高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碎屑锆石U-Pb年龄有效性初探

王亚东 张涛 袁四化 刘晓燕

王亚东, 张涛, 袁四化, 刘晓燕. 碎屑锆石U-Pb年龄有效性初探—以青藏高原东北缘酒西盆地为例[J]. 沉积学报, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090
引用本文: 王亚东, 张涛, 袁四化, 刘晓燕. 碎屑锆石U-Pb年龄有效性初探—以青藏高原东北缘酒西盆地为例[J]. 沉积学报, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090
WANG YaDong, ZHANG Tao, YUAN SiHua, LIU XiaoYan. Preliminary Study of Validity of Detrital Zircon U-Pb Dating: A case study of Jiuxi Basin, NE Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090
Citation: WANG YaDong, ZHANG Tao, YUAN SiHua, LIU XiaoYan. Preliminary Study of Validity of Detrital Zircon U-Pb Dating: A case study of Jiuxi Basin, NE Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090

碎屑锆石U-Pb年龄有效性初探—以青藏高原东北缘酒西盆地为例

doi: 10.14027/j.issn.1000-0550.2020.090
基金项目: 

国家自然科学基金 41971013, 41772200, 41877298, 41601007

第二次青藏高原综合科学考察研究 2019QZKK0707

详细信息
    作者简介:

    王亚东,女,1980年出生,博士,副研究员,构造热年代学,E-mail: wangyd2015@lzb.ac.cn

  • 中图分类号: P597

Preliminary Study of Validity of Detrital Zircon U-Pb Dating: A case study of Jiuxi Basin, NE Tibetan Plateau

Funds: 

National Natural Science Foundation of China 41971013, 41772200, 41877298, 41601007

The Second Tibetan Plateau Scientific Expedition and Research (STEP) 2019QZKK0707

  • 摘要: 碎屑锆石U-Pb 年代学是限定沉积地层年龄、追踪沉积物源、揭示区域构造演化历史等重要的手段,在地质学和地理学领域应用广泛。近年来,单颗粒碎屑锆石数据获取技术日渐成熟,数据量激增,然而,部分邻近甚至相同地区不同研究组获得的原始数据存在差异甚至相互矛盾。如何高效严谨地获取及处理数据,并挖掘其中所蕴涵的丰富的地质信息,越来越受到研究者的重视,但目前相关方面的研究较少。以青藏高原东北缘酒西盆地新生代疏勒河组砂岩碎屑锆石为例,采用标准实验流程,通过试验数据之间的横向和纵向对比,确定合理的碎屑锆石颗粒测试数量,利用碎屑锆石颗粒外部形态与内部结构特征相结合的方法,选择有效的测试点,发现单颗粒锆石阴极发光(CL)图像在数据测试、分析和应用方面极具前景。具体取得如下认识:1)碎屑锆石U-Pb测年前处理时需采用标准的重矿物分选流程,以保持所采集的碎屑样品中单颗粒锆石分布的全貌,避免引起年龄组分丢失或偏差;制作样品靶及选择测年颗粒时,需将全部锆石单颗粒在体视显微镜及扫描电镜下的特征紧密结合,得到最优有效数量的单颗粒年龄,提高效率及数据的准确性、完整性;2)数据处理、分析及应用中,必须结合单颗粒锆石CL图像,修正或剔除异常数据,避免由于激光剥蚀点或离子束跨越特征不同的生长环带产生无意义的“混合年龄”。该研究为碎屑锆石U-Pb年代学大数据处理及应用提供了基础技术支撑,且为有效甄别U-Pb测年数据质量进而合理、准确地应用于地学研究提供了新的视角。
  • 图  1  (a)青藏高原和邻近区域地貌构造图(修改自Cheng et al. [13]);(b)青藏高原东北部酒西盆地及邻区地貌构造分布图;(c)酒西盆地地质简图

    Figure  1.  (a) Geomorphologic tectonic map of Tibetan Plateau and adjacent areas (modified from Cheng et al. [13]); (b) Geomorphic structures distribution map of Jiuxi Basin and adjacent areas in northeastern Tibetan Plateau; (c) Geological map of Jiuxi Basin

    图  2  酒西盆地碎屑锆石U⁃Pb年龄核密度估计曲线和直方图并突出强调0~500 Ma单颗粒年龄

    Figure  2.  Detrital zircon kernel density distributions of U⁃Pb ages for Jiuxi Basin samples and histograms (bin size = 5 Ma), emphasizing ages 0⁃500 Ma

    图  3  酒西盆地JX1、JX2和JX3试样的单颗粒锆石靶透射光图像

    Figure  3.  Transmission images of single zircon grains from JX1, JX2 and JX3 in Jiuxi Basin

    图  4  酒西盆地JX1、JX2和JX3试样碎屑锆石U⁃Pb年龄综合分峰处理结果

    Figure  4.  Comprehensive peak ages analysis of detrital zircon U⁃Pb ages of JX1, JX2 and JX3 in Jiuxi Basin

    图  5  酒西盆地疏勒河组砂岩样品不同年龄组分单颗粒碎屑锆石CL

    (a)<50 Ma;(b)50~200 Ma;(c)200~300 Ma;(d)300~500 Ma;(e)>500 Ma)(a)<50 Ma;(b)50~200 Ma;(c)200~300 Ma;(d)300~500 Ma;(e)>500 Ma

    Figure  5.  CL images of single detrital zircon grains of different age groups in sandstone samples from Shulehe Formation, Jiuxi Basin

    图  6  可能产生“混合年龄”的原因及相应锆石CL

    (a)藏南埃达克岩体[74];(b)本研究

    Figure  6.  CL image of zircon with “mixed age” and its cause

    (a) adakite pluton of southern Tibet[74]; (b) this study

    表  1  酒西盆地碎屑砂岩样品JX1、JX、JX3三组碎屑锆石年龄分峰处理结果

    Table  1.   Detrital zircon peak ages of sandstone samples JX1, JX and JX3 in Jiuxi Basin

    样品号 年龄区间/Ma 峰值年龄/Ma及百分比%
    P1 P2 P3 P4 P5 P6
    JX1 0~3 000 12.917±0.084 11.7%±3.1% 58.21±0.45 6.3%±2.3% 251.22±0.67 64.9%±4.5% 507.0±2.9 13.5%±3.2% 2 128.0±10.0 3.6%±6.8%
    ≤500 12.917±0.084 12.6%±3.3% 55.0±0.44 5.8%±2.3% 121.6±1.7 2.9%±1.7% 254.56±0.69 67.0%±4.6% 417.9±2.7 11.7%±6.3%
    JX2 0~3 000 11.181±0.091 7.8%±2.4% 47.92±0.58 2.3%±1.3% 230.25±0.54 79.8%±3.5% 435.0±3.0 9.3%±2.6% 2 000.0±20.0 0.8%±5.1%
    ≤500 11.181±0.091 7.9%±2.4% 47.92±0.084 2.4%±1.4% 128.3±1.4 4.0%±1.7% 236.08±0.57 77.0%±3.8% 382.6±2.7 8.7%±5.0%
    JX3 0~3 000 12.18±0.13 5.3%±2.1% 54.74±0.39 8.0%±2.5% 257.02±0.69 75.2%±4.1% 523.5±4.5 7.1%±2.4% 2 000.0±11.0 4.4%±5.8%
    ≤500 12.18±0.13 5.7%±2.2% 54.74±0.39 8.5%±2.7% 141.2±1.8 3.8%±1.9% 264.34±0.73 76.4%±4.1% 453.8±4.6 5.7%±5.7%
    JX1+JX2 0~3 000 12.219±0.062 9.6%±1.9% 55.04±0.36 4.2%±1.3% 238.67±0.42 72.5%±2.9% 471.2±2.0 11.7%±2.1% 2 103.0±9.0 2.1%±4.2%
    ≤500 12.219±0.062 10.0%±2.0% 52.73±0.35 3.9%±1.3% 125.8±1.2 3.5%±1.2% 244.46±0.44 72.9%±2.9% 406.7±2.0 9.6%±4.0%
    JX2+JX3 0~3 000 11.526±0.076 6.6%±1.6% 52.89±0.32 5.0%±1.4% 241.0±0.43 77.3%±2.7% 459.6±2.4 8.7%±1.8% 2 000.1±9.9 2.5%±3.9%
    ≤500 11.526±0.076 6.9%±1.7% 52.89±0.32 5.2%±1.5% 139.2±1.1 4.7%±1.4% 248.13±0.45 75.4%±2.8% 403.0±2.3 7.8%±3.8%
    JX1+JX3 0~3 000 12.724±0.071 8.5%±1.9% 56.32±0.29 7.1%±1.7% 254.07±0.48 70.1%±3.1% 511.9±2.4 10.3%±2.0% 2 074.7±7.6 4.0%±4.5%
    ≤500 12.724±0.071 9.1%±2.0% 54.85±0.29 7.2%±1.8% 126.2±1.3 2.9%±1.2% 258.42±0.5 71.8%±3.1% 423.0±2.2 9.1%±4.3%
    JX1+JX2+JX3 0~3 000 12.212±0.056 8.2%±1.5% 54.9±0.26 5.4%±1.2% 244.06±0.37 73.4%±2.4% 481.2±2.1 10.2%±1.6% 2 065.0±7.1 2.8%±3.4%
    ≤500 12.212±0.056 8.7%±1.5% 53.66±0.26 5.4%±1.2% 127.5±1.0 3.4%±1.0% 249.47±0.38 73.6%±2.4% 409.5±1.7 9.0%±3.3%
    下载: 导出CSV
  • [1] Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983.
    [2] Pell S D, Williams I S, Chivas A R. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands[J]. Sedimentary Geology, 1997, 109(3/4): 233-260.
    [3] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303.
    [4] 闫义,林舸,李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学,2003,27(2):184-190.

    Yan Yi, Lin Ge, Li Zi’an. Provenance tracing of sediments by means of synthetic study of shape, composition and chronology of zircon[J]. Geotectonica et Metallogenia, 2003, 27(2): 184-190.
    [5] Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3/4): 249-270.
    [6] DeCelles P G, Carrapa B, Gehrels G E. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina[J]. Geology, 2007, 35(4): 323-326.
    [7] 张英利,王宗起,闫臻,等. 库鲁克塔格地区新元古代沉积物源分析:来自碎屑锆石年代学的证据[J]. 岩石学报,2011,27(1):121-132.

    Zhang Yingli, Wang Zongqi, Yan Zhen, et al. Provenance of Neoproterozoic rocks in Quruqtagh area, Xinjiang: Evidence from detrital zircon geochronology[J]. Acta Petrologica Sinica, 2011, 27(1): 121-132.
    [8] Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78: 355-368.
    [9] Fan M J, Mankin A, Chamberlain K. Provenance and depositional ages of Late Paleogene fluvial sedimentary rocks in the central Rocky Mountains, U.S.A.[J]. Journal of Sedimentary Research, 2015, 85(11): 1416-1430.
    [10] Nie J S, Stevens T, Rittner M, et al. Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6: 8511.
    [11] 靳立杰,周汉文,朱云海,等. 东昆仑地区赛什腾组碎屑锆石U-Pb年代学:对其物质来源及地层时代的约束[J]. 大地构造与成矿学,2015,39(4):691-703.

    Jin Lijie, Zhou Hanwen, Zhu Yunhai, et al. U-Pb age of the detrital zircon from the Serteng Formation in East Kunlun: Constraints on its provenance and formation time[J]. Geotectonica et Metallogenia, 2015, 39(4): 691-703.
    [12] Markwitz V, Kirkland C L. Source to sink zircon grain shape: Constraints on selective preservation and significance for Western Australian Proterozoic basin provenance[J]. Geoscience Frontiers, 2018, 9(2): 415-430.
    [13] Cheng F, Garzione C, Jolivet M, et al. Provenance analysis of the Yumen Basin and northern Qilian Shan: Implications for the pre-collisional paleogeography in the NE Tibetan plateau and eastern termination of Altyn Tagh fault[J]. Gondwana Research, 2019, 65: 156-171.
    [14] Feng W, Meng Q Q, Song C H, et al. Detrital zircon U-Pb geochronology of the Wuyu (Oiyug) Basin, southern Tibetan Plateau, and its geological implications[J]. Gondwana Research, 2020, 83: 36-48.
    [15] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.
    [16] Tucker R T, Roberts E M, Hu Y, et al. Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia’s late cretaceous dinosaur faunas[J]. Gondwana Research, 2013, 24(2): 767-779.
    [17] Coutts D S, Matthews W A, Hubbard S M. Assessment of widely used methods to derive depositional ages from detrital zircon populations[J]. Geoscience Frontiers, 2019, 10(4): 1421-1435.
    [18] Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589.
    [19] Sickmann Z T, Schwartz T M, Graham S A. Refining stratigraphy and tectonic history using detrital zircon maximum depositional age: An example from the Cerro Fortaleza Formation, Austral Basin, southern Patagonia[J]. Basin Research, 2018, 30(4): 708-729.
    [20] 丁振举,文成雄,国阿千,等. 西秦岭吴家山群地层时代及物源特征:来自碎屑锆石U-Pb年龄证据[J]. 地球科学与环境学报,2018,40(2):111-132.

    Ding Zhenju, Wen Chengxiong, Guo Aqian, et al. Stratigraphic ages and provenance characteristics of Wujiashan Group in West Qinling, China: Evidences from detrital zircon U-Pb age[J]. Journal of Earth Sciences and Environment, 2018, 40(2): 111-132.
    [21] Copeland P. On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata[J]. Basin Research, 2020, doi: 10.1111/bre.12441.
    [22] Ruhl K W, Hodges K V. The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: An example from the central Nepalese Himalaya[J]. Tectonics, 2005, 24(4): TC4015.
    [23] Bernet M, van der Beek P, Pik R, et al. Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal[J]. Basin Research, 2006, 18(4): 393-412.
    [24] Davis S J, Dickinson W R, Gehrels G E, et al. The Paleogene California river: Evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons[J]. Geology, 2010, 38(10): 931-934.
    [25] Blum M, Pecha M. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons[J]. Geology, 2014, 42(7): 607-610.
    [26] Barbeau Jr D L, Olivero E B, Swanson-Hysell N L, et al. Detrital-zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern scotia arc and drake passage[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 489-503.
    [27] 徐亚军,杜远生,杨江海. 北祁连造山带晚奥陶世—泥盆纪构造演化:碎屑锆石年代学证据[J]. 地球科学:中国地质大学学报,2013,38(5):934-946.

    Xu Yajun, Du Yuansheng, Yang Jianghai. Tectonic evolution of the North Qilian orogenic belt from the Late Ordovician to Devonian: Evidence from detrital zircon geochronology[J]. Earth Science:Journal of China University of Geosciences, 2013, 38(5): 934-946.
    [28] Schwartz T M, Fosdick J C, Graham S A. Using detrital zircon U-Pb ages to calculate Late Cretaceous sedimentation rates in the Magallanes-Austral Basin, Patagonia[J]. Basin Research, 2017, 29(6): 725-746.
    [29] Jackson Jr W T, Robinson D M, Weislogel A L, et al. Mesozoic development of nonmarine basins in the northern Yidun terrane: Deposition and deformation in the eastern Tibetan Plateau prior to the India-Asia collision[J]. Tectonics, 2018, 37(8): 2466-2485.
    [30] Cao H W, Zhang Y H, Tang L, et al. Geochemistry, zircon U-Pb geochronology and Hf isotopes of Jurassic-Cretaceous granites in the Tengchong terrane, SW China: Implications for the Mesozoic tectono-magmatic evolution of the eastern Tethyan Tectonic Domain[J]. International Geology Review, 2019, 61(3): 257-279.
    [31] Wei Y Q, Zhao Z D, Niu Y L, et al. Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane[J]. Gondwana Research, 2020, 78: 41-57.
    [32] Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017, doi: 10.1029/2007GC001805.
    [33] Shaulis B, Lapen T J, Toms A. Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(11): Q0AA11, doi: 10.1029/2010GC003198.
    [34] Szymanowski D, Schoene B. U-Pb ID-TIMS geochronology using ATONA amplifiers[J]. Journal of Analytical Atomic Spectrometry, 2020, 6: DOI: 10.1039/d0ja00135.
    [35] Gerdes A, Zeh A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany[J]. Earth and Planetary Science Letters, 2006, 249(1/2): 47-61.
    [36] 任博,冯盈,姚丽洁,等. 碎屑锆石U-Pb年代学在地学应用中的现状[J]. 甘肃地质,2018,27(2):1-9.

    Ren Bo, Feng Ying, Yao Lijie, et al. The present state of detrital zircon U-Pb geochronology and its geological application[J]. Gansu Geology, 2018, 27(2): 1-9.
    [37] 张凌,王平,陈玺赟,等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展,2020,35(4):414-430.

    Zhang Ling, Wang Ping, Chen Xiyun, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430.
    [38] Vermeesch P, Garzanti E. Making geological sense of 'Big Data' in sedimentary provenance analysis[J]. Chemical Geology, 2015, 409: 20-27.
    [39] Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220.
    [40] Carter A, Bristow C S. Detrital zircon geochronology: Enhancing the quality of sedimentary source information through improved methodology and combined U-Pb and fission-track techniques[J]. Basin Research, 2000, 12(1): 47-57.
    [41] Sircombe K N, Stern R A. An investigation of artificial biasing in detrital zircon U-Pb geochronology due to magnetic separation in sample preparation[J]. Geochimica et Cosmochimica Acta, 2002, 66(13): 2379-2397.
    [42] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
    [43] 侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报,2007,23(10):2595-2604.

    Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604.
    [44] Sláma J, Košler J. Effects of sampling and mineral separation on accuracy of detrital zircon studies[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05007, doi: 10.1029/2012GC004106.
    [45] 郭佩,刘池洋,王建强,等. 碎屑锆石年代学在沉积物源研究中的应用及存在问题[J]. 沉积学报,2017,35(1):46-56.

    Guo Pei, Liu Chiyang, Wang Jianqiang, et al. Considerations on the application of detrital-zircon geochronology to sedimentary provenance analysis[J]. Acta Sedimentologica Sinica, 2017, 35(1): 46-56.
    [46] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 441-451.
    [47] Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980.
    [48] Daniels B G, Auchter N C, Hubbard S M, et al. Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile[J]. GSA Bulletin, 2018, 130(3/4): 438-454.
    [49] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-495.
    [50] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604.

    Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604.
    [51] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究,2009,32(3):161-174.

    Li Changmin. A review on the minerageny and situ microanalytical dating techniques of zircons[J]. Geological Survey and Research, 2009, 32(3): 161-174.
    [52] Pupin P. Zircon and granite petrology[J]. Contributions to Mineralogy and Petrology, 1980, 73: 207-220.
    [53] Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3/4): 229-245.
    [54] Yao J L, Shu L S, Santosh M. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 2011, 20(2/3): 553-567.
    [55] Yang W T, Yang J H, Wang X F, et al. Uplift-denudation history of the Qinling orogen: Constrained from the detrital-zircon U-Pb geochronology[J]. Journal of Asian Earth Sciences, 2014, 89: 54-65.
    [56] Cheng F, Fu S T, Jolivet M, et al. Source to sink relation between the Eastern Kunlun Range and the Qaidam Basin, northern Tibetan Plateau, during the Cenozoic[J]. GSA Bulletin, 2016, 128(1/2): 258-283.
    [57] Liu D L, Li H B, Sun Z M, et al. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages[J]. Gondwana Research, 2017, 41: 438-450.
    [58] Song S S, Niu Y L, Su L, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 23(4): 1378-1401.
    [59] Dai S, Fang X M, Song C H, et al. Early tectonic uplift of the northern Tibetan Plateau[J]. Chinese Science Bulletin, 2005, 50(15): 1642-1652.
    [60] Fang X M, Zhao Z J, Li J J, et al. Magnetostratigraphy of the Late Cenozoic Laojunmiao anticline in the northern Qilian Mts. and its implication on the northern Tibet uplift[J]. Science China (Seri. D): Earth Sciences, 2005, 48(7): 1040-1051.
    [61] 陈杰,Wyrwoll K H,卢演俦,等. 祁连山北缘玉门砾岩的磁性地层年代与褶皱过程[J]. 第四纪研究,2006,26(1):20-31.

    Chen Jie, Wyrwoll K H, Lu Yanchou, et al. Magnetochronology of the Yumen conglomerates and multi-pulsed folding and thrusting in the northern Qilianshan[J]. Quaternary Sciences, 2006, 26(1): 20-31.
    [62] Bovet P M, Ritts B D, Gehrels G, et al. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu province, China[J]. American Journal of Science, 2009, 309(4): 290-329.
    [63] Wang W T, Zhang P Z, Pang J Z, et al. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan Plateau: A sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2235-2257.
    [64] Wang W T, Zhang P Z, Yu J X, et al. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin[J]. Scientific Reports, 2016, 6(1): 27604.
    [65] He P J, Song C H, Wang Y D, et al. Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6910-6927.
    [66] An K X, Lin X B, Wu L, et al. Reorganization of sediment dispersal in the Jiuxi Basin at ~17 Ma and its implications for uplift of the NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 558-576.
    [67] Mackey G N, Horton B K, Milliken K L. Provenance of the Paleocene-Eocene Wilcox group, western gulf of Mexico Basin: Evidence for integrated drainage of the southern Laramide rocky mountains and cordilleran arc[J]. GSA Bulletin, 2012, 124(5/6): 1007-1024.
    [68] Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Busby C, Azor A. Tectonics of sedimentary basins: Recent advances. Oxford: Wiley-Blackwell, 2012: 47-62.
    [69] Griffin W L, Powell W J, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS[M]//Sylvester P. Laser Ablation ICP-MS in the earth sciences: Current practices and outstanding issues. Mineralogical Association of Canada, 2008: 308-311.
    [70] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
    [71] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3/4): 231-282.
    [72] Vermeesch P. RadialPlotter: A Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements, 2009, 44(4): 409-410.
    [73] Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312-313: 190-194.
    [74] Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96(1/2): 225-242.
  • [1] 李玲香, 谷团, 弓虎军, 迟润龙, 刘婷.  鄂尔多斯盆地东南部太原组顶界地层厘定 ——来自宜川地区山西组、太原组碎屑锆石U-Pb年代学的约束 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2023.137
    [2] 李姣莉, 王建强, 彭恒, 李科亮, 丰孝林, 张东东.  鄂尔多斯盆地南部下白垩统宜君组碎屑锆石U⁃Pb年龄及物源意义 . 沉积学报, 2023, 41(5): 1609-1623. doi: 10.14027/j.issn.1000-0550.2022.022
    [3] 张蕊, 刘磊, 虎建玲, 陈洪德, 黄道军, 王志伟, 朱淑玥, 张靖芪, 李丹, 赵菲.  鄂尔多斯盆地东部晚石炭世本溪组源-汇充填过程与古地理格局 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.099
    [4] 李夔洲, 侯明才, 赵子霖, 迟宇超.  扬子陆块北缘大洪山地区莲沱组物源分析:来自沉积学和碎屑锆石U-Pb年代学的证据【“华南古大陆演化及其资源环境效应”专辑】 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.095
    [5] 李姝睿, 孙高远, 茅昌平, 饶文波.  江苏沿岸辐射沙脊物源分析——来自碎屑重矿物与锆石年代学的证据 . 沉积学报, 2022, 40(4): 931-943. doi: 10.14027/j.issn.1000-0550.2022.023
    [6] 彭深远, 杨文涛, 张鸿禹, 方特.  华北盆地三叠纪物源特征及其沉积—构造演化 . 沉积学报, 2022, 40(5): 1228-1249. doi: 10.14027/j.issn.1000-0550.2021.021
    [7] 马艺萍, 王荣华, 戴霜, 马晓军.  北祁连北大河沉积物碎屑组成及物源正演分析 . 沉积学报, 2022, 40(6): 1525-1541. doi: 10.14027/j.issn.1000-0550.2022.086
    [8] 王平, 陈玺贇, 朱龙辰, 谢鸿森, 吕开来, 魏晓椿.  碎屑锆石U⁃Pb年代学定量物源分析的基本原理与影响因素 . 沉积学报, 2022, 40(6): 1599-1614. doi: 10.14027/j.issn.1000-0550.2022.099
    [9] 贾浪波, 钟大康, 孙海涛, 严锐涛, 张春林, 莫午零, 邱存, 董媛, 李兵, 廖广新.  鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义 . 沉积学报, 2019, 37(5): 1087-1103. doi: 10.14027/j.issn.1000-0550.2019.014
    [10] 杨梅, 洪天求, 徐锦龙, 李秀财, 罗雷.  皖南志留系唐家坞组物源分析:来自碎屑锆石年代学和岩石地球化学的制约 . 沉积学报, 2018, 36(1): 42-56. doi: 10.3969/j.issn.1000-0550.2018.007
    [11] 郭佩, 刘池洋, 王建强, 李长志.  碎屑锆石年代学在沉积物源研究中的应用及存在问题 . 沉积学报, 2017, 35(1): 46-56. doi: 10.14027/j.cnki.cjxb.2017.01.005
    [12] 罗章, 蔡斌, 陈沈良.  动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 . 沉积学报, 2016, 34(5): 881-891. doi: 10.14027/j.cnki.cjxb.2016.05.007
    [13] 张文龙, 陈刚, 章辉若, 高磊, 杨甫, 师晓林, 申锦江.  唐王陵昭陵组砾岩碎屑锆石U-Pb年代学分析 . 沉积学报, 2016, 34(3): 497-505. doi: 10.14027/j.cnki.cjxb.2016.03.007
    [14] 王香增, 陈治军, 任来义, 刘护创, 高怡文.  银根-额济纳旗盆地苏红图坳陷H井锆石LA-ICP-MSU-Pb定年及其地质意义 . 沉积学报, 2016, 34(5): 853-867. doi: 10.14027/j.cnki.cjxb.2016.05.005
    [15] 冯乔, 秦宇, 付锁堂, 柳益群, 周鼎武, 马达德, 王立群, 任军虎, 王晨瑜.  柴达木盆地北缘乌兰县牦牛山组碎屑锆石U-Pb定年及其地质意义 . 沉积学报, 2015, 33(3): 486-499. doi: 10.14027/j.cnki.cjxb.2015.03.007
    [16] 鄂尔多斯盆地乌审旗地区上古生界砂岩碎屑锆石U-Pb年龄及其地质意义 . 沉积学报, 2014, 32(4): 643-653.
    [17] 渝南大佛岩矿区铝土矿碎屑锆石中钪的赋存形式研究 . 沉积学报, 2013, 31(04): 630-638.
    [18] 樊婷婷.  新疆大黑山东部姜巴斯套组下段的凝灰岩锆石LA—ICP—MS U—Pb年龄及其地质意义 . 沉积学报, 2011, 29(2): 312-320.
    [19] 彭守涛.  库车坳陷北缘早白垩世源区特征:来自盆地碎屑锆石 . 沉积学报, 2009, 27(5): 956-966.
    [20] 兰中伍.  四川松潘—甘孜盆地砂岩的物质来源:来自锆石UPb(SHRIMP)年龄证据 . 沉积学报, 2006, 24(3): 321-332.
  • 加载中
图(6) / 表 (1)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  77
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2020-10-22
  • 刊出日期:  2022-01-10

目录

    碎屑锆石U-Pb年龄有效性初探

    doi: 10.14027/j.issn.1000-0550.2020.090
      基金项目:

      国家自然科学基金 41971013, 41772200, 41877298, 41601007

      第二次青藏高原综合科学考察研究 2019QZKK0707

      作者简介:

      王亚东,女,1980年出生,博士,副研究员,构造热年代学,E-mail: wangyd2015@lzb.ac.cn

    • 中图分类号: P597

    摘要: 碎屑锆石U-Pb 年代学是限定沉积地层年龄、追踪沉积物源、揭示区域构造演化历史等重要的手段,在地质学和地理学领域应用广泛。近年来,单颗粒碎屑锆石数据获取技术日渐成熟,数据量激增,然而,部分邻近甚至相同地区不同研究组获得的原始数据存在差异甚至相互矛盾。如何高效严谨地获取及处理数据,并挖掘其中所蕴涵的丰富的地质信息,越来越受到研究者的重视,但目前相关方面的研究较少。以青藏高原东北缘酒西盆地新生代疏勒河组砂岩碎屑锆石为例,采用标准实验流程,通过试验数据之间的横向和纵向对比,确定合理的碎屑锆石颗粒测试数量,利用碎屑锆石颗粒外部形态与内部结构特征相结合的方法,选择有效的测试点,发现单颗粒锆石阴极发光(CL)图像在数据测试、分析和应用方面极具前景。具体取得如下认识:1)碎屑锆石U-Pb测年前处理时需采用标准的重矿物分选流程,以保持所采集的碎屑样品中单颗粒锆石分布的全貌,避免引起年龄组分丢失或偏差;制作样品靶及选择测年颗粒时,需将全部锆石单颗粒在体视显微镜及扫描电镜下的特征紧密结合,得到最优有效数量的单颗粒年龄,提高效率及数据的准确性、完整性;2)数据处理、分析及应用中,必须结合单颗粒锆石CL图像,修正或剔除异常数据,避免由于激光剥蚀点或离子束跨越特征不同的生长环带产生无意义的“混合年龄”。该研究为碎屑锆石U-Pb年代学大数据处理及应用提供了基础技术支撑,且为有效甄别U-Pb测年数据质量进而合理、准确地应用于地学研究提供了新的视角。

    English Abstract

    王亚东, 张涛, 袁四化, 刘晓燕. 碎屑锆石U-Pb年龄有效性初探—以青藏高原东北缘酒西盆地为例[J]. 沉积学报, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090
    引用本文: 王亚东, 张涛, 袁四化, 刘晓燕. 碎屑锆石U-Pb年龄有效性初探—以青藏高原东北缘酒西盆地为例[J]. 沉积学报, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090
    WANG YaDong, ZHANG Tao, YUAN SiHua, LIU XiaoYan. Preliminary Study of Validity of Detrital Zircon U-Pb Dating: A case study of Jiuxi Basin, NE Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090
    Citation: WANG YaDong, ZHANG Tao, YUAN SiHua, LIU XiaoYan. Preliminary Study of Validity of Detrital Zircon U-Pb Dating: A case study of Jiuxi Basin, NE Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2022, 40(1): 106-118. doi: 10.14027/j.issn.1000-0550.2020.090
      • 锆石也叫锆英石(ZrSiO4),具有特别稳定的晶体结构,能持久保持矿物形成时的物化特征(特别是元素和同位素),普遍存在于沉积岩、变质岩和岩浆岩中。另外,由于锆石本身U和Th元素初始浓度较高,非放射性成因铅含量低,封闭温度高,可以获得准确可靠的U-Pb同位素年龄,被广泛应用于地学各领域。尤其是碎屑锆石U-Pb年代学,备受沉积学、构造地质学、地理地貌学家们的关注,因为陆源碎屑沉积物为火山岩、变质岩及沉积岩风化剥蚀的产物,源区广泛,完整地保存和记录了地球演化的重要信息[1],是物源分析[2-15]、最大地层沉积年龄限定[12,16-22]、古地理重建[23-26]、恢复构造演化[27-32]等研究的良好载体。

        近20年来,单颗粒矿物高精度原位微区分析手段不断发展和完善[33-35],尤其是激光剥蚀等离子质谱(LA-ICPMS)技术[36],分析非常高效,精度可达1%~2%(2δ),可以实时、快速地获取大量空间分辨率较高的锆石U-Pb 年龄数据。因此,碎屑锆石U-Pb年代学数据、文献量激增[37-38],一方面要求科学家们能够合理处理、分析和应用这些“大数据”[39-40],另一方面,新的工作在不断开展,相同区域内不同来源的数据却存在差异甚至相互矛盾,使得欲解决的地质问题变得更加复杂。重新审视这些数据的获取和分析方法是否合理,是解决上述问题的一条重要途径。目前已有众多国内外学者对碎屑锆石U-Pb年代学测年方法及其应用进行综述[4, 13, 22, 37-38, 41-45],由数据采集到解释和应用所需的流程基本得到了统一。但笔者综合多年实验室重矿物分选和热年代学工作对比发现,其中许多细节仍存在很大差异,如实验室条件和方法、实验过程的不确定性(人为挑选过程中对较大晶体的偏好、点位选择不当等)、数据使用者采用的标准等,均可能会使数据所表征的地质事实因受到主观或客观因素的影响而“失真”。其中,存在较大争议的是碎屑锆石晶体的测试数量[16, 22, 38, 46-48],由几十个颗粒到几百甚至上千颗不等。虽然每日测量数千颗锆石已经不难实现[33, 47],但是经济成本高昂,工作量巨大。此外,前人虽已在锆石晶体表面形态及内部结构(阴极发光显微图像)与锆石成因方面取得很好的研究成果[49-52],但其在数据获取、年龄解释及意义方面的地质应用长期被忽略,最明显的例子是锆石U-Pb年龄往往比高倍阴极发光图像(CL)应用更广泛[14, 53-57],CL图像仅用于展示测年点位,缺乏深入研究,以致于产生很多无意义的“混合年龄”或“同龄不同因(源)”的年龄峰值被大量使用。这些是亟需被重视和解决的两个问题。

        笔者将以酒西盆地新生代疏勒河组砂岩碎屑锆石为例,采用中国科学院西北生态环境资源研究院重矿物分选及热年代学实验室的实验流程,探讨如何确定合理的碎屑锆石颗粒测试数量;尝试从碎屑锆石颗粒外部形态到内部结构特征相结合的方法,选择有效的测试点,重点阐述碎屑锆石单颗粒CL图像在数据测试、分析和应用方面的重要性,最终建议科学家们将数据解释和应用建立在数据本身在实验获取过程中的合理性和准确性基础上。

      • 酒西盆地位于河西走廊盆地群的最西端,是青藏高原东北部重要的组成部分,夹于祁连山、阿尔金山和宽滩山—黑山—北山等构造带之间(图1[13],新生代以来自下而上发育火烧沟组、白杨河组、疏勒河组和第四系,是研究青藏高原东北缘新生代构造变形、生长过程和全球气候变化的焦点区域。近年来,众多学者通过野外沉积地质观察、磁性地层学、热年代学等多种手段,在盆地的不同部位、不同新生代地层组内开展大量的研究工作,在盆地物源及其构造演化历史和地层年代方面取得了卓越的成果[58-66]。虽然前人在酒西盆地的新生代地质研究结果也存在一定分歧,但是疏勒河组及更年轻的玉门砾岩等的研究较为深入和系统,这些地层被认为是北祁连构造带中新世及之后的快速隆升剥露而造成的盆地沉积,尤其疏勒河组地层时代基本得到一致性认识,为17.0~5.0 Ma[63,66]。本次研究所使用的砂岩样品(代码JX)取自该层位,位置如图1中红色星所示,该地层所取得的研究成果也成为对本次实验结果合理性和真实性的约束和佐证。

        图  1  (a)青藏高原和邻近区域地貌构造图(修改自Cheng et al. [13]);(b)青藏高原东北部酒西盆地及邻区地貌构造分布图;(c)酒西盆地地质简图

        Figure 1.  (a) Geomorphologic tectonic map of Tibetan Plateau and adjacent areas (modified from Cheng et al. [13]); (b) Geomorphic structures distribution map of Jiuxi Basin and adjacent areas in northeastern Tibetan Plateau; (c) Geological map of Jiuxi Basin

      • 不同实验室所采用的锆石单颗粒分选流程大同小异,基本均包含原岩破碎、淘洗、重砂电磁选、重液分选等流程。本实验所使用的重矿物分选步骤如下:1)首先对所采集的样品分别使用颚式破碎仪和盘式研磨仪进行反复的破碎和筛分,直至所采集样品全部被破碎到合适的粒度;2)将破碎的样品在Wilfley摇床上进行水洗,期间不断在体视显微镜下观察轻矿物组分中是否混有目标重矿物锆石,据此来调节摇床的频率、振幅和水量,保证此操作过程中没有锆石颗粒的损失;3)将水洗后所得重砂部分用强磁铁去除其中的铁磁性矿物并烘干,再将烘干的样品用二碘甲烷和Frantz磁选机反复分选,最终得到纯净或含有少量杂质的锆石颗粒。

        在锆石分选过程中,应尽量避免人为造成损失。如,在破碎样品时,破碎至一定样品量后将剩余部分丢弃,或对样品进行过度筛分,只选取某一个粒度范围内的颗粒(通常只选取80~200 μm)。在电磁选重砂过程中,若所有的样品都选用相同的角度和电流,可能会损失一部分磁性不同的锆石,而正确的做法应该是在磁选每个样品时,不断观察磁性部分中是否混有被磁选的锆石,及时调整磁选仪的角度和电流,或对磁性部分进行二次磁选。二碘甲烷重液分选所得到的锆石,通常含有一定量的杂质即非锆石矿物,其不会对测试结果产生影响,无须预先进行人工挑选,以免偏向粒径较大、晶型好的颗粒,而使其他锆石颗粒被丢弃,进而在测试过程中造成年龄组分的丢失或偏差。

      • 目前,碎屑锆石U-Pb年代学最主要的两个应用是物源研究(包括物源区构造演化及地貌变迁)和确定沉积地层的最大年龄。前者关注整个样品的年龄分布,通常需要获取碎屑锆石U-Pb年龄图谱与研究区域地质图或已有的基岩锆石U-Pb年龄对比,确定碎屑沉积物源区,或者沉积地层内、流域内的系列样品的年龄图谱互相比较,探讨源区构造演化历史、恢复流域内地貌演化[9, 67];而后者则关注其中最年轻的年龄组分(颗粒)。物源研究中所用的碎屑锆石U-Pb年龄图谱是基于统计学原理,对所有符合检验标准或满足谐和年龄一致性的测试颗粒进行统计学计算所得到的。因此,对于来源广泛的碎屑锆石,必须满足一个重要条件,即所测量的颗粒可以代表整个样品的年龄组成特征。为检验所测碎屑锆石颗粒是否满足这一条件,Dodson et al.[1]在1988年首次提出检测失败概率p的概念(假设沉积物中的碎屑锆石由多个年龄组分混合而成,其中某一年龄组分未被检测到的概率),但仅适用于该次研究,因为其计算基础为样品中全部86颗锆石内部的比较,最终可确定其中某一个特定组分是否未被检测。Vermeesch[46]在此基础上对Dodson et al.[1]所提出的计算公式赋予数学统计意义,并建议如果希望在95%的置信水平下不漏掉占总量0.05以上的任何组分,则至少应测定117颗锆石颗粒,并对如何处理不能满足此最优颗粒数的研究数据提出处理建议。此后,学者们提出大数量(large=n)的碎屑锆石数据测量和各种数据处理方法,以期降低年龄组分检测失败概率p值[16,38,47-48],并且提出“仅仅检测到1颗锆石可信度过低,需要4~6颗才具有统计意义”[16]。笔者将通过实例建议碎屑锆石U-Pb年龄在物源研究中统计适宜的锆石颗粒的数量,并讨论n=1时颗粒年龄的有效性。

        Pullen et al.[47]在进行颗粒数试验时,为实现内部一致性和对比有效性,所有试验均在一个样本上进行。本次研究也选用同一个样品,同时进行三组试验,我们分别编号JX1、JX2和JX3。首先对全部锆石在体视显微镜下进行观察,然后将样品中具有不同外部特征的锆石均粘贴一部分到样品靶上,包括尺寸过小无法分析或有裂缝而可能产生不可靠年龄的锆石[4,68],可帮助我们了解样品中锆石的组成。每一组制备200~300 个颗粒,抛光后拍摄透射光、反射光及阴极发光显微图像(CL)。反射光图像可清晰显示颗粒近表面较浅部位的信息如裂痕、撞击坑等;透射光可将锆石颗粒内部的包裹体和裂纹等信息展示出来;CL图像揭示锆石内部结构如环带、核增生加大等,对测试颗粒和测试部位的选择很有帮助[4,49-52]。锆石U-Pb测年在兰州大学甘肃省西部矿产资源重点实验室进行,激光剥蚀器(LA)为Analyte Excite193 nm,ICP-MS仪为Agilent 7700X,激光束斑直径为30 μm,样品测试过程以SRM612作为锆石元素含量测定的外标,以国际标准锆石91500作为校正标准。锆石单颗粒年龄计算使用GLITTER 4.0[69],普通铅的校正以及不同颗粒年龄计算所使用的同位素比值分别采用Andersen[70]和Griffin et al.[71]的标准。数据处理使用软件RadialPlotter[72],该软件能同时给出碎屑锆石颗粒的年龄直方图、概率密度图(PDP)和核密度估计曲线(KDE),根据Vermeesch[73]对PDP和KDE的不同算法比较,本文绘图采用算法比较优越的KDE曲线。

        图2表1分别展示三组实验所得到的碎屑锆石U-Pb年龄KDE曲线和单颗粒年龄直方分布图及具体数值。第一组JX1:共测试120个颗粒得到111个协和年龄,其中103个颗粒年龄小于500 Ma,约占有效锆石颗粒的93%。年龄大于500 Ma的锆石颗粒,年龄范围为584~2 457 Ma,共8个颗粒。概率密度分布显示,小于500 Ma的颗粒可进一步划分为五个年龄区间(表1):10~15 Ma[峰值年龄为(12.917±0.084) Ma,占比(12.6±3.3)%],45~70 Ma[峰值年龄(55.0±0.44) Ma,占比(5.8±2.3)%],110~130 Ma[峰值年龄(121.6±1.7) Ma,占比(2.9±1.7)%],210~320 Ma[峰值为(254.56±0.69) Ma,占比(67.0±4.6)%],350~500 Ma[峰值(417.9±2.7) Ma,占比(11.7±6.3)%]。第二组JX2:共测量167个颗粒得到129个协和年龄,其中126个颗粒年龄小于500 Ma,约占有效锆石颗粒的98%。年龄大于500 Ma的锆石颗粒,年龄范围为600~2 000 Ma,仅有3个颗粒。概率密度分布显示小于500 Ma的颗粒可进一步划分为五个年龄区间:8~15 Ma[峰值年龄及百分比分别为:(11.181±0.091) Ma,(7.9±2.4)%],40~60 Ma[峰值及百分比为:(47.92±0.084) Ma,(2.4±1.4)%],110~150 Ma[峰值及百分比为:(128.3±1.4) Ma,(4.0±1.7)%],190~310 Ma[峰值及百分比为:(236.08±0.57) Ma,(77.0±3.8)%],350~450 Ma[峰值及百分比为:(382.6±2.7) Ma,(8.7±5.0)%]。第三组JX3:共测量136个颗粒得到113个协和年龄,其中106个颗粒年龄小于500 Ma,约占有效锆石颗粒的94%。年龄大于500 Ma的锆石颗粒,年龄为700~2 505 Ma,共7个颗粒。概率密度分布显示,小于500 Ma的颗粒可进一步划分为五个年龄区间:10~15 Ma[峰值及百分比为:(12.18±0.13) Ma,(5.7±2.2)%],50~80 Ma[峰值及百分比为:(54.74±0.39) Ma,(8.5±2.7)%],120~160 Ma[峰值及百分比为:(141.2±1.8) Ma,(3.8±1.9)%], 210~340 Ma[峰值及百分比为:(264.34±0.73) Ma,(76.4±4.1)%],430~490 Ma[峰值及百分比为:(453.8±4.6) Ma,(5.7±5.7)%]。在图2表1中,均可看到JX2的峰值年龄较JX1和JX3的峰值年龄年轻,且各个峰值年龄的百分含量变化较大,主要原因是当完成JX1的分析测试后,出现三组<200 Ma的年轻年龄组分,这是在以往的研究中未曾检测到的[13,64,66]。因此,在JX2颗粒选择时,根据Pupin[52]总结的锆石结晶形态学图谱,晶型完好的长柱状锆石可能为较年轻的火山成因,因此颗粒选择偏重于此(图3),以观察结果中较年轻年龄组分含量是否会增加,结果如图2表1所示,仅使190~310 Ma 年龄组分增加,但峰值年龄减小,<200 Ma的颗粒数减少,峰值年龄亦变小,而兼顾总体锆石颗粒的JX1和JX3二组试验(图3),其结果非常相近。

        图  2  酒西盆地碎屑锆石U⁃Pb年龄核密度估计曲线和直方图并突出强调0~500 Ma单颗粒年龄

        Figure 2.  Detrital zircon kernel density distributions of U⁃Pb ages for Jiuxi Basin samples and histograms (bin size = 5 Ma), emphasizing ages 0⁃500 Ma

        表 1  酒西盆地碎屑砂岩样品JX1、JX、JX3三组碎屑锆石年龄分峰处理结果

        Table 1.  Detrital zircon peak ages of sandstone samples JX1, JX and JX3 in Jiuxi Basin

        样品号 年龄区间/Ma 峰值年龄/Ma及百分比%
        P1 P2 P3 P4 P5 P6
        JX1 0~3 000 12.917±0.084 11.7%±3.1% 58.21±0.45 6.3%±2.3% 251.22±0.67 64.9%±4.5% 507.0±2.9 13.5%±3.2% 2 128.0±10.0 3.6%±6.8%
        ≤500 12.917±0.084 12.6%±3.3% 55.0±0.44 5.8%±2.3% 121.6±1.7 2.9%±1.7% 254.56±0.69 67.0%±4.6% 417.9±2.7 11.7%±6.3%
        JX2 0~3 000 11.181±0.091 7.8%±2.4% 47.92±0.58 2.3%±1.3% 230.25±0.54 79.8%±3.5% 435.0±3.0 9.3%±2.6% 2 000.0±20.0 0.8%±5.1%
        ≤500 11.181±0.091 7.9%±2.4% 47.92±0.084 2.4%±1.4% 128.3±1.4 4.0%±1.7% 236.08±0.57 77.0%±3.8% 382.6±2.7 8.7%±5.0%
        JX3 0~3 000 12.18±0.13 5.3%±2.1% 54.74±0.39 8.0%±2.5% 257.02±0.69 75.2%±4.1% 523.5±4.5 7.1%±2.4% 2 000.0±11.0 4.4%±5.8%
        ≤500 12.18±0.13 5.7%±2.2% 54.74±0.39 8.5%±2.7% 141.2±1.8 3.8%±1.9% 264.34±0.73 76.4%±4.1% 453.8±4.6 5.7%±5.7%
        JX1+JX2 0~3 000 12.219±0.062 9.6%±1.9% 55.04±0.36 4.2%±1.3% 238.67±0.42 72.5%±2.9% 471.2±2.0 11.7%±2.1% 2 103.0±9.0 2.1%±4.2%
        ≤500 12.219±0.062 10.0%±2.0% 52.73±0.35 3.9%±1.3% 125.8±1.2 3.5%±1.2% 244.46±0.44 72.9%±2.9% 406.7±2.0 9.6%±4.0%
        JX2+JX3 0~3 000 11.526±0.076 6.6%±1.6% 52.89±0.32 5.0%±1.4% 241.0±0.43 77.3%±2.7% 459.6±2.4 8.7%±1.8% 2 000.1±9.9 2.5%±3.9%
        ≤500 11.526±0.076 6.9%±1.7% 52.89±0.32 5.2%±1.5% 139.2±1.1 4.7%±1.4% 248.13±0.45 75.4%±2.8% 403.0±2.3 7.8%±3.8%
        JX1+JX3 0~3 000 12.724±0.071 8.5%±1.9% 56.32±0.29 7.1%±1.7% 254.07±0.48 70.1%±3.1% 511.9±2.4 10.3%±2.0% 2 074.7±7.6 4.0%±4.5%
        ≤500 12.724±0.071 9.1%±2.0% 54.85±0.29 7.2%±1.8% 126.2±1.3 2.9%±1.2% 258.42±0.5 71.8%±3.1% 423.0±2.2 9.1%±4.3%
        JX1+JX2+JX3 0~3 000 12.212±0.056 8.2%±1.5% 54.9±0.26 5.4%±1.2% 244.06±0.37 73.4%±2.4% 481.2±2.1 10.2%±1.6% 2 065.0±7.1 2.8%±3.4%
        ≤500 12.212±0.056 8.7%±1.5% 53.66±0.26 5.4%±1.2% 127.5±1.0 3.4%±1.0% 249.47±0.38 73.6%±2.4% 409.5±1.7 9.0%±3.3%

        图  3  酒西盆地JX1、JX2和JX3试样的单颗粒锆石靶透射光图像

        Figure 3.  Transmission images of single zircon grains from JX1, JX2 and JX3 in Jiuxi Basin

        前人提出,增加测试锆石颗粒数可增加含量较低的年龄成分被识别出来的概率,测量颗粒甚至达到几千[38,47-48]。但本次实验却未观察到该趋势(图2表1),P1、P2、P4、P5和P6峰值是一直存在并在全部颗粒中被识别出来的(总测试颗粒由120到167不等)。存在三个比较特殊的峰值年龄P3、P5和P6,P3峰值仅在强调≤500 Ma的单颗粒锆石颗粒时,才会出现,但含量仅为3%~5%;P5峰值存在于全部协和颗粒年龄组分及<500 Ma的颗粒组分中,但峰值年龄和百分含量变化较大;P6的特征是峰值年龄和百分含量的误差较大,尤其百分含量,误差值大于本底值。尽管如此,在三个平行对比的试样中,所有单颗粒年龄值均在8.9~3 000 Ma,随着测量颗粒数的增加或减少,仅引起峰值年龄百分含量的增减,并未出现新的年龄峰值。因此,在不考虑每个试样峰值年龄差异的情况下,结合Vermeesch[46]数学计算结果,有效测量数据即谐和年龄颗粒数≥110,即可代表整个样品中单颗粒锆石年龄分布的整体特征。

        那么,按照large=n的试验[38,47-48],是否增加测量颗粒就可以增加丰度较低的年龄组分被识别出来的概率,进而使数据具有更高的可信度?为此,我们分别将JX1、JX2和JX3试样的测年结果进行排列组合并做分峰处理,结果如图4表1所示。将综合处理结果与单个试样结果进行对比,以JX1和JX3混合结果为例,发现JX1+JX3的所有峰值年龄及百分含量与单个试样的结果基本一致;在JX2试样针对性挑选的基础上,JX1+JX2、JX2+JX3和JX1+JX2+JX3与其他结果略有差异就不足为奇了。同时,低丰度的年龄峰值P2、P3和P6的百分含量纵向对比结果表明,随着颗粒数增加峰值百分含量并未改变。大数量分析测试主要有两个目的,即避免低丰度年龄组分被遗漏并通过多检测低丰度锆石年龄颗粒增加其可信度。关于低丰度年龄组分被检测失败的概率,Dodson et al.[1]和Vermeesch[46]分别从理论和实际两个方面做了充分的论述,Dodson通过津巴布韦克拉通中南部和乌干达姆韦扎绿岩带砂岩样品的碎屑锆石U-Pb年龄进行物源分析,提出如果锆石的丰度大于34‰,那么会漏掉其中较老的锆石年龄组分的概率<0.05。Vermeesch通过概率统计计算发现,在一个完全均匀的分布中即每个年龄组份的丰度相同的情况下,如果希望在95%的置信水平下不漏掉占总量0.05以上的任何组分,则至少应测定117颗锆石,检测到占总量0.02的组分,384个锆石颗粒为最优选择[46];如果只测定30个颗粒,在95%的置信度水平上,为了降低含量大于0.2的颗粒组分被遗漏的可能性小于10%,直方图的峰值区域不能超过5个。然而,在实际地质研究中,这种均匀分布的情况基本不存在,因此可能漏掉某些具有统计意义的年龄组分的可能性将更小。总而言之,Dodson et al.[1]和Vermeesch[46]提出失败概率的主要用途是在理论上对数据质量进行评估,却在大数量分析中被误用了。就可信度而言,其与所测颗粒数的多寡无关,是由实验分析质量决定的[21, 46]。如果太过追求数据处理方法,那么可能会忽略测量本身的意义。因此,在没有充分的证据表明测试数据无效的前提下,即使n=1也是完全可靠的,因为这一个颗粒与其他几百甚至几千个颗粒是在相同的条件下被测定的。

        图  4  酒西盆地JX1、JX2和JX3试样碎屑锆石U⁃Pb年龄综合分峰处理结果

        Figure 4.  Comprehensive peak ages analysis of detrital zircon U⁃Pb ages of JX1, JX2 and JX3 in Jiuxi Basin

      • 表1中的综合测试结果显示,JX2试样的年龄峰值与JX1和JX3有很大差异,也致使与其组合处理的结果有大小不一的偏差,造成这一现象的原因在前一章节已经述及:选择性挑选晶型好的颗粒,因为其通常是最年轻的或者火山岩[50-51],但却未实现预期,说明仅根据锆石颗粒外部特征进行颗粒选择是不客观的。因为,碎屑锆石的来源广泛,且影响锆石结构的因素复杂,虽然已有利用锆石单颗粒CL图像来研究锆石内部结构与成因方面的文献[49-52],但CL图却未得到充分的重视和应用,大多仅做为实验流程中的一部分展示出来,其在锆石颗粒测试点位选择方面的应用阐述不够。

        分别在试样JX1、JX2、JX3不同年龄组分中选取典型的单颗粒锆石CL图相,特征如图5所示。当JX2试样偏重于选取晶型好的长柱状锆石颗粒时,其CL图像多为无环带或环带较少(如图5C中JX2的锆石CL图像特征),颗粒年龄也较为接近,与之对应的峰值年龄精确度及百分含量增高。如果结合其他实验手段,如Th/U值、REE模式图、Hf同位素值、裂变径迹年龄等[21],精确限定锆石来源,那么可对物源区的构造活动时间、属性和强度(深度)做详细的研究。这也为碎屑锆石U-Pb年代学应用提供新的视角,当只需要寻找某一特征年龄组分时,可以使用该方法而不需要测试整个样品。

        图  5  酒西盆地疏勒河组砂岩样品不同年龄组分单颗粒碎屑锆石CL

        Figure 5.  CL images of single detrital zircon grains of different age groups in sandstone samples from Shulehe Formation, Jiuxi Basin

        同时,锆石晶粒CL图像在年龄测试点位选择中的作用可能被低估了。Mo et al.[74]在对拉萨地体的埃达克岩体进行锆石U-Pb测年研究时发现,其核部与外部生长环带具有不同的年龄。由此例可知,CL图像最基本的应用,应该是根据研究目的及测年激光束的大小,来确定颗粒上的测年区域,避免激光剥蚀点或离子束跨越特征不同的生长环带(尤其有明显继承核时),产生无意义的“混合年龄”(图56)。图6a为Mo et al.[74]的埃达克岩体中锆石测年结果,图6b为本研究中,因测年点位跨越了多个生长区域而可能产生了“混合年龄”的颗粒。因此,研究人员在处理数据时,要将单颗粒年龄与CL图像一一对应检查,对于明显可判断核部与生长环带不同期的颗粒,如发生“跨带”测量(图6b),需根据研究目的的不同,或直接摒弃不用,或如Mo et al. [74]所做,将核部与生长环带分别进行测年,否则可能会得到错误的单颗粒年龄以及错误的峰值年龄。同时,图5展示了酒西盆地疏勒河组砂岩样品中,不同试样不同年龄区间中代表性锆石颗粒的CL图像。由图可知,每一个年龄组分中锆石颗粒的CL图即内部结构特征之间都有很大差别,说明碎屑物来源广泛,但这不一定是指物源区数量很多,可能因为物源区剥露的深度较大或物源区经历的岩浆或变质事件较多(图5b,c)。因此,仅通过峰值年龄或年龄组分进行源—汇系统对比来确定物源区是不够的。因为,在同一时间段内,不同物源区可能发生不同的事件如构造变形、变质等,只有对锆石颗粒CL图进行详尽的分析,精准选取测量点位,确定单颗粒锆石所经历的“改造”过程,结合年龄谱,所确定的物源及物源所经历的构造演化历史可能可信度更高。毕竟,即使同一个年龄组分内的碎屑锆石颗粒,很可能是不同源的,此时年龄峰值并不如单颗粒锆石的意义大。

        图  6  可能产生“混合年龄”的原因及相应锆石CL

        Figure 6.  CL image of zircon with “mixed age” and its cause

        综合上述,所有分析是基于酒西盆地疏勒河组砂岩样品的内部比对,难免存在一定的区域特殊性。同时,锆石U-Pb测年方法众多,本次主要针对LA-ICP-MS法这种相对快速、准确,因此被很多研究者所采用的方法,对于一些高精度的手段如ID-TIMS未做尝试,但根据Pullen et al.[47]的研究可知,应该也同样适用。碎屑锆石U-Pb年龄的应用非常广泛,本文侧重讨论实验过程中所涉及的两个主要问题即最优碎屑锆石颗粒数的测量和单颗粒锆石阴极发光图像在测试点位选择及数据分析中的作用,难免有偏颇和遗漏,将在后续的实验工作中不断的改进和提高。

      • (1) 碎屑锆石来源广泛,颗粒的形态、大小有较大差异,应在标准的重矿物分选流程下按照每一个样品的实际情况进行特殊处理,避免损失锆石颗粒。

        (2) 通过对酒西盆地疏勒河组同一个砂岩样品进行的三次平行试验对比发现,当得到的单颗粒协和年龄数据≥110个,所得的年龄组分特征即可代表整个样品的锆石分布。数据的可信度由实验分析质量决定,与颗粒数的多寡无关,不能因追求数据处理方法,反而忽略了测量数据本身的意义。在没有充分的证据表明测试数据无效的前提下,即使n=1其年龄也是完全可靠的。

        (3) 单颗粒锆石晶体的透射光、反射光及CL图像需要在颗粒选择、测试点位选择和数据分析及应用中被充分利用,而不是仅作为实验流程中的一个环节展示。尤其测试点位选择时,要避免激光剥蚀点或离子束跨越特征不同的生长环带,产生无意义的“混合年龄”。

        (4) 锆石颗粒所经历的“改造”作用及时间可由其内部结构表征和记录,因此利用碎屑锆石U-Pb年龄进行物源及其演化史研究时,应精准选取测量点位,可能单颗粒锆石比年龄峰值蕴含的信息更丰富更有效。

    参考文献 (74)

    目录

      /

      返回文章
      返回