高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柴达木盆地东段中、新生代沉积迁移规律及原型盆地性质研究

冯怀伟 许淑梅 王大华 肖永军 王金铎

冯怀伟, 许淑梅, 王大华, 肖永军, 王金铎. 柴达木盆地东段中、新生代沉积迁移规律及原型盆地性质研究[J]. 沉积学报, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100
引用本文: 冯怀伟, 许淑梅, 王大华, 肖永军, 王金铎. 柴达木盆地东段中、新生代沉积迁移规律及原型盆地性质研究[J]. 沉积学报, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100
FENG HuaiWei, XU ShuMei, WANG DaHua, XIAO YongJun, WANG JinDuo. Study of the Process of Sedimentary Migration, and Mesozoic and Cenozoic Prototype Basins, Eastern Segment of Qaidam Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100
Citation: FENG HuaiWei, XU ShuMei, WANG DaHua, XIAO YongJun, WANG JinDuo. Study of the Process of Sedimentary Migration, and Mesozoic and Cenozoic Prototype Basins, Eastern Segment of Qaidam Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100

柴达木盆地东段中、新生代沉积迁移规律及原型盆地性质研究

doi: 10.14027/j.issn.1000-0550.2020.100
基金项目: 

中国石油化工股份有限公司胜利油田分公司科技攻关项目 20140200010

详细信息
    作者简介:

    冯怀伟,男,1987年出生,博士,层序地层学、沉积盆地分析研究,E-mail: 905534327@qq.com

    通讯作者:

    许淑梅,女,教授,沉积学及盆地分析,E-mail: xsm@ouc.edu.cn

  • 中图分类号: TE121.2

Study of the Process of Sedimentary Migration, and Mesozoic and Cenozoic Prototype Basins, Eastern Segment of Qaidam Basin

Funds: 

Science and Technology Key Project of Shengli Oilfield SINOPEC 20140200010

  • 摘要: 为明确柴达木盆地东段中、新生代沉积迁移变化及原型盆地性质,通过对柴达木盆地东段红山、霍布逊凹陷中、新生界野外地质露头追踪、钻井(孔)资料分析、岩性岩相分析、二维地震剖面解释、地层划分对比及平衡地质剖面恢复的研究,认为中、新生代沉积迁移呈现出形象的“跷跷板”移动现象,这种现象与凹陷所处的大地构造位置、盆地性质及板块运动的远程效应有关。下侏罗统局限于红山小型断陷盆地,中侏罗统范围向南扩大到霍布逊凹陷,与羌塘板块、拉萨地块与亚欧板块两次俯冲挤压碰撞之间的应力松弛作用有关,此作用在早侏罗世导致北部红山地区的板缘裂陷,在中侏罗世扩展到南部的霍布逊地区;晚侏罗世和早白垩世沉积中心位于红山挤压型盆地,这与拉萨地块与欧亚板块碰撞的远程效应导致柴北缘地区构造反转有关;古近系在北部红山凹陷的发育而在南部霍布逊凹陷的缺失,与新特提斯洋东部闭合首先导致霍布逊地区隆升有关;新近系及第四系主要分布在南部霍布逊凹陷,与此时柴北缘及周缘山系全面隆升导致沉积中心南移有关。
  • 图  1  (a)红山、霍布逊凹陷及周缘地区地质简图;(b)研究区中、新生界构造格局

    ①赛什腾断裂;②塔尔丁—鱼卡断裂;③格尔木—锡铁山断裂;④萌北—陵间—达霍断裂;⑤柴北缘南缘断裂;⑥乌兰—鱼卡断裂;⑦宗务隆南缘断裂;⑧南祁连南缘断裂

    Figure  1.  (a) Geological map of Hongshan and Huobuxun Sags; (b) Mesozoic and Cenozoic tectonic framework of the study area

    ① Saishiteng fault; ② Taerding⁃Yuka fault; ③ Golmud⁃Xitieshan fault; ④ Mengbei⁃Lingjian⁃Dahuo fault; ⑤ south margin fault of northern Qaidam Basin;⑥ Wulan⁃Yuka fault; ⑦ south margin fault of Zongwulong orogen; ⑧ south margin fault of south Qilian orogen

    图  2  研究区中、新生界综合岩性岩相柱状图

    Figure  2.  Comprehensive lithological column of Mesozoic and Cenozoic sedimentary facies in the study area

    图  3  红山、霍布逊凹陷NE⁃SW向地震剖面(剖面位置见图1a)

    Figure  3.  The NE⁃SW trending seismic profile in the Hongshan and Huobuxun Sags (profile location shown in Fig.1a)

    图  4  红山凹陷下、中侏罗统划分与对比剖面(剖面位置见图1a)

    Figure  4.  Cross⁃section of classification and correlation of Lower and Middle Jurassic in the Hongshan Sag (profile location shown in Fig.1a)

    图  5  霍布逊凹陷中侏罗统划分与对比(剖面位置见图1a)

    Figure  5.  Cross⁃section of classification and correlation of the Middle Jurassic in the Huobuxun Sag (profile location shown in Fig.1a)

    图  6  埃姆尼克山前新近系划分与对比图(剖面位置见图1a)

    Figure  6.  Cross⁃section of classification and correlation of the Neogene in Aimunike Mountain front (profile location shown in Fig.1a)

    图  7  红山凹陷NE方向AA’平衡剖面恢复图(剖面位置见图1a)

    Figure  7.  Balanced cross⁃section restoration of the NE⁃directed AA’ profile in the Hongshan Sag (profile location shown in Fig.1a)

    图  8  霍布逊凹陷NE方向BB’测线平衡剖面恢复图

    Figure  8.  Balanced cross⁃section restoration of the NE⁃directed BB’ profile in the Huobuxun Sag (profile location shown in Fig.1a)

    表  1  柴北缘红山凹陷、霍布逊凹陷剖面地层压缩率表

    Table  1.   Shortening ratios from the balanced cross⁃section restoration results of AA’ and BB’ profiles in the Hongshan and Huobuxun Sags

    剖面 地层 时间/Ma 初始长度/m 变形后长度/m 拉张量/m 拉张率/% 拉张速率/(m/Myr)
    AA’ Q ~3至今 31 472 27 362 -4 110 -10.36 -1 370.00
    BB’ 91 226 89 921 -1 305 -1.29 -435.00
    AA’ N ~23-~3
    BB’ 98 468 91 226 -7 242 -7.20 -362.10
    AA’ E3 ~34-~23 32 294 31 472 -822 -2.07 -74.73
    BB’
    AA’ E1+2 ~66-~34 34 608 32 294 -2 314 -5.84 -72.31
    BB’
    AA’ K ~145-~66 35 742 34 608 -1 134 -2.86 -10.67
    BB’
    AA’ J3 ~163- ~145 40 642 35 742 -4 900 -12.36 -272.22
    BB’ 100 755 98 468 -2 287 -2.28 -127.06
    AA’ J2 ~174- ~163 39 862 40 642 780 1.97 70.91
    BB’ 100 504 100 755 251 0.25 22.81
    AA’ J1 ~201- ~174 39 655 39 862 207 0.52 7.67
    BB’
    下载: 导出CSV
  • [1] 翟光明,徐凤银. 重新认识柴达木盆地力争油气勘探获得新突破[J]. 石油学报,1997,18(2):1-7.

    Zhai Guangming, Xu Fengyin. A reconsideration of Qaidam Basin for a great breakthrough in oil and natural gas exploration[J]. Acta Petrolei Sinica, 1997, 18(2): 1-7.
    [2] 夏文臣,张宁,袁晓萍,等. 柴达木侏罗系的构造层序及前陆盆地演化[J]. 石油与天然气地质,1998,19(3):173-180,195.

    Xia Wenchen, Zhang Ning, Yuan Xiaoping, et al. Jurassic tectonic sequences of Qaidam and foreland basin evolution[J]. Oil & Gas Geology, 1998, 19(3): 173-180, 195.
    [3] 陈世悦,徐凤银,彭德华. 柴达木盆地基底构造特征及其控油意义[J]. 新疆石油地质,2000,21(3):175-179.

    Chen Shiyue, Xu Fengyin, Peng Dehua. Characteristics of basement structures and their controls on hydrocarbon in Qaidam Basin[J]. Xinjiang Petroleum Geology, 2000, 21(3): 175-179.
    [4] 和钟铧,刘招君,郭巍,等. 柴达木北缘中生代盆地的成因类型及构造沉积演化[J]. 吉林大学学报(地球科学版),2002,32(4):333-339.

    He Zhonghua, Liu Zhaojun, Guo Wei, et al. The genetic type of the Mesozoic basin in northern Chaidamu and its tectonic-sedimentary evolution[J]. Journal of Jilin University (Earth Science Edition), 2002, 32(4): 333-339.
    [5] 周建勋,徐凤银,胡勇. 柴达木盆地北缘中、新生代构造变形及其对油气成藏的控制[J]. 石油学报,2003,24(1):19-24.

    Zhou Jianxun, Xu Fengyin, Hu Yong. Mesozoic and Cenozoic tectonism and its control on hydrocarbon accumulation in the northern Qaidam Basin of China[J]. Acta Petrolei Sinica, 2003, 24(1): 19-24.
    [6] 曹国强,陈世悦,徐凤银,等. 柴达木盆地西部中—新生代沉积构造演化[J]. 中国地质,2005,32(1):33-40.

    Cao Guoqiang, Chen Shiyue, Xu Fengyin, et al. Ceno-Mesozoic sedimentary and tectonic evolution in the western Qaidam Basin[J]. Geology in China, 2005, 32(1): 33-40.
    [7] 靳久强,赵文智,薛良清,等. 中国西北地区侏罗纪原型盆地与演化特征[J]. 地质论评,1999,45(1):92-104.

    Jin Jiuqiang, Zhao Wenzhi, Xue Liangqing, et al. Proto-types and evolution of Jurassic Basins in NW China[J]. Geological Review, 1999, 45(1): 92-104.
    [8] 汤良杰,金之钧,张明利,等. 柴达木盆地构造古地理分析[J]. 地学前缘,2000,7(4):421-429.

    Tang Liangjie, Jin Zhijun, Zhang Mingli, et al. An analysis on tectono-paleogeography of the Qaidam Basin, NW China[J]. Earth Science Frontiers, 2000, 7(4): 421-429.
    [9] 戴俊生,叶兴树,汤良杰,等. 柴达木盆地构造分区及其油气远景[J]. 地质科学,2003,38(3):291-296.

    Dai Junsheng, Ye Xingshu, Tang Liangjie, et al. Tectonic units and oil-gas potential of the Qaidam Basin[J]. Chinese Journal of Geology, 2003, 38(3): 291-296.
    [10] 金之钧,张明利,汤良杰,等 柴达木中新生代盆地演化及其控油气作用 [J]. 石油与天然气地质,2004,25(6):603-608.

    Jin Zhijun, Zhang Mingli, Tang Liangjie, et al. Evolution of Meso-Cenozoic Qaidam Basin and its control on oil and gas[J]. Oil & Gas Geology, 2004, 25(6): 603-608.
    [11] 王信国,曹代勇,占文锋,等. 柴达木盆地北缘中、新生代盆地性质及构造演化[J]. 现代地质,2006,20(4):592-596.

    Wang Xinguo, Cao Daiyong, Zhan Wenfeng, et al. The Meso-Cenozoic basin type and tectonic evolution in the northern margin region of the Qaidam Basin[J]. Geoscience, 2006, 20(4): 592-596.
    [12] 吴光大,葛肖虹,刘永江,等. 柴达木盆地中、新生代构造演化及其对油气的控制[J]. 世界地质,2006,25(4):411-417.

    Wu Guangda, Ge Xiaohong, Liu Yongjiang, et al. Mesozoic-Cenozoic structural evolution in Qaidam Basin and its control on hydrocarbon occurrence[J]. Global Geology, 2006, 25(4): 411-417.
    [13] 高先志,陈发景,马达德,等. 中、新生代柴达木北缘的盆地类型与构造演化[J]. 西北地质,2003,36(4):16-24.

    Gao Xianzhi, Chen Fajing, Ma Dade, et al. Tectonic evolution of the northern Qaidam Basin during Mesozoic and Cenozoic eras[J]. Northwestern Geology, 2003, 36(4): 16-24.
    [14] 李伟. 柴达木盆地沉积体系发育的动力学机制及成藏效应[D]. 成都:成都理工大学,2004.

    Li Wei. The dynamics of depositional system and reservoir-forming effects in Qaidam Basin[D]. Chengdu: Chengdu University of Technology, 2004.
    [15] Feng H W, Xu S M, Zhang X D, et al. The Jurassic basin prototypes and episodic sedimentary characteristics of the Hongshan Sag in the eastern segment of the northern Qaidam Basin, NW China[J]. Geological Journal, 2017, 52(Suppl.1): 365-379.
    [16] Yu S Y, Zhang J X, Mattinson C G, et al. Paleozoic HP granulite-facies metamorphism and anatexis in the Dulan area of the North Qaidam UHP terrane, western China: Constraints from petrology, zircon U-Pb and amphibole Ar-Ar geochronology[J]. Lithos, 2014, 198-199: 58-76.
    [17] Yu S Y, Zhang J X, Del Real P G. Geochemistry and zircon U–Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, North Tibet: Constraints on the timing and nature of regional tectonothermal events associated with collisional orogeny[J]. Gondwana Research, 2012, 21(1): 167-179.
    [18] 王大华. 柴达木盆地东部构造特征及对成藏的控制作用[D]. 青岛:中国石油大学(华东),2016.

    Wang Dahua. Structural Characteristics and its influence on hydrocarbon accumulation in eastern Qaidam Basin[D]. Qingdao: China University of Petroleum (East China), 2016.
    [19] 付玲,关平,简星,等. 柴达木盆地路乐河组粗碎屑沉积成因与青藏高原隆升时限[J]. 天然气地球科学,2012,23(5):833-840.

    Fu Ling, Guan Ping, Jian Xing, et al. Sedimentary genetic types of coarse fragment of Paleogene Lulehe Formation in Qaidam Basin and time limit of the Tibetan Plateau uplift[J]. Natural Gas Geoscience, 2012, 23(5): 833-840.
    [20] 董刚. 柴达木盆地第三系高精度层序地层及层序演化模式研究[D]. 青岛:中国海洋大学,2009.

    Dong Gang. Research of high-resolution sequence stratigraphy and evolution models in the Tertiary in Qaidam Basin[D]. Qingdao: Ocean University of China, 2009.
    [21] Yang Y T, Guo Z X, Song C C, et al. A short-lived but significant Mongol-Okhotsk collisional orogeny in Latest Jurassic-Earliest Cretaceous[J]. Gondwana Research, 2015, 28(3): 1096-1116.
    [22] 王秉璋,陈静,张金明,等. 青藏高原北部全吉地块白垩纪煌斑岩脉群的发现及意义[J]. 地球科学,2020,45(4):1136-1150.

    Wang Bingzhang, Chen Jing, Zhang Jinming, et al. Discovery and significance of Cretaceous lamprophyre dike group in Quanji Block of northern Tibetan Plateau[J]. Earth Science, 2020, 45(4): 1136-1150.
    [23] 李生喜. 柴达木盆地北缘盆山耦合机制:来自裂变径迹的证据[D]. 甘肃:兰州大学,2010.

    Li Shengxi. Basin-mountain coupling mechanism of the northern margin of Qaidam Basin: Evidences from fission-track thermochronology[D]. Gansu: Lanzhou University, 2010.
    [24] 蒋荣宝,陈宣华,党玉琪,等. 柴达木盆地东部中新生代两期逆冲断层作用的FT定年[J]. 地球物理学报,2008,51(1):116-124.

    Jiang Rongbao. Chen Xuanhua, Dang Yuqi,et al. Apatite fission track evidence for two phases Mesozoic-Cenozoic thrust faulting in eastern Qaidam Basin[J]. Chinese Journal of Geophysics, 2008, 51(1): 116-124.
  • [1] 王光绪, 吴伟, 李全, 周永胜, 梁诗琴, 刘惟庆, 冯阵东.  新西兰深水Taranaki盆地中新统深水水道迁移及沉积演化 . 沉积学报, 2023, 41(1): 85-96. doi: 10.14027/j.issn.1000-0550.2022.040
    [2] 郭原草, 郭建华, 余烨, 黄俨然, 蔡灵慧, 陈广.  湘中及周缘地区中奥陶统黑色细粒岩系沉积特征及沉积环境 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.088
    [3] 马帅, 陈世悦, 孙娇鹏, 贾贝贝, 王志金.  柴达木盆地北缘早古生代沉积—构造事件耦合关系 . 沉积学报, 2019, 37(4): 674-689. doi: 10.14027/j.issn.1000-0550.2018.171
    [4] 柴达木盆地西部尕斯库勒盐湖280 ka以来沉积特征 . 沉积学报, 2014, 32(1): 85-92.
    [5] 柴达木盆地东北缘中新统遗迹化石组合及其沉积环境 . 沉积学报, 2013, 31(3): 413-420.
    [6] 青藏高原北部新生代构造演化在柴达木盆地中的沉积记录 . 沉积学报, 2013, 31(05): 824-833.
    [7] 柴达木盆地北缘原油中单体正构烷烃的碳、氢同位素组成研究 . 沉积学报, 2012, 30(5): 983-990.
    [8] 张俊辉.  柴达木盆地察尔汗盐湖CH0310钻孔沉积物磁化率及其影响因素分析 . 沉积学报, 2010, 28(4): 790-797.
    [9] 牛永斌.  柴达木盆地石炭系沉积相及其与烃源岩的关系 . 沉积学报, 2010, 28(1): 140-149.
    [10] 任凤楼.  胶莱盆地莱阳期原型盆地恢复 . 沉积学报, 2008, 26(2): 221-233.
    [11] 吕宝凤.  柴达木盆地新生代沉积转移及其动力学意义 . 沉积学报, 2008, 26(4): 552-558.
    [12] 雷国良.  柴达木盆地察尔汗古湖贝壳堤剖面粒度特征及其沉积环境 . 沉积学报, 2007, 25(2): 274-282.
    [13] 段宏亮.  柴达木盆地西部中生界原型盆地恢复 . 沉积学报, 2007, 25(1): 65-74.
    [14] 余心起, 舒良树, 颜铁增, 祖辅平.  赣杭构造带红层盆地原型及其沉积作用 . 沉积学报, 2005, 23(1): 12-20.
    [15] 段毅, 张辉, 郑朝阳, 吴保祥.  柴达木盆地原油成因研究 . 沉积学报, 2004, 22(S1): 61-65.
    [16] 冯乔, 柳益群, 郝建荣.  三塘湖盆地芦草沟组烃源岩及其古环境 . 沉积学报, 2004, 22(3): 513-517.
    [17] 朱如凯, 魏伟, 张运东.  塔里木盆地库车坳陷新生界终端扇沉积体系与储层研究 . 沉积学报, 1999, 17(S1): 752-757.
    [18] 妥进才, 邵宏舜, 黄杏珍.  柴达木盆地大柴旦盐湖现代沉积物中的生物标志化合物分布特征 . 沉积学报, 1993, 11(2): 118-123.
    [19] 杨谦.  柴达木盆地硼矿 . 沉积学报, 1989, 7(2): 117-124.
    [20] 徐昶.  柴达木盆地某些盐湖沉积剖面中粘土矿物的初步研究 . 沉积学报, 1983, 1(3): 123-127.
  • 加载中
图(8) / 表 (1)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  64
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-26
  • 修回日期:  2020-10-14
  • 刊出日期:  2022-06-10

目录

    柴达木盆地东段中、新生代沉积迁移规律及原型盆地性质研究

    doi: 10.14027/j.issn.1000-0550.2020.100
      基金项目:

      中国石油化工股份有限公司胜利油田分公司科技攻关项目 20140200010

      作者简介:

      冯怀伟,男,1987年出生,博士,层序地层学、沉积盆地分析研究,E-mail: 905534327@qq.com

      通讯作者: 许淑梅,女,教授,沉积学及盆地分析,E-mail: xsm@ouc.edu.cn
    • 中图分类号: TE121.2

    摘要: 为明确柴达木盆地东段中、新生代沉积迁移变化及原型盆地性质,通过对柴达木盆地东段红山、霍布逊凹陷中、新生界野外地质露头追踪、钻井(孔)资料分析、岩性岩相分析、二维地震剖面解释、地层划分对比及平衡地质剖面恢复的研究,认为中、新生代沉积迁移呈现出形象的“跷跷板”移动现象,这种现象与凹陷所处的大地构造位置、盆地性质及板块运动的远程效应有关。下侏罗统局限于红山小型断陷盆地,中侏罗统范围向南扩大到霍布逊凹陷,与羌塘板块、拉萨地块与亚欧板块两次俯冲挤压碰撞之间的应力松弛作用有关,此作用在早侏罗世导致北部红山地区的板缘裂陷,在中侏罗世扩展到南部的霍布逊地区;晚侏罗世和早白垩世沉积中心位于红山挤压型盆地,这与拉萨地块与欧亚板块碰撞的远程效应导致柴北缘地区构造反转有关;古近系在北部红山凹陷的发育而在南部霍布逊凹陷的缺失,与新特提斯洋东部闭合首先导致霍布逊地区隆升有关;新近系及第四系主要分布在南部霍布逊凹陷,与此时柴北缘及周缘山系全面隆升导致沉积中心南移有关。

    English Abstract

    冯怀伟, 许淑梅, 王大华, 肖永军, 王金铎. 柴达木盆地东段中、新生代沉积迁移规律及原型盆地性质研究[J]. 沉积学报, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100
    引用本文: 冯怀伟, 许淑梅, 王大华, 肖永军, 王金铎. 柴达木盆地东段中、新生代沉积迁移规律及原型盆地性质研究[J]. 沉积学报, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100
    FENG HuaiWei, XU ShuMei, WANG DaHua, XIAO YongJun, WANG JinDuo. Study of the Process of Sedimentary Migration, and Mesozoic and Cenozoic Prototype Basins, Eastern Segment of Qaidam Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100
    Citation: FENG HuaiWei, XU ShuMei, WANG DaHua, XIAO YongJun, WANG JinDuo. Study of the Process of Sedimentary Migration, and Mesozoic and Cenozoic Prototype Basins, Eastern Segment of Qaidam Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 667-678. doi: 10.14027/j.issn.1000-0550.2020.100
      • 柴达木盆地位于青藏高原东北缘,其东段存在不同范围及厚度的中、新生界,是研究沉积迁移规律、盆地性质演化及板块运动远程效应的理想地区。随着地震、钻井、重力、航磁、大地电磁测深等技术的不断发展,研究区物源、基底沉降特征、盆地地层分布、古地温等基础资料的不断增加,前人对于柴北缘中生代盆地性质主要有以下观点:第一种观点认为中生代柴北缘盆地性质为挤压或类前陆盆地[1-6];第二种观点认为柴北缘盆地性质是经历多阶段演化的复合型盆地,其中早、中侏罗世为伸展断陷盆地,晚侏罗世—白垩纪发育挤压型盆地[7-12]。针对新生代盆地性质主要有两种观点,其一认为具有挤压性质的坳陷盆地或前陆盆地[1,8-9],其二认为前期具有拉张性质的伸展盆地而后期具有挤压性质的盆地[13]。因此,对于中、新生界分布、沉积迁移变化及原型盆地性质演化之间的关系缺乏系统性认识。为此,本文以柴达木盆地东段的红山、霍布逊凹陷为研究对象,在充分汲取前人研究成果基础上,基于中、新生界野外地质露头追踪、钻井(孔)资料分析、岩性岩相特征分析、地震剖面解释、地层划分对比,并结合中、新生界平衡剖面恢复研究,探讨中、新生代沉积迁移规律与两凹陷所处的大地构造位置,盆地性质演化及板块运动之间的关系,为柴达木盆地地质资源勘探开发提供沉积学方面的依据。

      • 基于研究区造山带地层学、沉积岩石学、同位素地球化学、区域构造地质等方面的研究成果[14-17],综合分析认为柴达木盆地东段及周缘地区中、新生代呈现“多期造山、多山多凹、南北分带、东西分块、断裂交切”的构造格局(图1b)。自北向南包括中祁连地块、南祁连加里东期造山带、南祁连南缘断裂、宗务隆印支期造山带、宗务隆南缘断裂、欧龙布鲁克地块、柴北缘鱼卡—乌兰断裂、鱼卡—沙柳河—锡铁山高压超高压变质混杂岩带,柴北缘南缘断裂、柴达木地块;自西向东发育近NE向赛什腾断裂、塔尔丁—鱼卡断裂、格尔木—锡铁山断裂,在两组不同方向断裂的交汇处自西向东斜列有赛什腾凹陷、鱼卡凹陷、红山凹陷。研究区柴北缘红山凹陷处在NE向格尔木—锡铁山断裂与NW向乌兰—鱼卡断裂交汇处,而位于柴达木板块之上的霍布逊凹陷处于两条NW向平行的柴北缘南缘断裂与萌北—陵间—达霍断裂之间。红山、霍布逊凹陷所处的板缘、板内的特殊大地构造位置为中、新生代沉积迁移提供了位置基础。

        图  1  (a)红山、霍布逊凹陷及周缘地区地质简图;(b)研究区中、新生界构造格局

        Figure 1.  (a) Geological map of Hongshan and Huobuxun Sags; (b) Mesozoic and Cenozoic tectonic framework of the study area

      • 因红山、霍布逊凹陷所处板缘、板内的特殊构造位置,结合红山、霍布逊凹陷内中、新生界对比及岩性岩相分析,沉积迁移大致呈现出“跷跷板”变化现象。下侏罗统仅局限分布于红山凹陷,中侏罗统开始向南迁移至霍布逊凹陷内,晚侏罗世到早白垩世,沉积范围向北后退到红山凹陷;晚白垩世,两者共同缺失上白垩统;在新生代古近纪,红山凹陷发育古、始新统路乐河组,渐新统下干柴沟组,此时霍布逊凹陷缺失古近系;而在新近纪,霍布逊凹陷发育上干柴沟组,而红山凹陷缺失新近系;在第四纪,红山、霍布逊凹陷均发生了沉积,但沉积范围向南进一步扩大(图2)。

        图  2  研究区中、新生界综合岩性岩相柱状图

        Figure 2.  Comprehensive lithological column of Mesozoic and Cenozoic sedimentary facies in the study area

      • 下侏罗统小煤沟组及大煤沟组一段到三段发育较为局限,仅分布于红山凹陷东、西次洼(图1),下侏罗统出露齐全的大煤沟地区自下而上发育冲积扇—辫状河—辫状河三角洲—湖泊相沉积,是早侏罗世的沉积中心。此外,库1井揭示了160 m厚下侏罗统大煤沟组三段辫状河三角洲沉积[18],因此下侏罗统局限分布于红山凹陷的东、西次洼(图34)。

        图  3  红山、霍布逊凹陷NE⁃SW向地震剖面(剖面位置见图1a)

        Figure 3.  The NE⁃SW trending seismic profile in the Hongshan and Huobuxun Sags (profile location shown in Fig.1a)

        图  4  红山凹陷下、中侏罗统划分与对比剖面(剖面位置见图1a)

        Figure 4.  Cross⁃section of classification and correlation of Lower and Middle Jurassic in the Hongshan Sag (profile location shown in Fig.1a)

      • 通过红山凹陷露头、钻井(孔)及地震资料综合分析,认为中侏罗统平面上呈NW向条带状分布,且具有较强的分隔性。在大煤沟、绿草山西、宽沟均有出露,大致呈NW向展布。中侏罗世沉积中心在大煤沟地区,最厚可达541 m,发育扇三角洲—滨浅湖—辫状河三角洲—半深湖相沉积;在红山凹陷西次洼附近的库1井内钻遇大煤沟组四到七段,厚度超过600 m,发育扇三角洲—滨浅湖—辫状河三角洲—湖泊相沉积,所以库1井和大煤沟地区是中侏罗世的两个沉积中心(图4)。霍布逊凹陷中侏罗统分布在锡铁山—埃姆尼克山—达达肯乌拉山南麓,其中锡铁山(45 m)、HB3-3(67 m)、花石沟(132 m)、鄂博沟(110 m)、HB9-2(170 m)、红岩沟(150 m)、达山(80 m)地区出露中侏罗统(图5)。与下侏罗统分布范围相比,虽然中侏罗世沉积中心仍在红山凹陷,但是沉积范围南移,开始出现在南部的霍步逊凹陷。

        图  5  霍布逊凹陷中侏罗统划分与对比(剖面位置见图1a)

        Figure 5.  Cross⁃section of classification and correlation of the Middle Jurassic in the Huobuxun Sag (profile location shown in Fig.1a)

      • 红山凹陷发育上侏罗统采石岭组与红水沟组及下白垩统犬牙沟组,缺失上白垩统;而霍布逊凹陷只发育上侏罗统,缺失全部白垩系。上侏罗统及白垩系在柴北缘的分布范围基本上是在中侏罗统分布的基础上继续向东迁移,地层呈北西向分布,具有多个沉积中心,除了东部的红山凹陷外,地层还向南东方向延伸到了霍布逊地区。红山凹陷红山参1井及红山1井均钻遇上侏罗统及白垩系[18],所以,红山凹陷上侏罗统与白垩系多与中侏罗统相伴而存在,但分布范围要比中侏罗统更为广泛(图3)。

      • 古近系主要分布在红山凹陷,在霍布逊凹陷几乎没有分布。红山凹陷地震剖面显示,盆地内有古、始新统路乐河组,渐新统下干柴沟组(图3)。钻井也显示,红山凹陷西南缘的圆丘1井钻遇路乐河组,岩性以细砾岩、棕红色砂质泥岩为主,夹棕红色泥岩、泥质粉砂岩、含砾泥岩[19]。圆丘1井也钻遇下干柴组下段,其岩性以细砾岩、棕黄色砂质泥岩为主,夹棕红色砂质泥岩、棕红色泥岩[20]。红山凹陷中部红山参1井钻遇路乐河组,上部以细砾岩为主,夹有含砾泥岩及含砾砂岩、灰黄色泥质砂岩、砂质泥岩;下部以灰色泥岩、小砾岩、浅灰色泥砾岩为主,夹含砾砂岩、浅灰色泥质砂岩、砂质泥岩(图3)。红山凹陷东部库1井钻遇路乐河组,以棕灰色、棕褐色、棕红色泥岩、砂质泥岩、泥质粉砂岩、粉砂岩为主,夹少量砾岩。总体来看,红山凹陷古近系厚度由北东到南西方向逐渐增厚,反映出古近纪沉积中心位于北部的红山凹陷,但有向南西方向迁移的趋势。

      • 新近系主要分布在霍布逊凹陷,在红山凹陷几乎没有发育。埃姆尼克山南露头显示,油砂山组保留相对完整,狮子沟组残留厚度差异大(图6),霍布逊凹陷地震资料显示,凹陷内发育上干柴沟组、油砂山组和狮子沟组(图3)。霍布逊凹陷全1井钻遇上油砂山组,厚度为532.52 m。岩性为灰白色高岭土化细砂岩、粉—细砂岩、泥质粉砂岩,少数含砾砂岩及薄层浅灰色长石石英细砂岩与浅灰、浅棕红、棕褐、浅灰黄等杂色泥岩、含粉砂泥岩、粉砂质泥岩间互出现,并夹薄层褐棕色页岩,下部泥岩单层厚度增大,砂泥岩呈等厚互层。全1井钻遇狮子沟组,厚度为1 225.7 m。岩性以浅灰、浅灰白、浅绿灰色中、细粒长石砂岩为主,夹浅灰色粉砂岩、黄灰、浅棕黄色泥质粉砂岩、粉砂质泥岩和含粉砂泥岩。地震剖面显示,霍布逊凹陷发育有巨厚的第四系(图3)。此外,霍布逊凹陷全1井钻遇第四系厚度为1 250 m,其中上更新统为厚度13 m的暗灰色、褐灰色砾石层、砂砾层;13~1 250 m为下更新统七个泉组,为一套浅灰黄、浅灰色粉砂质泥岩、泥质粉砂岩、粉砂岩及细砂岩,夹薄层棕黄色泥岩和灰黑色碳质泥岩,自534.5 m出现浅灰白色细粒长石砂岩,下部夹浅灰色含砾砂岩[18],所以此时的沉积中心在南部的霍布逊凹陷。

        图  6  埃姆尼克山前新近系划分与对比图(剖面位置见图1a)

        Figure 6.  Cross⁃section of classification and correlation of the Neogene in Aimunike Mountain front (profile location shown in Fig.1a)

      • 早、中侏罗世中国西部地区处于羌塘地块、拉萨地块分别与欧亚板块南缘强烈挤压碰撞之间的应力松弛阶段,在此产生的伸展构造应力场作用下,柴达木板块边缘首先发生裂陷;同时,红山凹陷位于柴北缘东段近NW—SE方向鱼卡—乌兰断裂与NE—SW方向格尔木—锡铁山断裂交界地带(图1b),早侏罗世的拉张构造环境使两方向基底断裂活化,发育伸展断陷构造,形成红山凹陷的雏形。红山凹陷NE向AA’平衡地质剖面显示,沉积宽度由早侏罗世早期的39 655 m拉张到早侏罗世晚期的39 862 m(图7),同沉积拉张量为207 m,拉张率为0.52%,拉张速率为7.63 m/Myr(表1),红山凹陷处于NE向弱伸展应力构造环境,地层主要受小型正断层控制,表明早侏罗世红山凹陷处于弱断陷阶段。霍布逊地区北缘的锡铁山磷灰石径迹裂变的年龄为184±10 Ma(图1a),表明该时期霍布逊地区处于抬升冷却阶段[21],并没有发育下侏罗统,因此,早侏罗世沉积中心在红山凹陷。

        图  7  红山凹陷NE方向AA’平衡剖面恢复图(剖面位置见图1a)

        Figure 7.  Balanced cross⁃section restoration of the NE⁃directed AA’ profile in the Hongshan Sag (profile location shown in Fig.1a)

        表 1  柴北缘红山凹陷、霍布逊凹陷剖面地层压缩率表

        Table 1.  Shortening ratios from the balanced cross⁃section restoration results of AA’ and BB’ profiles in the Hongshan and Huobuxun Sags

        剖面 地层 时间/Ma 初始长度/m 变形后长度/m 拉张量/m 拉张率/% 拉张速率/(m/Myr)
        AA’ Q ~3至今 31 472 27 362 -4 110 -10.36 -1 370.00
        BB’ 91 226 89 921 -1 305 -1.29 -435.00
        AA’ N ~23-~3
        BB’ 98 468 91 226 -7 242 -7.20 -362.10
        AA’ E3 ~34-~23 32 294 31 472 -822 -2.07 -74.73
        BB’
        AA’ E1+2 ~66-~34 34 608 32 294 -2 314 -5.84 -72.31
        BB’
        AA’ K ~145-~66 35 742 34 608 -1 134 -2.86 -10.67
        BB’
        AA’ J3 ~163- ~145 40 642 35 742 -4 900 -12.36 -272.22
        BB’ 100 755 98 468 -2 287 -2.28 -127.06
        AA’ J2 ~174- ~163 39 862 40 642 780 1.97 70.91
        BB’ 100 504 100 755 251 0.25 22.81
        AA’ J1 ~201- ~174 39 655 39 862 207 0.52 7.67
        BB’

        中侏罗世,随着裂陷活动持续加剧,红山凹陷同沉积拉张量为780 m,拉张率1.97%,拉张速率70.91 m/Myr,地层受正断层控制明显,表明红山凹陷处于较强伸展应力环境。该时期在锡铁山—埃姆尼克山—达达肯乌拉山以南的霍布逊地区出现拉张伸展盆地,霍布逊凹陷NE—SW向BB’平衡剖面分析显示,中侏罗世同沉积拉张量为251 m,拉张率为0.25%,拉张速率为22.81 m/Myr,山前地层受小型正断层控制,剖面地层表现为同沉积拉张断陷。所以,在中侏罗世,红山、霍布逊凹陷均为断陷盆地,但与下侏罗统局限分布于红山凹陷东、西次洼相比,中侏罗统沉积范围向南迁移,同时分布在红山、霍布逊凹陷。

      • 晚侏罗世拉萨地块与欧亚板块初始碰撞及蒙古—鄂霍次克洋西段关闭[21],由此引发的挤压作用使中国西北地区的构造应力场由拉张转为挤压,开始形成挤压坳陷盆地。此外,全吉地块早白垩世煌斑岩的发现也表明,红山凹陷受热沉降作用影响发育巨厚的上侏罗统和白垩系[22]。晚侏罗世强烈的区域性挤压作用使早期张性断裂带构造反转,红山凹陷NE向AA´平衡剖面表现为持续的缩短变形,晚侏罗世剖面同沉积压缩量为4 900 m,压缩率为12.36%,压缩速率为272.22 m/Myr,白垩纪剖面同沉积压缩量为1 134 m,压缩率为2.86%,压缩速率为10.67 m/Myr(表1),地层受逆断层控制明显。霍布逊凹陷NE向BB’平衡剖面显示,自晚侏罗世以来凹陷处于挤压构造环境,同沉积压缩量为2 287 m,压缩率为2.28%,压缩速率为127.06 m/Myr,霍布逊凹陷趋于萎缩(图8表1)。该时期红山凹陷发育上侏罗统和下白垩统地层,而霍布逊凹陷只有局部发育上侏罗统地层,沉积范围后撤北移。

        图  8  霍布逊凹陷NE方向BB’测线平衡剖面恢复图

        Figure 8.  Balanced cross⁃section restoration of the NE⁃directed BB’ profile in the Huobuxun Sag (profile location shown in Fig.1a)

      • 随着拉萨地块与欧亚板块全面碰撞,挤压活动的持续增强,其远程效应使研究区内发育差异断块隆升活动,导致北部红山凹陷缺失上白垩统,而霍布逊凹陷缺失部分上侏罗统及全部白垩统。红山凹陷附近的鱼卡地区AFT年龄为(85±12~78±9) Ma,而红山凹陷西侧柴达木山花岗岩AFT中心年龄为89±7 Ma(图1a),表明红山凹陷在晚白垩世发生快速隆升;霍布逊凹陷北缘的锡铁山、埃姆尼克山AFT年龄为86±5 Ma、110±7 Ma(图1a),表明霍布逊凹陷在白垩纪发生隆升[23]。因此,红山凹陷缺失上白垩统,而霍布逊凹陷缺失部分上侏罗统及全部白垩系。

      • 古新世至始新世早喜马拉雅期,印度板块与欧亚大陆开始碰撞,新特提斯洋东端首先闭合挤压导致柴达木盆地基底逆冲断层存在108 Ma至61 Ma的活动[24],南部的霍布逊凹陷受到逆冲断层作用而隆升。而红山凹陷也处于挤压应力场中,红山凹陷NE向AA’平衡剖面显示,沉积宽度由古新统的32 294 m压缩到渐新统的31 472 m,同沉积压缩量为822 m,压缩率为2.07%,压缩速率为74.73 m/Myr(表1),红山凹陷内开始出现负花状构造(图7)。由此推测,古近纪期间受研究区基底逆冲断层影响,位于板内霍布逊地区处于挤压隆升阶段,几乎没有发育古近系,而位于板缘的红山凹陷受逆冲走滑断层影响较小,发育较薄的古近系路乐河组和下干柴沟组。

      • 印度板块向北持续碰撞挤压的远程效应使盆地前中生界基底持续抬升,以及祁连山褶皱带迅速隆升并向盆地冲断推覆,导致研究区沉积范围的南移。同时,霍布逊凹陷NE向BB’平衡剖面显示,沉积宽度由上侏罗统的98 468 m压缩到上新统的91 226 m,同沉积压缩量为7 242 m,压缩率为7.20%,压缩速率为362.10 m/Myr,新近系受山前逆冲断层控制明显,沉积范围向南进一步扩大(图8表1)。

        第四纪上新世末期印度板块发生强烈的向北俯冲与青藏高原迅速隆升所形成的强烈压扭应力是柴达木盆地演化的主要动力。红山凹陷NE向AA’平衡剖面显示,沉积宽度由上新世末期的31 472 m压缩到现今的27 362 m,同沉积压缩量为4 110 m,压缩率为10.36%,压缩速率为1 370.00 m/Myr(图7表1),而霍布逊凹陷NE向平衡剖面显示,盆地沉积宽度被压缩了1 305 m,压缩率为1.29%、压缩速率为435.00 m/Myr,地层受盆缘逆断层控制明显(图8表1)。盆地内部在不平衡的压扭应力作用下产生右行走滑挤压运动,使绿梁山、埃姆尼克山进一步隆起,所以第四纪沉积中心位于霍步逊凹陷。

      • (1) 早侏罗世红山小型断陷盆地沉积,而霍布逊地区处于抬升阶段缺失下侏罗统,沉积中心位于红山凹陷;中侏罗世红山、霍布逊凹陷均有沉积,且沉积范围向南扩大,该现象与羌塘地块、拉萨板块分别与欧亚板块南缘碰撞之间的应力松弛作用有关。

        (2) 晚侏罗世到早白垩世红山、霍布逊地区为挤压坳陷盆地,红山凹陷发育全面,而霍布逊凹陷则仅有上侏罗统,沉积范围后撤北移,这种现象与拉萨板块与欧亚板块南缘初始碰撞以及蒙古—鄂霍茨克洋西端的关闭有关。

        (3) 古近纪为挤压坳陷盆地期,红山凹陷发育古近系,而霍布逊凹陷缺失古近系,沉积中心位于红山凹陷;这与印度地块与欧亚板块初始碰撞,新特提斯洋东端关闭引起的逆冲推覆作用导致霍布逊地区挤压隆升有关。

        (4) 新近纪到第四纪为挤压坳陷盆地期,红山凹陷仅发育很薄的第四系,而霍布逊凹陷发育巨厚的新近系及第四系,沉积中心南移到霍布逊凹陷,这与印度板块向北持续碰撞挤压,导致青藏高原隆升及周缘山系隆起,引起的沉积中心南移有关。

    参考文献 (24)

    目录

      /

      返回文章
      返回