middle-Upper Yangtze region[J]. Petroleum Exploration and Development, 2011, 38(6): 671-684.
    [10] 张涛,沈玉林,李壮福,等. 黔西织金矿区乐平世煤系菱铁矿成因探讨[J]. 高校地质学报,2018,24(4):481-490.

    Zhang Tao, Shen Yulin, Li Zhuangfu, et al. Genesis of siderite precipitated in the Lopingian coal measures in Zhijin mining area, western Guizhou[J]. Geological Journal of China Universities, 2018, 24(4): 481-490.
    [11] 黄籍中. 干酪根的稳定碳同位素分类依据[J]. 地质地球化学,1988(3):66-68.

    Huang Jizhong. Stable carbon isotopes of kerogen classification based on[J]. Geology-Geochemistry, 1988(3): 66-68.
    [12] 王淑芳,董大忠,王玉满,等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质,2014,19(3):27-34.

    Wang Shufang, Dong Dazhong, Wang Yuman, et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 27-34.
    [13] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [14] 文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,2008,28(1):114-120.

    Wen Huaguo, Zheng Rongcai, Tang Fei, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2008, 28(1): 114-120.
    [15] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310,314.

    Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment : Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.
    [16] 李浩,陆建林,左宗鑫,等. 长岭断陷南部断陷层湖相优质烃源岩发育控制因素[J]. 石油与天然气地质,2015,36(2):209-218,229.

    Li Hao, Lu Jianlin, Zuo Zongxin, et al. Controlling factors of high-quality lacustrine hydrocarbon source rocks in southern Changling Depression[J]. Oil & Gas Geology, 2015, 36(2): 209-218, 229.
    [17] 王宝萍,李艳承,董小刚. 鄂尔多斯盆地伊陕斜坡西部山西组古沉积环境及烃源岩评价[J]. 非常规油气,2017,4(1):14-22,29.

    Wang Baoping, Li Yancheng, Dong Xiaogang. Sedimentary paleoenvironment analysis and evaluation of source rock of Shanxi Formation in the west of Yishaan slope, Ordos Basin[J]. Unconventional Oil & Gas, 2017, 4(1): 14-22, 29.
    [18] 季少聪,杨香华,朱红涛,等. 下刚果盆地M区块Madingo组烃源岩的岩相特征与有机质富集机制[J]. 海洋地质与第四纪地质,2017,37(3):157-168.

    Ji Shaocong, Yang Xianghua, Zhu Hongtao, et al. Lithofacies and organic matter enrichment in Madingo Formation of Block M, Lower Congo Basin[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 157-168.
    [19] 郑荣才,柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质,1999,20(1):22-27.

    Zheng Rongcai, Liu Meiqing. Study on palaeosalinity of Chang 6 oil reservoir set in Ordos Basin[J]. Oil & Gas Geology, 1999, 20(1): 22-27.
  • [1] 张莹, 陈少平, 刘志峰, 杨东升, 耿名扬, 吴斌.  沉积环境对渤海金西A洼烃源岩的控制作用 . 沉积学报, 2023, 41(3): 890-900. doi: 10.14027/j.issn.1000-0550.2022.047
    [2] 姜在兴, 徐杰, 刘桐, 马代鑫, 牟汉生, 孙守亮.  燕辽裂陷槽辽西坳陷中元古界黑色页岩沉积环境和生烃潜力 . 沉积学报, 2023, 41(6): 1830-1846. doi: 10.14027/j.issn.1000-0550.2023.129
    [3] 赵鹏, 彭光荣, 吴静, 许新明, 熊万林, 石创, 蔡国富, 张月霞.  珠一坳陷小型洼陷文昌组烃源岩发育模式与主控因素 . 沉积学报, 2022, 40(4): 1109-1121. doi: 10.14027/j.issn.1000-0550.2021.081
    [4] 赵坤, 李婷婷, 朱光有, 张志遥, 李婧菲, 王鹏举, 闫慧慧, 陈永进.  中国华南渝东北城口地区下寒武统烃源岩发育环境与形成机制 . 沉积学报, 2020, 38(5): 1111-1122. doi: 10.14027/j.issn.1000-0550.2019.102
    [5] 刘得光, 周路, 李世宏, 马万云, 郭文建.  玛湖凹陷风城组烃源岩特征与生烃模式 . 沉积学报, 2020, 38(5): 946-955. doi: 10.14027/j.issn.1000-0550.2020.005
    [6] 张殿伟, 郝运轻, 张荣强, 孙炜, 高平, 李甘璐.  四川盆地湄潭组生烃潜力分析及勘探意义 . 沉积学报, 2020, 38(3): 635-647. doi: 10.14027/j.issn.1000-0550.2020.019
    [7] 储呈林, 陈强路, 张博, 史政, 姜海健, 杨鑫.  热液活动对东二沟剖面玉尔吐斯组烃源岩形成的影响 . 沉积学报, 2016, 34(4): 803-810. doi: 10.14027/j.cnki.cjxb.2016.04.020
    [8] 牛杏, 杨香华, 李丹, 常吟善, 胡孝林, 许晓明.  North Carnarvon盆地三叠系沉积格局转换与烃源岩发育特征 . 沉积学报, 2014, 32(6): 1188-1200.
    [9] 吉木萨尔凹陷芦草沟组泥质岩类生烃潜力差异性分析 . 沉积学报, 2014, 32(2): 385-394.
    [10] 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析 . 沉积学报, 2013, 31(6): 1122-1132.
    [11] 准噶尔盆地腹部及西南缘侏罗系烃源岩分子地球化学特征及形成环境剖析 . 沉积学报, 2013, 31(04): 738-746.
    [12] 秦黎明.  新疆西北部和什托洛盖盆地侏罗系低熟煤系烃源岩地球化学特征及生烃条件分析 . 沉积学报, 2009, 27(4): 740-751.
    [13] 樊 馥.  孙吴—嘉荫盆地太平林场组烃源岩海侵特征研究 . 沉积学报, 2009, 27(4): 650-656.
    [14] 陈文彬.  北羌塘盆地布曲组烃源岩生物标志物特征及意义 . 沉积学报, 2007, 25(5): 808-814.
    [15] 孙旭光, 陈建平, 王延斌.  吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析 . 沉积学报, 2002, 20(4): 721-726.
    [16] 孙旭光, 王关玉, 金奎励.  贵州水城煤中基质镜质体生烃潜力、烃类组成及生烃模式 . 沉积学报, 2000, 18(4): 590-594.
    [17] 夏新宇, 洪峰, 赵林, 张文正.  鄂尔多斯盆地下奥陶统碳酸盐岩有机相类型及生烃潜力 . 沉积学报, 1999, 17(4): 638-643.
    [18] 李荣西, 金奎励.  煤成烃生成及排驱加水热模拟实验 . 沉积学报, 1998, 16(1): 98-102.
    [19] 张枝焕, 杨藩, 李东明, 方朝亮.  中国新生界咸水湖相烃源岩和原油生物标志物组合特征 . 沉积学报, 1998, 16(3): 119-123,131.
    [20] 陈道秀, 林洪枝, 杨展飞.  珠江口盆地下第三系烃源岩有机岩石学特征及生烃潜力 . 沉积学报, 1997, 15(2): 173-178.
  • 加载中
图(10) / 表 (2)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  37
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 刊出日期:  2021-04-23

目录

    东海盆地长江坳陷美人峰组烃源岩沉积环境与生烃潜力评价

    doi: 10.14027/j.issn.1000-0550.2020.016
      基金项目:

      国家科技重大专项 2016ZX05027⁃001⁃008

      作者简介:

      袁灵聪,男,1995年出生,硕士,石油地质学,E⁃mail: yuanlc@tongji.edu.cn

      通讯作者: 蔡进功,男,教授,E⁃mail: jgcai@tongji.edu.cn
    • 中图分类号: P618.13

    摘要: 利用东海盆地长江坳陷古新统美人峰组烃源岩的元素、热解、干酪根δ13C、镜质体反射率、岩石薄片、X射线衍射等资料,对长江坳陷美人峰组不同层段烃源岩进行沉积环境分析及生烃潜力评价。研究结果表明:美人峰组烃源岩的沉积环境整体表现为温暖潮湿的弱氧化淡水环境,古盐度和古气候是控制美人峰组烃源岩发育的主要环境因素。美人峰组第一段和第二段沉积时期,气候温暖潮湿,有大量陆源有机质输入,水体盐度相对较高,有机质保存条件较好,有机质丰度高,有机质类型以Ⅲ型为主,含少量II型,有机质已进入低成熟—成熟演化阶段,是美人峰组最具生烃潜力的层段;第三段和第四段沉积时期,气候相对干热,陆源碎屑及有机质输入少于第一段和第二段,水体盐度较低,不利于有机质保存,有机质丰度较低,有机质类型以Ⅲ型为主,有机质以低成熟演化阶段为主,生烃潜力不大;第五段和第六段沉积时期,气候恢复为温湿状态,有机质丰度较第三段和第四段高,有机质类型为Ⅲ型,但有机质热演化程度低,处于未熟状态,为无效烃源岩。随着埋深增加,美人峰组烃源岩的有机质成熟度变高,具有更大的生烃潜力。

    English Abstract

    袁灵聪, 朱晓军, 蔡进功, 钟锴. 东海盆地长江坳陷美人峰组烃源岩沉积环境与生烃潜力评价[J]. 沉积学报, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016
    引用本文: 袁灵聪, 朱晓军, 蔡进功, 钟锴. 东海盆地长江坳陷美人峰组烃源岩沉积环境与生烃潜力评价[J]. 沉积学报, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016
    YUAN LingCong, ZHU XiaoJun, CAI JinGong, ZHONG Kai. Sedimentary Environment and Hydrocarbon Generation Potential of Source Rocks from the Meirenfeng Formation in the Changjiang Depression, East China Sea Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016
    Citation: YUAN LingCong, ZHU XiaoJun, CAI JinGong, ZHONG Kai. Sedimentary Environment and Hydrocarbon Generation Potential of Source Rocks from the Meirenfeng Formation in the Changjiang Depression, East China Sea Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 506-514. doi: 10.14027/j.issn.1000-0550.2020.016
      • 东海盆地是我国近海面积最大的中—新生代沉积盆地,有着良好的油气勘探前景[1]。东海盆地分为东部坳陷带和西部坳陷带,不同区域勘探潜力不一,其中东部坳陷带以西湖凹陷最具勘探潜力,西部坳陷带以瓯江凹陷为主要勘探目标[2]。前人研究表明,东海西部坳陷带古新统厚度大、分布广,具有良好的油气地质条件,可能成为下一步的油气勘探目标[3]。长江坳陷位于西部坳陷带北部,紧邻西湖凹陷,在形成机制、演化历程方面和东部坳陷带的西湖凹陷表现出较高程度的相似性[34],暗示其可能具有与西湖凹陷相比拟的资源潜力。长江坳陷目前仅有两口钻井,其中之一为M1井,该井钻探设计是为建立长江坳陷地层层序,了解其岩性、地球化学特征及含油气性。前人对M1井的研究认为,长江坳陷古新统美人峰组烃源岩具有一定生烃潜力[5]。然而,钻揭的美人峰组厚度达1 783.5 m,不同层段岩性特征差别较大,其中第一段到第四段主要为一套泥质岩夹砂质岩,第五段到第六段岩性相对较粗。并且,美人峰组不同层段烃源岩有机质特征以及影响美人峰组烃源岩发育的环境因素均未知,缺乏对美人峰组烃源岩生烃潜力的系统评价,不利于长江坳陷的资源潜力评价。

        烃源岩的形成受环境,如古气候、氧化还原条件以及古盐度等条件控制[6]。系统恢复烃源岩形成时期的环境对确定优质烃源岩发育层系意义重大[7]。本文以M1井美人峰组烃源岩为研究对象,开展岩石薄片、X射线衍射(XRD)、热解、元素地球化学分析,并结合前人实测地化数据,恢复长江坳陷美人峰组沉积时期的环境特征,确定影响美人峰组烃源岩发育的环境因素,综合评价美人峰组不同层段烃源岩的生烃潜力,以期提高对长江坳陷美人峰组烃源岩的认识。

      • 长江坳陷位于东海盆地西北部,由昆山凹陷、常熟低凸起、金山北凹陷和金山南凹陷组成,坳陷南北两侧介于虎皮礁隆起和海礁隆起之间,坳陷东西两侧为西湖凹陷和浙闽隆褶区(图1a)。长江坳陷的构造演化大致划分为晚白垩纪到古新世的断陷期、始新世的坳陷期、中新世到第四纪的区域沉降三个发展阶段[5]。长江坳陷中、新生代沉积近万米,发育有巨厚的上白垩统、古新统、晚始新统陆相沉积,缺失中下始新统、渐新统和下中新统。中中新统和上中新统为陆相沉积,上新统和第四系由海陆交互相转为浅海相沉积[4]

        图  1  长江坳陷构造纲要及美人峰组地层单元

        Figure 1.  Tectonic map of the Changjiang Depression and units of the Meirenfeng Formation

        长江坳陷M1井美人峰组厚度大(2 122.5~3 906.0 m),由上至下岩性变化大,依据岩性特征差异,将钻揭的美人峰组地层分为六段(图1b)。第一段至第四段主要为灰色—黑色泥岩夹砂质岩,第五段主要为灰色砂、泥岩交互沉积,第六段岩性具二分性,上部以灰色及杂色泥岩为主,下部为中酸性喷出岩岩砾。第一段至第四段未见明显沉积构造,第五段至第六段岩性逐渐变粗,沉积构造发育,见水平层理、斜层理、楔状层理。美人峰组主要发育滨浅湖—半深湖相沉积[5]

      • 本文采集长江坳陷M1井美人峰组烃源岩岩芯样共11块(第六段1块,第四段4块,第三段1块,第二段2块,第一段3块),开展了热解、薄片、XRD和元素等一系列分析测试。热解分析选用ROCK EVAL⁃VI标准型热解仪。薄片鉴定选用ZEISS显微镜,岩石薄片制备沿垂直岩芯纹层方向磨制。XRD检测分析选用Panalytical Xpert⁃MPD衍射仪。微量元素分析在Vista MPX电感耦合等离子发射光谱仪上进行。另外对干酪根样的有机元素和碳同位素、岩屑及岩芯样的镜质体反射率和有机碳含量(相关数据由中海油上海分公司提供)进行整理分析,提升对烃源岩特征的认识。

      • 烃源岩薄片鉴定表明,美人峰组烃源岩整体呈块状构造,碎屑颗粒含量较高,均为杂乱无序分布,可见黑色和棕色有机质分布于碎屑颗粒间,指示有机质为陆源输入。不同层段岩石矿物特征差别较大,第一段烃源岩碎屑颗粒分选较差,粗颗粒多为棱角—次棱角状,细颗粒磨圆相对较好(图2b,e),第二段碎屑颗粒分选及磨圆较第一段更好,粗颗粒含量低于第一段,颗粒粒径小于第一段(图2c),第四段粗颗粒含量明显低于第一段和第二段,颗粒分选及磨圆好于第一段和第二段(图2a)。前人研究表明,在碎屑颗粒快速堆积的情况下,有机质很快被堆积物掩埋,有利于有机质保存[8]。第一段碎屑颗粒较粗,分选较差,表明相较于第二段和第四段,第一段沉积时期碎屑颗粒堆积速度更快,陆源有机质进入水体后,被快速掩埋,有利于有机质保存。薄片镜下观察,第一段可见大量棕色有机质残片(图2b,d),在荧光照射下显橙色(图2f),而第四段以条带状、碎片状、卵圆状黑色有机质为主(图2a),该类有机质无明显荧光反应。以上两种有机质均来源于陆生高等植物,黑色有机质为高等植物木质部分经强烈炭化而成的丝质体,棕红色有机质为高等植物有机质残片,生烃潜力好于炭化丝质体。据前述薄片有机质荧光特征,从第四段到第一段,随着深度增加,有机质类型有变好的趋势。

        图  2  长江坳陷美人峰组烃源岩显微薄片

        Figure 2.  Thin-sections of source rocks in the Meirenfeng Formation, Changjiang Depression

        据XRD分析结果(表1),美人峰组烃源岩由石英、钾长石、斜长石、黏土矿物、方解石、白云石、硬石膏、菱铁矿等矿物组成。将烃源岩矿物组成按陆源碎屑(石英、斜长石和钾长石)、黏土矿物、碳酸盐矿物(方解石、白云石和菱铁矿)和硫酸盐矿物(硬石膏)分类统计发现,美人峰组碎屑矿物相对含量为59%~82%,平均值为64%;黏土矿物相对含量为15%~36%,平均值为32%;其他矿物平均相对含量为4%(图3)。美人峰组碎屑矿物含量较高,表明其沉积时期受陆源输入影响较大。

        表 1  长江坳陷美人峰组烃源岩XRD矿物成分

        Table 1.  Mineral composition of source rocks in the Meirenfeng Formation, Changjiang Depression

        层段 深度/m 矿物含量/%
        石 英 钾长石 斜长石 黏土矿物 方解石 白云石 硬石膏 菱铁矿
        第六段 2 155.5 44 8 10 35 0 0 2 1
        第四段 2 730.7 37 8 18 32 0 2 3 0
        3 015.3 35 6 20 36 0 1 2 0
        3 016.2 36 11 15 36 0 0 2 0
        3 019.0 28 17 23 30 0 0 2 0
        第三段 3 260.6 33 8 18 36 0 0 2 3
        第二段 3 524.9 43 13 26 15 0 0 3 0
        3 526.3 37 7 16 35 2 0 3 0
        第一段 3 693.0 31 11 21 33 0 1 2 1
        3 724.6 35 11 21 30 0 0 3 0
        3 802.4 31 4 27 33 0 0 2 3

        图  3  长江坳陷美人峰组烃源岩矿物相对含量

        Figure 3.  Relative content of mineral components in source rocks of the Meirenfeng Formation, Changjiang Depression

        沉积环境对烃源岩中矿物组成具有明显控制作用,矿物组成可用于辅助判断烃源岩形成时的沉积环境特征[9]。由图3可见,碎屑矿物含量与深度之间不存在相关性,反映碎屑矿物主要来源于外源输入。在美人峰组可见菱铁矿,相对含量1%~3%。菱铁矿多发育于有机碳含量丰富、具有弱氧化—弱还原条件的沉积物中[10],指示美人峰组沉积时期为弱氧化环境。

      • 美人峰组烃源岩有机碳含量为0.08%~2.13%,平均含量为0.72%(图4a)。从不同层段有机碳含量分布特征来看,第一段至第二段有机碳含量高于其他层段(图4a,b)。对岩芯样品的热解分析表明,烃源岩生烃潜力(S 1+S 2)分布在0.02~1.34 mg/g之间,从不同层段生烃潜力的分布特征来看,第六段和第一段生烃潜力值高于其他层段,均值分别为1.34 mg/g和0.87 mg/g(图5)。综合来看,美人峰组烃源岩整体为中等烃源岩,其中第一段和第二段烃源岩有机质丰度最高,第三段和第四段有机质丰度较低,第五段和第六段有机质丰度较第三段和第四段高。

        图  4  长江坳陷美人峰组烃源岩不同层段有机碳分布(a:“x”代表均值;b:N为样品数)

        Figure 4.  Distribution of organic carbon abundance of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression: (a) average TOC of different members; (b) N is number of samples

        图  5  长江坳陷美人峰组烃源岩不同层段生烃潜力分布(“x”代表均值;N为样品数)

        Figure 5.  Distribution of hydrocarbon generation potential of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression: average S 1+S 2 of different members; N is the number of samples

        从美人峰组烃源岩的HI、T max及前人测试的H/C和O/C等参数的分布特征(图6a,c)来看,长江坳陷M1井美人峰组烃源岩有机质基本上为III型。前人测试结果显示美人峰组烃源岩干酪根δ 13C值分布范围为-25.95‰~-24.43‰(图6b),根据干酪根δ 13C有机质类型划分标准[11],美人峰组烃源岩有机质类型以III型为主,含少量II型,与前述判别结果基本一致。综合有机质类型划分的结果认为,不同层段烃源岩中有机质类型存在差异:美人峰组第四段至第六段烃源岩有机质类型均为III型,II型有机质主要分布在第一段至第三段。

        图  6  长江坳陷美人峰组烃源岩不同层段有机质类型

        Figure 6.  Organic matter types of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression

        美人峰组烃源岩热成熟度(R o)分布在0.32%~0.76%,平均值为0.55%,显示美人峰组烃源岩整体演化程度不高。从不同层段烃源岩镜质体反射率的特征来看,第五段和第六段烃源岩演化程度低,有机质处于未熟阶段,随着埋深增加,美人峰组有机质演化程度变高,第一段烃源岩有机质演化程度最高,已进入成熟演化阶段(图7)。

        图  7  长江坳陷美人峰组烃源岩不同层段镜质体反射率

        Figure 7.  Vitrinite reflectance of different layers of source rocks in the Meirenfeng Formation, Changjiang Depression

      • 长江坳陷美人峰组烃源岩的Ni/Co介于1.48~1.92,平均值为1.69,V/Cr介于1.31~1.95,平均值为1.6。参考前人对不同沉积环境元素特征的研究结果[1213],美人峰组烃源岩Ni/Co和V/Cr比值指示其沉积处于弱氧化环境。美人峰组矿物资料显示部分层段内含菱铁矿(表1),且美人峰组各段均未检测到黄铁矿,表明美人峰组沉积时为弱氧化环境,与元素判别结果一致。

        美人峰组烃源岩Sr元素丰度分布于125×10-6~252×10-6,均值为194×10-6,以第一段中部、第二段、第四段顶部相对较高;Sr/Ba含量比值分布于0.22~0.42,均值为0.3,以第一段中部、第四段顶部相对较高。根据美人峰组烃源岩Sr元素丰度和Sr/Ba含量比值,参考古盐度判识标准[1415]表2),美人峰组整体为淡水环境(图8),不同层段间盐度有一定差异。

        表 2  古盐度微量元素判断指标[14-15]

        Table 2.  Trace element indices for paleosalinity recognition[1415]

        判断指标 淡水 半咸水 咸水
        Sr含量/10-6 < 300 300~500 >500
        Sr/Ba < 0.6 0.6~1.0 >1.0

        图  8  长江坳陷美人峰组烃源岩Sr含量与元素含量比Sr/Ba关系

        Figure 8.  Relationship between Sr and Sr/Ba in source rocks, Meirenfeng Formation, Changjiang Depression

        美人峰组烃源岩Sr/Cu含量比值分布于5.1~12.5,均值为8.3。一般而言,温湿气候中存在1< Sr/Cu <10,干热气候中的Sr/Cu>10[15]。由此来看,美人峰组烃源岩沉积时期整体表现为温湿气候。从不同层段Sr/Cu含量比值来看,第一段至第三段的Sr/Cu小于10,表明第一段至第三段沉积时期气候相对温湿,第四段底部烃源岩中Sr/Cu高于10,反映第四段底部沉积时为干热气候,第五段至第六段的Sr/Cu小于10,表明第五段至第六段沉积时期再次变为温湿气候。这些特征表明,美人峰组不同沉积时期古气候条件有较大差别。

      • 沉积环境,包括古水体的氧化还原条件、古盐度和古气候等,控制着烃源岩中有机质的产生和保存[16]。对反映环境的微量元素含量及其比值与有机碳含量进行相关性分析,可以确定影响烃源岩发育的主要控制因素[7]

        美人峰组烃源岩古气候指标Sr/Cu与TOC有较好的负相关性(图9e),古盐度指标Sr丰度和Sr/Ba与TOC有较好的正相关性(图9c,d),而氧化还原指标V/Cr和Ni/Co与TOC相关性不明显(图9a,b),表明古气候和古盐度控制着美人峰组优质烃源岩的形成,即温湿的微咸水环境条件有利于美人峰组优质烃源岩的形成。前人研究表明,温暖潮湿的古气候条件有利于高等植物发育[1718],咸化水体有利于有机质的保存和富集[19]。美人峰组第一段至第三段底部沉积时期气候相对温湿,降雨充沛,区域内高等植物发育,有较多陆源有机质输入,第一段中部至第二段沉积时期盐度相对较高的水体为有机质提供较好的保存条件,在显微镜下观察多为棕色有机质残片,有橙色荧光反应(图2f),有机质类型以III型为主,含少量II型(图6)。而在美人峰组第四段沉积初期,气候相对干热(图10),降雨较少,区域内高等植物不发育,陆源碎屑及有机质输入减少,导致有机质丰度明显低于其他层段(图4),水体盐度低,有机质保存条件变差,陆源输入的高等植物残片大都氧化为炭化丝质体,无荧光反应(图2a),有机质类型为III型(图6)。

        图  9  长江坳陷美人峰组烃源岩微量元素含量及其比值与TOC关系

        Figure 9.  Relationships between element content and elemental ratio and TOC of source rocks, Meirenfeng Formation, Changjiang Depression

        图  10  长江坳陷M1井美人峰组有机地化指标及古环境恢复

        Figure 10.  Organic geochemical indices and identification of paleoenvironment of source rocks by element content, Meirenfeng Formation, MRF⁃1 well, Changjiang Depression

        美人峰组不同层段烃源岩有机质特征差别较大。第一段至第二段烃源岩有机质丰度整体较高,为中等—好烃源岩,有机质进入低成熟—成熟演化阶段(图10),有机质类型以III型为主,含少量II型,薄片镜下观察为生烃潜力相对较好的有机质残片。第三段至第四段烃源岩有机质丰度低于第一段和第二段(图10),有机质以低成熟演化阶段为主,有机质类型以III型为主,薄片镜下观察以生烃潜力较差的炭化丝质体为主。第五段至第六段有机质丰度整体高于第三段和第四段,有机质类型为III型,有机质大多处于未熟状态(图10),为无效烃源岩。

        据前述美人峰组各段特征,第一段至第二段沉积时期为温湿气候(图10),区域内高等植物发育,有大量陆源碎屑及有机质输入,陆源输入的大量碎屑进入盐度相对较高的水体中快速堆积,将有机质掩埋,有利于有机质保存和富集,镜下观察有机质主要为棕色有机质残片,烃源岩有机质丰度高,有机质类型以III型为主,含少量II型,有机质已进入低成熟—成熟演化阶段,为美人峰组最具生烃潜力的层段;第三段至第四段沉积时期,气候相对干热,导致陆源碎屑和有机质输入减少,有机质丰度降低,有机质以低成熟演化阶段为主,由于水体盐度相对较低(图10),不利于有机质保存,薄片镜下观察有机质主要为生烃潜力相对较差的炭化丝质体;第五段至第六段沉积时期,气候恢复为相对温湿的状态,部分深度范围内烃源岩有机碳含量变高,但有机质多处于未熟状态(图10),为无效烃源岩。

        从目前钻探成果来看,美人峰组烃源岩形成受陆源输入影响较大,有机质以III型为主,含少量II型,部分层段已进入成熟演化阶段,随埋深增加,有机质成熟度变高(图10),烃源岩生烃潜力更好。

      • (1) 美人峰组烃源岩发育于温暖潮湿的弱氧化淡水环境,烃源岩Sr丰度、Sr/Ba及Sr/Cu与TOC相关性较大,V/Cr和Ni/Co与TOC相关性不明显,表明古盐度和古气候是控制美人峰组烃源岩发育的主要环境因素。

        (2) 美人峰组第一段和第二段沉积时期气候温暖潮湿,水体盐度较高,有利于有机质的保存和富集,有机质丰度高,有机质类型以III型为主,含少量II型,有机质已进入低成熟—成熟演化阶段,为美人峰组最具生烃潜力的层段;第三段和第四段沉积时期气候相对干热,水体盐度相对较低,不利于有机质保存,有机质丰度低,有机质类型以III型为主,有机质以低成熟演化阶段为主,生烃潜力不大;第五段和第六段沉积时期气候恢复温湿状态,有机质丰度较第三段和第四段高,有机质类型为III型,但有机质处于未熟状态,为无效烃源岩。

        (3) 随着埋深增加,美人峰组烃源岩有机质成熟度变高,预示美人峰组更大埋深处的烃源岩生烃潜力更好。

    参考文献 (19)

    目录

      /

      返回文章
      返回