高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泥页岩有机质孔隙差异特征及影响因素分析

谷渊涛 李晓霞 万泉 杨曙光

谷渊涛, 李晓霞, 万泉, 杨曙光. 泥页岩有机质孔隙差异特征及影响因素分析—以我国典型海相、陆相、过渡相储层为例[J]. 沉积学报, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134
引用本文: 谷渊涛, 李晓霞, 万泉, 杨曙光. 泥页岩有机质孔隙差异特征及影响因素分析—以我国典型海相、陆相、过渡相储层为例[J]. 沉积学报, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134
GU YuanTao, LI XiaoXia, WAN Quan, YANG ShuGuang. On the Different Characteristics of Organic Pores in Shale and Their Influencing Factors: Taking typical marine, continental, and transitional facies reservoirs in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134
Citation: GU YuanTao, LI XiaoXia, WAN Quan, YANG ShuGuang. On the Different Characteristics of Organic Pores in Shale and Their Influencing Factors: Taking typical marine, continental, and transitional facies reservoirs in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134

泥页岩有机质孔隙差异特征及影响因素分析—以我国典型海相、陆相、过渡相储层为例

doi: 10.14027/j.issn.1000-0550.2020.134
基金项目: 

国家自然科学基金 41802143

矿床地球化学国家重点实验室开放基金 SKLODG-201904

详细信息
    作者简介:

    谷渊涛,男,1990年出生,博士研究生,讲师,非常规油气储层,E-mail: guyuantao@haue.edu.cn

    通讯作者:

    李晓霞,女,讲师,细粒沉积学,E-mail: lixiaox88@163.com

  • 中图分类号: P618.13

On the Different Characteristics of Organic Pores in Shale and Their Influencing Factors: Taking typical marine, continental, and transitional facies reservoirs in China as examples

Funds: 

National Natural Science Fou ndation of China 41802143

Open Fundation of the State Key Laboratory of Ore Deposit Geochemistry SKLODG-201904

  • 摘要: 泥页岩中有机质孔隙是有机质向烃类转化的产物,也是烃类重要的纳米级赋存空间。以我国不同沉积相泥页岩(鄂尔多斯盆地延长组、四川盆地东南缘龙马溪组和牛蹄塘组、南华北盆地山西组)为研究对象,通过有机地球化学和微区分析等手段对有机质孔隙发育特征及影响因素进行了精细表征和深入探讨。结果表明:TOC与孔隙参数的相关性随热成熟度的增加展现出规律性变化,表明热演化是有机质孔隙发育的主要驱动因素。除热成熟度外,四组样品中有机质孔隙的发育特征受多种因素影响:延长组有机质孔隙处于形成阶段,多数有机质不发育孔隙,孔隙的形成主要受有机质类型和显微组分的影响。龙马溪组有机质孔隙普遍发育,为孔隙发育的高峰阶段,有机—无机相互作用制约着孔隙的结构和形貌特征。牛蹄塘组因排烃作用较为完全而处于孔隙收缩阶段,已有较多有机质孔隙被压实而消失,孔隙形态主要受控于微裂隙和有机质—黏土复合体的发育情况。山西组因过高的热演化程度引起有机质结构塌陷,且保存条件极差,处于孔隙的转化和消失阶段;有机质孔隙的发育情况与有机质类型和内部结构直接相关,并受保存条件的严重影响。相关结论有助于深刻理解页岩油气资源赋存富集机理,促进页岩油气资源的勘探开发。
  • 图  1  研究区地质概况及取样位置

    A.鄂尔多斯盆地;B.四川盆地东南缘黔北及黔中地区;C.南华北盆地太康隆起

    Figure  1.  Regional geology of the study area and sampling locations

    图  2  矿物组成三端元图

    Figure  2.  Ternary diagram of the mineralogical constituents

    图  3  延长组(T3 y)泥页岩样品的微结构特征

    Figure  3.  Microstructure characteristics of the T3 y shale samples

    图  4  龙马溪组(S1 l)泥页岩样品的微结构特征

    Figure  4.  Microstructure characteristics of the S1 l shale samples

    图  5  牛蹄塘组(Є1 n)泥页岩样品的微结构特征

    Figure  5.  Microstructure characteristics of the Є1 n shale samples

    图  6  山西组(P1 s)泥页岩样品的微结构特征

    黄色虚线表示有机质塌陷形成的台阶,红色箭头指示有机质塌陷方向

    Figure  6.  Microstructure characteristics of the P1 s shale samples

    图  7  TOC与孔隙参数的相关性分析

    Figure  7.  Correlation analysis between total organic carbon (TOC) and pore parameters

    图  8  延长组泥页岩中有机质孔隙发育特征对比分析

    (a~c)是A和B中对应白色虚线方框位置的灰度图,黑色代表孔隙

    Figure  8.  Comparison of organic matter (OM) pore development in T3 y shales

    图  9  应力条件对有机质孔隙发育的影响

    红色箭头指示应力方向,黄色虚线指示孔隙长轴展布趋势

    Figure  9.  Influence of stress conditions on OM pore development

    图  10  龙马溪组泥页岩颗粒有机质和有机质—黏土复合体中纳米孔隙对比分析

    (a~d) 是A和B中对应白色虚线方框位置的灰度图,黑色代表孔隙;其中,(a,c)为颗粒有机质,(b,d)为有机质―黏土复合体

    Figure  10.  Comparison of nanopores in discrete OM and organic⁃clay composites for S1 l shales

    图  11  牛蹄塘组泥页岩颗粒有机质中孔隙发育的差异性及其与有机质—黏土复合体中纳米孔隙的对比分析

    A和D是B中对应虚线方框放大后的SEM图像,A无有机质孔隙发育,D中有机质发育较多纳米孔隙;(a~d)是C~F中对应白色虚线方框位置的灰度图,黑色代表孔隙;其中,(a,b)为颗粒有机质,(c,d)为有机质—黏土复合体

    Figure  11.  The difference of pore development in discrete OM and the comparison with pores in organic⁃clay composites for Є1 n shales

    表  1  泥页岩样品的物质组成特征

    注:Y.延长组,L.龙马溪组,N.牛蹄塘组,S.山西组;—指没有检测到。

    Table  1.   The material composition of the shale samples

    样品编号 取样位置/ 埋深/m TOC/% R o% 矿物成分/%
    石英 黏土 长石 黄铁矿 方解石 白云石
    Y-1 692.0 1.63 1.41 31.9 25.1 41.5 1.4
    Y-2 694.0 3.65 1.16 31.5 30.9 35.8 1.7
    Y-3 698.5 0.43 1.05 30.3 30.5 37.4 <1.0 1.1
    Y-4 700.5 0.57 1.02 23.8 34.3 40.8 1.1
    Y-5 709.0 3.12 1.02 33.5 43.6 22.2
    Y-6 711.0 2.86 1.05 30.3 38.8 26.6 1.2 2.4 <1.0
    Y-7 712.0 3.10 1.15 35.1 36.1 27.3 <1.0 <1.0
    Y-8 713.0 3.51 0.95 30.2 43.1 24.4 <1.0 1.2 <1.0
    Y-9 714.0 2.95 0.83 31.6 42.6 24.3 1.0 <1.0
    Y-10 714.5 2.96 1.09 29.1 42.3 27.1 <1.0 1.1
    Y-11 715.5 2.83 1.17 27.5 45 26.2 <1.0 <1.0
    Y-12 716.0 3.84 0.71 26.9 45.4 25.5 <1.0 <1.0 <1.0
    Y-13 718.0 3.26 1.18 33.1 41.4 23.9 <1.0 <1.0 <1.0
    L-1 第9层上部/0.6 0.63 2.79 31.6 44.3 14.1 <1.0 8.5
    L-2 第9层下部r/0.6 0.61 2.86 34.0 45.4 12.9 <1.0 5.2 1.6
    L-3 第8层上部/0.6 0.37 2.82 35.8 50.4 10.3 <1.0 1.5 1.2
    L-4 第8层下部/0.6 1.04 2.89 35.1 32.9 27.5 <1.0 2.6 1.1
    L-5 第7层/0.6 1.75 2.85 36.7 28.9 26.9 1.2 4.6 1.7
    L-6 第6层/1.0 1.94 2.91 37.9 32.8 20.4 1.9 5.4 1.5
    L-7 第5层上部/0.5 3.00 2.85 57.9 18.2 14.5 2.7 5.3 1.5
    L-8 第5层下部/0.6 3.01 2.56 45.5 26.4 16.4 3.4 5.9 2.4
    L-9 第4层上部/0.6 2.73 2.88 52.4 19.7 16.5 2.1 5.9 3.3
    L-10 第4层下部/0.4 3.29 2.63 54.7 20.3 15.7 2.2 5.1 1.9
    L-11 第3层上部/0.5 3.69 2.74 76.3 10.6 13.1
    L-12 第3层下部/0.4 4.58 2.75 67.6 16.9 12.5 2.0 <1.0
    L-13 第2层上部/1.0 5.48 2.86 55.9 16.7 17.6 1.9 4.4 3.4
    L-14 第2层下部/0.5 4.75 2.64 42.7 21.3 22.0 2.2 3.8 8.1
    N-1 656.8 0.39 2.98 39.8 43.6 15.1 1.5
    N-2 658.5 0.39 3.11 43 39.7 15.5 1.8
    N-3 662.0 0.71 2.96 42.8 42.0 13.7 1.6
    N-4 668.4 1.27 3.12 48.8 34.4 13.1 1.6 1.4 <1.0
    N-5 670.0 1.38 3.32 45.6 36.1 14.6 1.6 1.2 <1.0
    N-6 672.4 1.23 3.22 45.5 36.8 14.8 1.3 <1.0 <1.0
    N-7 699.6 0.33 3.10 41.2 38.2 14.5 1.8 3.4
    N-8 683.1 0.35 2.93 43.4 38.6 14.1 1.7 1.6 <1.0
    N-9 691.7 3.42 3.01 49.9 32.2 7.9 2.1 2.0 2.9
    N-10 694.1 2.43 3.13 45.0 31.5 14.2 2.3 2.3 4.9
    N-11 698.4 5.52 2.86 42.0 23.7 28.5 3.9 1.9
    N-12 701.0 4.22 3.00 36.6 19.9 31.7 2.7 9.1
    N-13 708.6 4.94 3.04 42.8 35.7 10.5 7.9 3.2
    N-14 717.8 4.24 3.00 46.5 35.3 7.3 6.3 4.5
    S-1 139.0 1.03 3.54 67.6 25.3 6.3 1.0
    S-2 143.9 1.23 3.33 46.0 47.1 6.2 <1.0
    S-3 152.5 2.31 3.47 46.2 47.5 6.2
    S-4 158.8 0.68 3.48 75.4 20.0 3.8 <1.0
    S-5 169.7 0.89 3.48 46.3 14.7 2.2 2.5 34.4
    S-6 181.8 2.91 3.56 14.6 64.8 7.8 13
    S-7 191.2 2.64 3.47 44.2 41.9 2.6 6.9 4.5
    S-8 195.6 1.86 3.44 35.4 50.1 3.1 9.2 2.2
    S-9 200.6 1.12 3.61 46.6 39.1 9.6 4.7
    S-10 207.2 0.52 3.58 66.3 31.6 2.2
    S-11 213.1 2.00 3.43 39.7 49.6 9.9 <1.0
    S-12 222.7 2.45 3.59 47.2 5.70 1.1 44.7 1.1
    下载: 导出CSV

    表  2  泥页岩样品的孔隙参数特征

    注:Y.延长组,L.龙马溪组,N.牛蹄塘组,S.山西组。

    Table  2.   Pore parameter characteristics of the shale samples

    样品编号 BET比表面积/(m2/g) 孔体积/(cm3/g) 平均孔径/nm
    Y-1 11.0 0.062 22.7
    Y-2 8.4 0.050 23.9
    Y-3 16.7 0.075 17.9
    Y-4 17.2 0.071 16.6
    Y-5 10.7 0.082 30.8
    Y-6 12.7 0.088 27.9
    Y-7 11.1 0.079 28.5
    Y-8 8.7 0.051 23.4
    Y-9 10.7 0.068 25.6
    Y-10 12.0 0.072 24.1
    Y-11 10.7 0.073 27.4
    Y-12 9.3 0.056 24.0
    Y-13 10.4 0.064 24.8
    L-1 22.4 0.090 16.1
    L-2 21.6 0.100 18.4
    L-3 23.4 0.111 18.1
    L-4 22.0 0.088 15.9
    L-5 22.3 0.082 14.7
    L-6 25.1 0.092 14.7
    L-7 28.0 0.095 13.6
    L-8 29.8 0.098 13.1
    L-9 27.3 0.097 14.1
    L-10 27.0 0.092 13.6
    L-11 24.4 0.094 15.4
    L-12 33.0 0.094 11.4
    L-13 31.7 0.102 12.9
    L-14 36.5 0.093 10.1
    N-1 15.5 0.086 22.3
    N-2 16.9 0.093 22.1
    N-3 18.6 0.091 19.5
    N-4 18.3 0.082 18.0
    N-5 18.6 0.081 17.4
    N-6 22.8 0.101 17.7
    N-7 19.4 0.102 21.1
    N-8 17.8 0.099 22.3
    N-9 26.5 0.107 16.1
    N-10 28.2 0.095 13.6
    N-11 32.0 0.074 9.3
    N-12 25.9 0.062 9.6
    N-13 30.6 0.072 9.5
    N-14 25.4 0.072 11.3
    S-1 11.7 0.066 22.6
    S-2 12.2 0.066 21.7
    S-3 14.9 0.079 21.3
    S-4 10.2 0.068 26.5
    S-5 13.0 0.069 21.1
    S-6 10.5 0.066 25.2
    S-7 13.6 0.067 19.6
    S-8 13.3 0.064 19.3
    S-9 8.0 0.055 27.5
    S-10 8.6 0.050 23.1
    S-11 15.5 0.076 19.6
    S-12 10.0 0.050 19.9
    下载: 导出CSV

    表  3  图8中三个区域的孔隙统计分析

    Table  3.   Pore statistical analysis for the three regions in Fig.8

    位置 孔隙数量 平均孔隙面积/nm2 平均孔径/nm
    a 423 3 000 78
    b 210 1 000 47
    c 398 19 5
    下载: 导出CSV

    表  4  图10中四个区域的孔隙统计分析

    Table  4.   Pore statistical analysis for the four regions in Fig.10

    位置 孔隙数量 平均孔隙面积/nm2 平均孔径/nm
    a 190 424 29
    b 350 151 21
    c 167 394 30
    d 231 182 23
    下载: 导出CSV

    表  5  图11中四个区域的孔隙统计分析

    Table  5.   Pore statistical analysis for the four regions in Fig.11

    位置 孔隙数量 平均孔隙面积/nm2 平均孔径/nm
    a 699 107 18
    b 900 121 18
    c 651 161 19
    d 699 91 17
    下载: 导出CSV
  • [1] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [2] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
    [3] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
    [4] Sun L, Tuo J C, Zhang M F, et al. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J]. Fuel, 2015, 158: 549-57.
    [5] Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71: 7-16.
    [6] 宋董军,妥进才,王晔桐,等. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报,2019,37(6):1309-1324.

    Song Dongjun, Jincai Tuo, Wang Yetong, et al. Research advances on characteristics of nanopore structure of organic-rich shales[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324.
    [7] 李楚雄,肖七林,陈奇,等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质,2019,41(6):901-909.

    Li Chuxiong, Xiao Qilin, Chen Qi, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019, 41(6): 901-909.
    [8] 王朋飞,金璨,臧小鹏,等. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏,2020,32(5):46-53.

    Wang Pengfei, Jin Can, Zang Xiaopeng, et al. Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing[J]. Lithologic Reservoirs, 2020, 32(5): 46-53.
    [9] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
    [10] Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181.
    [11] 谭静强,张煜麟,罗文彬,等. 富有机质泥页岩微纳米孔隙结构研究进展[J]. 矿物岩石地球化学通报,2019,38(1):18-29.

    Tan Jingqiang, Zhang Yulin, Luo Wenbin, et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2019, 38(1): 18-29.
    [12] Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
    [13] Tian H, Pan L, Zhang T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou province, southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
    [14] Tang X, Zhang J C, Jin Z J, et al. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin[J]. Marine and Petroleum Geology, 2015, 64: 165-172.
    [15] 陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438-444.

    Chen Shangbin, Zhu Yanming, Wang Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444.
    [16] Gu Y T, Wan Q, Qin Z H, Luo T, et al. Nanoscale pore characteristics and influential factors of Niutitang Formation shale reservoir in Guizhou province[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6178-6189.
    [17] Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239.
    [18] Hou Y G, He S, Wang J G, et al. Preliminary study on the pore characterization of lacustrine shale reservoirs using low pressure nitrogen adsorption and field emission scanning electron microscopy methods: A case study of the Upper Jurassic Emuerhe Formation, Mohe Basin, northeastern China[J]. Canadian Journal of Earth Sciences, 2015, 52(5): 294-306.
    [19] 曹涛涛,邓模,罗厚勇,等. 下扬子地区中上二叠统页岩有机孔发育特征[J]. 石油实验地质,2018,40(3):315-322,396.

    Cao Taotao, Deng Mo, Luo Houyong, et al. Characteristics of organic pores in Middle and Upper Permian shale in the Lower Yangtze region[J]. Petroleum Geology & Experiment, 2018, 40(3): 315-322, 396.
    [20] 龙鹏宇,张金川,姜文利,等. 渝页1井储层孔隙发育特征及其影响因素分析[J]. 中南大学学报(自然科学版),2012,43(10):3954-3963.

    Long Pengyu, Zhang Jinchuan, Jiang Wenli, et al. Analysis on pores forming features and its influence factors of reservoir well Yuye-1[J]. Journal of Central South University (Science and Technology), 2012, 43(10): 3954-3963.
    [21] Bu H L, Yuan P, Liu H M, et al. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis[J]. Geochimica et Cosmochimica Acta, 2017, 212: 1-15.
    [22] Liu H M, Yuan P, Liu D, et al. Pyrolysis behaviors of organic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals[J]. Applied Clay Science, 2018, 153: 205-216.
    [23] Liang M L, Wang Z X, Gao L, et al. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel, 2017, 197: 310-319.
    [24] Zhu H J, Ju Y W, Huang C, et al. Tectonic and thermal controls on the nano-micro structural characteristic in a Cambrian Organic-Rich Shale[J]. Minerals, 2019, 9(6): 354.
    [25] Zhu H J, Ju Y W, Qi Y, et al. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel, 2018, 228: 272-289.
    [26] Dai J X, Li J, Luo X, et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China[J]. Organic Geochemistry, 2005, 36(12): 1617-1635.
    [27] Duan Y, Wang C Y, Zheng C Y, et al. Geochemical study of crude oils from the Xifeng oilfield of the Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2008, 31(4/5/6): 341-356.
    [28] Guo H J, Jia W L, Peng P A, et al. The composition and its impact on the methane sorption of lacustrine shales from the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2014, 57: 509-20.
    [29] Yang H, Niu X B, Xu L M, et al. Exploration potential of shale oil in Chang7 member, Upper Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 560-569.
    [30] 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.

    Dong Dazhong, Wang Yuman, Li Xinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32.
    [31] 熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学,2019,30(9):1319-1331.

    Xiong Liang. The characteristics of pore development of the Lower Cambrian organic-rich shale in Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2019, 30(9): 1319-1331.
    [32] 刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘,2016,23(1):11-28.

    Liu Shugen, Deng Bin, Zhong Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28.
    [33] 李中明,张栋,张古彬,等. 豫西地区海陆过渡相含气页岩层系优选方法及有利区预测[J]. 地学前缘,2016,23(2):39-47.

    Li Zhongming, Zhang Dong, Zhang Gubin, et al. The transitional facies shale gas formation selection and favorable area prediction in the western Henan[J]. Earth Science Frontiers, 2016, 23(2): 39-47.
    [34] 邱庆伦,张古彬,冯辉,等. 河南中牟区块页岩气特征及勘探前景分析[J]. 地质找矿论丛,2018,33(1):70-75.

    Qiu Qinglun, Zhang Gubin, Feng Hui, et al. Characteristics of shale gas and analysis of the prospecting potential in Zhongmu block, Henean province[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(1): 70-75.
    [35] 王香增,高胜利,高潮. 鄂尔多斯盆地南部中生界陆相页岩气地质特征[J]. 石油勘探与开发,2014,41(3):294-304.

    Wang Xiangzeng, Gao Shengli, Gao Chao. Geological features of Mesozoic continental shale gas in south of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(3): 294-304.
    [36] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.

    Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
    [37] 姜振学,唐相路,李卓,等. 中国典型海相和陆相页岩储层孔隙结构及含气性[M]. 北京:科学出版社,2018.

    Jiang Zhenxue, Tang Xianglu, Li Zhuo, et al. Pore structure and gas bearing property of typical marine and continental shale reservoirs in China[M]. Beijing: Science Press, 2018.
    [38] 吴伟,王雨涵,曹高社,等. 南华北盆地豫西地区C-P烃源岩地球化学特征[J]. 天然气地球科学,2015,26(1):128-136.

    Wu Wei, Wang Yuhan, Cao Gaoshe, et al. The geochemical characteristics of the Carboniferous and Permian source rocks in the western Henan, the southern North China Basin[J]. Natural Gas Geoscience, 2015, 26(1): 128-136.
    [39] 曾秋楠,张交东,于炳松,等. 南华北盆地尉参1井上古生界海陆交互相页岩地球化学及其含气特征[J]. 海相油气地质,2019,24(1):71-77.

    Zeng Qiunan, Zhang Jiaodong, Yu Bingsong, et al. Geochemical characteristics and gas-bearing property of paralic transitional shale of the Upper Paleozoic in well Weican 1, southern North China Basin[J]. Marine Origin Petroleum Geology, 2019, 24(1): 71-77.
    [40] 陈尚斌,左兆喜,朱炎铭,等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学,2015,26(3):564-574.

    Chen Shangbin, Zuo Zhaoxi, Zhu Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574.
    [41] Kelemen S R, Fang H L. Maturity trends in raman spectra from kerogen and coal[J]. Energy & Fuels, 2001, 15(3): 653-658.
    [42] Tuschel D. Raman spectroscopy of oil shale[J]. Spectroscopy, 2013, 28(3): 20-28.
    [43] 刘德汉,肖贤明,田辉,等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报,2013,58(13):1228-1241.

    Liu Dehan, Xiao Xianming, Tian Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(13): 1228-1241.
    [44] Schoenherr J, Littke R, Urai J L, et al. Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen[J]. Organic Geochemistry, 2007, 38(8): 1293-1318.
    [45] 梁狄刚,郭彤楼,边立曾,等. 中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质,2009,14(2):1-19.

    Liang Digang, Guo Tonglou, Bian Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19.
    [46] Wang P F, Jiang Z X, Chen L, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77: 1323-1337.
    [47] Yang F, Ning Z F, Wang Q, et al. Pore structure of Cambrian shales from the Sichuan Basin in China and implications to gas storage[J]. Marine and Petroleum Geology, 2016, 70: 14-26.
    [48] Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
    [49] Wang G C. Deformation of organic matter and its effect on pores in mud rocks[J]. AAPG Bulletin, 2020, 104(1): 21-36.
    [50] 王行信,王国力,蔡进功,等. 有机粘土复合体与油气生成[M]. 北京:石油工业出版社,2006.

    Wang Xingxin, Wang Guoli, Cai Jingong, et al. Organic-clay composites and hydrocarbon formation[M]. Beijing: Petroleum Industry Press, 2006.
    [51] Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737.
    [52] Abid I, Hesse R. Illitizing fluids as precursors of hydrocarbon migration along transfer and boundary faults of the Jeanne d’Arc Basin offshore Newfoundland, Canada[J]. Marine and Petroleum Geology, 2007, 24(4): 237-245.
    [53] 李颖莉,蔡进功. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响[J]. 石油实验地质,2014,36(3):352-358.

    Li Yingli, Cai Jingong. Effect of smectite illitization on shale gas occurrence in argillaceous source rocks[J]. Petroleum Geology & Experiment, 2014, 36(3): 352-358.
    [54] Berthonneau J, Grauby O, Abuhaikal M, et al. Evolution of organo-clay composites with respect to thermal maturity in type II organic-rich source rocks[J]. Geochimica et Cosmochimica Acta, 2016, 195: 68-83.
    [55] Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
    [56] Alcover J F, Qi Y, Al-Mukhtar M, et al. Hydromechanical effects: (I) on the Na-smectite microtexture[J]. Clay Minerals, 2000, 35(3): 525-536.
    [57] Li J, Li X F, Wu K L, et al. Water sorption and distribution characteristics in clay and shale: Effect of surface force[J]. Energy & Fuels, 2016, 30(11): 8863-8874.
    [58] Chen G J, Yen M C, Wang J M, et al. Layered inorganic/enzyme nanohybrids with selectivity and structural stability upon interacting with biomolecules[J]. Bioconjugate Chemistry, 2008, 19(1): 138-144.
    [59] 刘艳杰,程党性,邱庆伦,等. 南华北盆地下二叠统泥页岩孔隙特征及控制因素[J]. 天然气地球科学,2020,31(10):1501-1513.

    Liu Yanjie, Cheng Dangxing, Qiu Qinglun, et al. Characteristics of pores and controlling factors of Lower Permian shales in southern North China Basin[J]. Natural Gas Geoscience, 2020, 31(10): 1501-1513.
    [60] 柳宇柯. 高演化阶段页岩有机质纳米孔隙、化学结构与力学性能研究[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2019.

    Liu Yuke. Nanopore development, chemical structure and mechanical properties of organic matter in highly matured shale[D]. Guangzhou: University of Chinese Academy Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), 2019.
  • [1] 谢巍, 李一凡, 刘旺威.  塔里木盆地东北缘下寒武统泥页岩古气候与物源背景研究 . 沉积学报, 2023, 41(4): 1240-1256. doi: 10.14027/j.issn.1000-0550.2021.159
    [2] 吴冬, 邓虎成.  黏土沉积微结构特征及其沉积环境【中深层复杂油气储层研究】 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.073
    [3] 杨仁超, 李作福, 张学才, 慈兴华, 方旭庆, 李传华, 刘海宁.  异重流沉积研究进展与展望 . 沉积学报, 2023, 41(6): 1917-1933. doi: 10.14027/j.issn.1000-0550.2023.008
    [4] 李志扬.  陆棚海泥岩的岩相特征及沉积过程 . 沉积学报, 2021, 39(1): 168-180. doi: 10.14027/j.issn.1000-0550.2020.126
    [5] 卢斌, 邱振, 周川闽, 董大忠, 梁萍萍.  泥页岩沉积物理模拟研究进展与发展趋势 . 沉积学报, 2021, 39(4): 781-793. doi: 10.14027/j.issn.1000-0550.2021.016
    [6] 赵迪斐, 郭英海, WangGeoff, 李冠霖, 曾春林, 焦伟伟.  层序地层格架及其对页岩储层发育特征的影响-以四川盆地龙马溪组页岩为例 . 沉积学报, 2020, 38(2): 379-397. doi: 10.14027/j.issn.1000-0550.2019.043
    [7] 屈童, 高岗, 徐新德, 刘凤妍.  三角洲—浅海沉积体系陆源有机质分布控制因素 . 沉积学报, 2020, 38(3): 648-660. doi: 10.14027/j.issn.1000-0550.2019.057
    [8] 田庆春, 杨太保, 石培宏.  可可西里古湖泊沉积物有机碳δ13C变化特征及其影响因素 . 沉积学报, 2016, 34(2): 260-267. doi: 10.14027/j.cnki.cjxb.2016.02.005
    [9] 栾国强, 董春梅, 马存飞, 林承焰, 张津营, 吕夏霏, Muhammad Aleem Zahid.  基于热模拟实验的富有机质泥页岩成岩作用及演化特征 . 沉积学报, 2016, 34(6): 1208-1216. doi: 10.14027/j.cnki.cjxb.2016.06.018
    [10] 李超, 朱筱敏, 朱世发, 耿名扬, 毕玉泉, 束青林, 徐福刚.  沾化凹陷罗家地区沙三下段泥页岩储层特征 . 沉积学报, 2015, 33(4): 795-808. doi: 10.14027/j.cnki.cjxb.2015.04.018
    [11] 董春梅, 马存飞, 栾国强, 林承焰, 张宪国, 任丽华.  泥页岩热模拟实验及成岩演化模式 . 沉积学报, 2015, 33(5): 1053-1061. doi: 10.14027/j.cnki.cjxb.2015.05.021
    [12] 岩浆岩砾石磨圆度地质意义的研究 . 沉积学报, 2014, 32(2): 189-197.
    [13] 东营凹陷泥页岩矿物组成及脆度分析 . 沉积学报, 2013, 31(04): 616-620.
    [14] 沉积物岩芯X光片图像灰度数值及其影响因素 . 沉积学报, 2012, 30(2): 318-324.
    [15] 齐红艳.  长江口及邻近海域表层沉积物pH、Eh分布及制约因素 . 沉积学报, 2008, 26(5): 820-827.
    [16] 张在龙, 许国梁, 叶天旭, 蔺五正, 劳永新.  天然矿物存在下脂肪酸酯水解生烃的影响因素研究 . 沉积学报, 2003, 21(4): 717-721.
    [17] 刘招君.  湖泊水下扇沉积特征及影响因素——以伊通盆地莫里青断陷双阳组为例 . 沉积学报, 2003, 21(1): 148-154.
    [18] 胡受权, 郭文平, 杨凤根, 颜其彬, 刘树根, 童崇光.  试论控制断陷湖盆陆相层序发育的影响因素 . 沉积学报, 2001, 19(2): 256-262.
    [19] 张德玉.  马里亚纳海槽和西菲律宾海盆更新世以来沉积物中的粘土矿物 . 沉积学报, 1993, 11(1): 111-120.
    [20] 任燮康, 杨楚雄, 丁传谱.  湖南东波—平和地区中上泥盆统岩石学特征及沉积相分析 . 沉积学报, 1987, 5(2): 81-90.
  • 加载中
图(11) / 表 (5)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  145
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 刊出日期:  2021-08-10

目录

    泥页岩有机质孔隙差异特征及影响因素分析

    doi: 10.14027/j.issn.1000-0550.2020.134
      基金项目:

      国家自然科学基金 41802143

      矿床地球化学国家重点实验室开放基金 SKLODG-201904

      作者简介:

      谷渊涛,男,1990年出生,博士研究生,讲师,非常规油气储层,E-mail: guyuantao@haue.edu.cn

      通讯作者: 李晓霞,女,讲师,细粒沉积学,E-mail: lixiaox88@163.com
    • 中图分类号: P618.13

    摘要: 泥页岩中有机质孔隙是有机质向烃类转化的产物,也是烃类重要的纳米级赋存空间。以我国不同沉积相泥页岩(鄂尔多斯盆地延长组、四川盆地东南缘龙马溪组和牛蹄塘组、南华北盆地山西组)为研究对象,通过有机地球化学和微区分析等手段对有机质孔隙发育特征及影响因素进行了精细表征和深入探讨。结果表明:TOC与孔隙参数的相关性随热成熟度的增加展现出规律性变化,表明热演化是有机质孔隙发育的主要驱动因素。除热成熟度外,四组样品中有机质孔隙的发育特征受多种因素影响:延长组有机质孔隙处于形成阶段,多数有机质不发育孔隙,孔隙的形成主要受有机质类型和显微组分的影响。龙马溪组有机质孔隙普遍发育,为孔隙发育的高峰阶段,有机—无机相互作用制约着孔隙的结构和形貌特征。牛蹄塘组因排烃作用较为完全而处于孔隙收缩阶段,已有较多有机质孔隙被压实而消失,孔隙形态主要受控于微裂隙和有机质—黏土复合体的发育情况。山西组因过高的热演化程度引起有机质结构塌陷,且保存条件极差,处于孔隙的转化和消失阶段;有机质孔隙的发育情况与有机质类型和内部结构直接相关,并受保存条件的严重影响。相关结论有助于深刻理解页岩油气资源赋存富集机理,促进页岩油气资源的勘探开发。

    English Abstract

    谷渊涛, 李晓霞, 万泉, 杨曙光. 泥页岩有机质孔隙差异特征及影响因素分析—以我国典型海相、陆相、过渡相储层为例[J]. 沉积学报, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134
    引用本文: 谷渊涛, 李晓霞, 万泉, 杨曙光. 泥页岩有机质孔隙差异特征及影响因素分析—以我国典型海相、陆相、过渡相储层为例[J]. 沉积学报, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134
    GU YuanTao, LI XiaoXia, WAN Quan, YANG ShuGuang. On the Different Characteristics of Organic Pores in Shale and Their Influencing Factors: Taking typical marine, continental, and transitional facies reservoirs in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134
    Citation: GU YuanTao, LI XiaoXia, WAN Quan, YANG ShuGuang. On the Different Characteristics of Organic Pores in Shale and Their Influencing Factors: Taking typical marine, continental, and transitional facies reservoirs in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4): 794-810. doi: 10.14027/j.issn.1000-0550.2020.134
      • 近年来随着非常规油气资源工业化勘探开发的快速发展,页岩油气对于能源领域的支撑作用越发重要[1]。与常规油气勘探中的生、储、盖、圈、运、保等核心要素不同,连续或准连续分布甜点区(段)是页岩油气地质学研究的核心,两者均受到沉积环境的控制[1]。有机质作为页岩油气的主要载体,其沉积富集过程与泥页岩沉积环境密切相关,其中发育的纳米孔隙是有机质向烃类转化的产物,对页岩油气资源富集有重要作用[2]。开展不同沉积相泥页岩中有机质孔隙特征研究可为页岩储层甜点区(段)优选提供重要理论支撑,丰富非常规油气沉积学的理论知识,以助力非常规油气资源的勘探开发。

        目前关于泥页岩中有机质孔隙特征已有大量研究:1)演化过程极为复杂。部分学者认为有机质孔隙随热成熟度(R o)的增加呈逐渐发育的趋势[3-5]。这主要基于有机质的热成熟过程伴随着干酪根热解、裂解以及液态烃裂解生气的进行,从而使有机质孔隙不断产生和演化[2,6]。也有观点认为泥页岩中有机质孔隙随热成熟度的增加呈现出阶段性特征[7-11]。例如,Curtis et al.[9]通过对Woodford页岩进行次生有机质孔隙的演化研究,发现有机质孔隙在热成熟度为0.51%~6.36%的范围内并无明显规律,说明仅热成熟度难以预测孔隙的发展趋势。Chen et al.[10]通过对低熟泥页岩的热模拟实验研究,发现在不同热演化阶段有机质孔隙发育特征有明显区别:R o为0.6%~2.0%时,有机质孔隙度呈先下降后上升的趋势;R o为2.0%~3.5%时,有机质孔隙持续发展;R o>3.5%时,有机质孔隙发生破坏和转化。2)影响因素的差异性。有机质在热演化过程中向烃类转化而形成纳米孔隙,但演化过程中因各种因素差异性的影响,引起有机质孔隙的演化模式多种多样。因此,热成熟度并非影响有机质孔隙发育的唯一主导因素,其他因素在特定条件下对孔隙特征也有明显的制约。例如,Milliken et al.[12]认为总有机碳(TOC)含量对于有机质孔隙的控制比热成熟度更为明显:当TOC小于5.5%时,TOC与孔隙度呈正相关;当TOC大于5.5%时,TOC的增加对于孔隙度几乎没有影响。此外,TOC含量对于微孔、介孔、大孔的影响也有明显区别,多数研究表明微孔与TOC含量最为密切,其次为介孔[13-16]。有机质颗粒的大小也影响孔隙结构特征,颗粒越大越有利于孔隙的发育和生长,颗粒越小则抑制了孔隙的形成和演化[12]。有机质类型对于孔隙结构的影响也十分明显:I型和II型干酪根发育有机质孔隙的能力远远高于III型干酪根,这取决于各类型有机质的生烃潜力[6,17-18]。类似地,有机质显微组分因生烃潜力不同其发育有机质孔隙的能力也有差异,如腐泥组、镜质组往往比惰质组更发育孔隙[6,19-20]。除上述有机地球化学特征外,无机矿物、构造作用等也严重影响着有机质孔隙的演化进程。例如,黏土矿物与有机质的相互作用对生烃有一定的催化或抑制作用,从而促进或抑制孔隙的形成及演化[21-22];构造条件通过影响排烃过程而引起有机质孔隙发育特征的差异性[23-25]

        上述研究深入阐明了泥页岩中有机质孔隙的形成演化机理,并揭示了各因素在孔隙演化过程中的影响机制。然而,关于不同沉积相泥页岩有机质孔隙发育特征的影响因素仍无定论。本文在梳理前人关于有机质孔隙研究结果的基础上,以我国不同沉积相泥页岩储层(鄂尔多斯盆地延长组(T3 y)陆相泥页岩、四川盆地东南缘龙马溪组(S1 l)和牛蹄塘组(Є1 n)海相泥页岩、南华北盆地山西组(P1 s)过渡相泥页岩)为研究对象,系统表征了有机质孔隙发育特征,分析了各组储层影响有机质孔隙发育特征的主要因素,研究结果对页岩油气生储机制和勘探开发具有重要的理论和实践意义。

      • 鄂尔多斯盆地是属于构造稳定的大型沉积盆地,具有巨大的油气资源储量[26-27]。盆地包含六个构造单元:北部的伊盟隆起、南部的渭北隆起、西部的天环凹陷及西缘冲断带、东部的晋西挠褶带以及中部的伊陕斜坡[27-28]。盆地中延长组被证实是最具潜力的烃源岩,并被划分为10段。其中,在深湖—半深湖沉积环境下形成的长7段的岩性包括油页岩、黑色页岩和碳质页岩,长7段因含有丰富的有机质而成为最重要的烃源岩[29]。本研究所采集的延长组泥页岩样品取自伊陕斜坡东部(图1A),且全部来自长7段泥页岩。四川盆地是我国最大的含油气盆地,也是目前页岩气开采最成功的区域[30]。在四川盆地内部及周缘,志留系和寒武系富有机质页岩分布范围广、厚度大,并且经历了多旋回构造体系下的深埋藏和强改造过程,是页岩气勘探开发的重要目标层位[31-32]。其中龙马溪组和牛蹄塘组泥页岩是最具潜力的页岩气储层。本研究所选取的龙马溪组和牛蹄塘组样品均采自四川盆地东南缘的贵州省境内(图1B)。上古生界地层在华北地区分布十分广泛,南华北盆地的页岩气调查表明该区域海陆过渡相泥页岩具有一定的生储烃能力,是潜在的页岩气储层[33]。该盆地最具代表性的烃源岩是二叠系山西组和太原组[34]。本研究所选取的山西组样品采自太康隆起西部(图1C),紧邻中牟凹陷和中条—豫西隆起。

        图  1  研究区地质概况及取样位置

        Figure 1.  Regional geology of the study area and sampling locations

        沉积环境决定了泥页岩的有机质丰度、类型及显微组成[6],四组泥页岩样品因沉积环境差异形成了不同类型的有机质,进而影响泥页岩的生烃潜能。鄂尔多斯盆地延长组长7段在深湖—半深湖沉积环境下形成II型为主的干酪根,少量干酪根为III型;显微组分中腐泥组最发育,镜质组次之,惰质组最不发育[35]。四川盆地龙马溪组沉积于深水—浅水陆棚环境,有机质母源输入以各种浮游藻类为主,有机质类型以Ⅰ型为主,显微组分主要是镜质组(沥青),伴有少量腐泥组[6,20,36]。研究区内牛蹄塘组沉积环境与龙马溪组类似,为深水陆棚向浅水陆棚过渡的沉积相,主要有机质类型为Ⅰ型,显微组分以腐泥组和沥青为主[37]。南华北盆地山西组主要形成于三角洲体系的海陆过渡相环境,有机质类型主要为III型,少量为Ⅱ2型,显微组分以镜质组、惰质组为主[33,38-39]

      • 本研究一共采集了四套地层共53个泥页岩样品。其中,13个延长组长7段样品采集于鄂尔多斯盆地941#采油井(取样点a),取样深度范围694.0~718.0 m(表1)。龙马溪组样品取自贵州习水县骑龙村剖面(取样点b),为避免风化作用的影响,我们利用绍尔便携式取样钻机采集浅层钻孔样品。该剖面将五峰—龙马溪组分为三段,其中第一段为典型的富有机质泥页岩,第一段又分为9小层,除第1小层为五峰组外,其余8层均为龙马溪组。我们依据这8小层的垂直厚度分别取样,共获取14个浅层钻孔岩心样品(表1)。牛蹄塘组14个泥页岩样品取自贵州开阳ZK105钻孔(取样点c),取样深度范围为656.8~717.8 m(表1)。山西组12个样品取自河南郑州ZK02109钻孔(取样点d),取样深度范围为139.0~222.7 m(表1)。

        表 1  泥页岩样品的物质组成特征

        Table 1.  The material composition of the shale samples

        样品编号 取样位置/ 埋深/m TOC/% R o% 矿物成分/%
        石英 黏土 长石 黄铁矿 方解石 白云石
        Y-1 692.0 1.63 1.41 31.9 25.1 41.5 1.4
        Y-2 694.0 3.65 1.16 31.5 30.9 35.8 1.7
        Y-3 698.5 0.43 1.05 30.3 30.5 37.4 <1.0 1.1
        Y-4 700.5 0.57 1.02 23.8 34.3 40.8 1.1
        Y-5 709.0 3.12 1.02 33.5 43.6 22.2
        Y-6 711.0 2.86 1.05 30.3 38.8 26.6 1.2 2.4 <1.0
        Y-7 712.0 3.10 1.15 35.1 36.1 27.3 <1.0 <1.0
        Y-8 713.0 3.51 0.95 30.2 43.1 24.4 <1.0 1.2 <1.0
        Y-9 714.0 2.95 0.83 31.6 42.6 24.3 1.0 <1.0
        Y-10 714.5 2.96 1.09 29.1 42.3 27.1 <1.0 1.1
        Y-11 715.5 2.83 1.17 27.5 45 26.2 <1.0 <1.0
        Y-12 716.0 3.84 0.71 26.9 45.4 25.5 <1.0 <1.0 <1.0
        Y-13 718.0 3.26 1.18 33.1 41.4 23.9 <1.0 <1.0 <1.0
        L-1 第9层上部/0.6 0.63 2.79 31.6 44.3 14.1 <1.0 8.5
        L-2 第9层下部r/0.6 0.61 2.86 34.0 45.4 12.9 <1.0 5.2 1.6
        L-3 第8层上部/0.6 0.37 2.82 35.8 50.4 10.3 <1.0 1.5 1.2
        L-4 第8层下部/0.6 1.04 2.89 35.1 32.9 27.5 <1.0 2.6 1.1
        L-5 第7层/0.6 1.75 2.85 36.7 28.9 26.9 1.2 4.6 1.7
        L-6 第6层/1.0 1.94 2.91 37.9 32.8 20.4 1.9 5.4 1.5
        L-7 第5层上部/0.5 3.00 2.85 57.9 18.2 14.5 2.7 5.3 1.5
        L-8 第5层下部/0.6 3.01 2.56 45.5 26.4 16.4 3.4 5.9 2.4
        L-9 第4层上部/0.6 2.73 2.88 52.4 19.7 16.5 2.1 5.9 3.3
        L-10 第4层下部/0.4 3.29 2.63 54.7 20.3 15.7 2.2 5.1 1.9
        L-11 第3层上部/0.5 3.69 2.74 76.3 10.6 13.1
        L-12 第3层下部/0.4 4.58 2.75 67.6 16.9 12.5 2.0 <1.0
        L-13 第2层上部/1.0 5.48 2.86 55.9 16.7 17.6 1.9 4.4 3.4
        L-14 第2层下部/0.5 4.75 2.64 42.7 21.3 22.0 2.2 3.8 8.1
        N-1 656.8 0.39 2.98 39.8 43.6 15.1 1.5
        N-2 658.5 0.39 3.11 43 39.7 15.5 1.8
        N-3 662.0 0.71 2.96 42.8 42.0 13.7 1.6
        N-4 668.4 1.27 3.12 48.8 34.4 13.1 1.6 1.4 <1.0
        N-5 670.0 1.38 3.32 45.6 36.1 14.6 1.6 1.2 <1.0
        N-6 672.4 1.23 3.22 45.5 36.8 14.8 1.3 <1.0 <1.0
        N-7 699.6 0.33 3.10 41.2 38.2 14.5 1.8 3.4
        N-8 683.1 0.35 2.93 43.4 38.6 14.1 1.7 1.6 <1.0
        N-9 691.7 3.42 3.01 49.9 32.2 7.9 2.1 2.0 2.9
        N-10 694.1 2.43 3.13 45.0 31.5 14.2 2.3 2.3 4.9
        N-11 698.4 5.52 2.86 42.0 23.7 28.5 3.9 1.9
        N-12 701.0 4.22 3.00 36.6 19.9 31.7 2.7 9.1
        N-13 708.6 4.94 3.04 42.8 35.7 10.5 7.9 3.2
        N-14 717.8 4.24 3.00 46.5 35.3 7.3 6.3 4.5
        S-1 139.0 1.03 3.54 67.6 25.3 6.3 1.0
        S-2 143.9 1.23 3.33 46.0 47.1 6.2 <1.0
        S-3 152.5 2.31 3.47 46.2 47.5 6.2
        S-4 158.8 0.68 3.48 75.4 20.0 3.8 <1.0
        S-5 169.7 0.89 3.48 46.3 14.7 2.2 2.5 34.4
        S-6 181.8 2.91 3.56 14.6 64.8 7.8 13
        S-7 191.2 2.64 3.47 44.2 41.9 2.6 6.9 4.5
        S-8 195.6 1.86 3.44 35.4 50.1 3.1 9.2 2.2
        S-9 200.6 1.12 3.61 46.6 39.1 9.6 4.7
        S-10 207.2 0.52 3.58 66.3 31.6 2.2
        S-11 213.1 2.00 3.43 39.7 49.6 9.9 <1.0
        S-12 222.7 2.45 3.59 47.2 5.70 1.1 44.7 1.1
      • 总有机碳(TOC)含量是根据GB/T 19145—2003《沉积岩中总有机碳的测定》进行分析测试的。称取0.5 g左右样品于烧杯中,缓慢加入过量的盐酸溶液(HCl∶H2O=1:7(体积比)),以去除样品中的无机碳;温度控制在60 ℃~80 ℃,溶样2 h以上至反应完全为止,要尽量保证样品在反应过程中没有溅出;反应完全后用去离子水洗涤,并在10 000 r/min的转速下离心沉淀,如此重复三次以去除氯离子;洗涤干净后的样品在60 ℃下烘干备用;使用河南工程学院分析测试中心的vario MACRO cube 有机元素分析仪完成样品TOC含量测试。

      • 根据前人关于热成熟度的研究,激光拉曼光谱是一种计算反射率的非常合适的方法[40-42]。我们采用河南工程学院分析测试中心的Renishaw Invia Reflex激光拉曼光谱仪来测试样品的成熟度。计算公式为[43]R = 0.0537dG-D)-11.21,其中GDd分别指的是石墨碳、无序碳的峰位置以及G峰和D峰的间隔。由于在下古生界海相页岩中缺乏镜质体,因此利用沥青反射率来代表样品的热成熟度。镜质体反射率(R o)和沥青反射率(R b)的关系已获得较为成熟的研究,根据公式R o = (R b+0.244 3)/1.049 5进行热成熟度的换算[44]

      • 样品的矿物成分采用河南工程学院分析测试中心Bruker D8 ADVANCE X射线衍射仪进行测试分析。测试之前需将样品破碎并研磨至200目以下。扫描范围、步长分别为5°~80°、0.013°。参照石油天然气行业标准(SY/T)5163—2010进行半定量计算。

      • 低压N2吸附实验采用河南工程学院分析测试中心的Quantachrome autosorb iQ全自动气体吸附分析仪完成。在吸附测试之前,将样品在150 ℃条件下脱气4 h以去除易挥发物质。样品的比表面积采用多点BET(Brunauer-Emmett-Teller)方法计算。

      • 为了获得平整表面,在扫描电镜观察之前采用Leica EM TIC 3X氩离子抛光仪对样品进行抛光。同时,对样品表面进行了喷金处理,使其具有导电性,然后采用中国科学院地球化学研究所月球与行星研究中心的FEI Scios FE-SEM进行表面形貌及成分分析,加速电压为20 kV。

      • 四组泥页岩样品的有机地球化学特征见表1。其中,延长组样品TOC分布在0.4%~3.9%范围内,平均含量2.8%;该组样品R o范围为0.7%~1.4%,平均1.1%,表明该组样品多为富有机质低熟泥页岩。龙马溪组泥页岩TOC分布范围为0.3%~5.5%,平均含量2.6%;R o分布在2.5%~2.9%之间,平均2.8%。牛蹄塘组泥页岩TOC范围为0.3%~5.5%,平均含量2.2%;R o范围为2.8%~3.3%,平均3.1%。龙马溪组和牛蹄塘组泥页岩由底至顶均表现出TOC逐渐降低的趋势,是由沉积环境的变化所引起,即从深水环境向浅水环境过渡[36,45]。山西组泥页岩TOC范围为0.5%~2.9%,平均含量1.6%;R o范围为3.3%~3.6%,平均3.5%。该组样品垂向上TOC分布不均,这与海陆过渡相沉积环境有关。虽然该地层晚于龙马溪组和牛蹄塘组,但区域热事件造成了更高的热成熟度(>3.0%)[34,38]

      • 根据表1的矿物成分,以石英和长石、碳酸盐、黏土为三端元对比了这四组样品的矿物组成特征。如图2所示,延长组、龙马溪组和牛蹄塘组样品的主要矿物成分均为石英、黏土和长石,并含有少量的黄铁矿和碳酸盐矿物。相比于牛蹄塘组和延长组样品,龙马溪组泥页岩含有更高的石英和长石含量,代表了更高的脆性,可压裂性较好。另外,山西组泥页岩矿物组成差异性较大,这与沉积环境变化频繁关系密切,体现了海陆过渡相环境对矿物组成的重要影响。

        图  2  矿物组成三端元图

        Figure 2.  Ternary diagram of the mineralogical constituents

      • 根据低压N2吸附,分别计算了各个样品的BET比表面积、孔体积、平均孔径,如表2所示。其中,延长组样品的比表面积范围为8.4~17.2 m2/g,平均11.5 m2/g;孔体积范围为0.050~0.088 cm3/g,平均0.069 cm3/g;平均孔径范围为16.6~30.8 nm,平均24.4 nm。龙马溪组泥页岩的比表面积范围为21.6~36.5 m2/g,平均26.8 m2/g;孔体积范围为0.088~0.111 cm3/g,平均0.095 cm3/g;平均孔径范围为10.1~18.4 nm,平均14.4 nm。牛蹄塘组泥页岩的比表面积范围为15.5~32.0 m2/g,平均22.6 m2/g;孔体积范围为0.062~0.107 cm3/g,平均0.087 cm3/g;平均孔径范围为9.3~22.3 nm,平均16.4 nm。山西组样品的比表面积范围为8.0~15.5 m2/g,平均11.8 m2/g;孔体积范围为0.050~0.079 cm3/g,平均0.065 cm3/g;平均孔径范围为19.3~27.5 nm,平均22.3 nm。

        表 2  泥页岩样品的孔隙参数特征

        Table 2.  Pore parameter characteristics of the shale samples

        样品编号 BET比表面积/(m2/g) 孔体积/(cm3/g) 平均孔径/nm
        Y-1 11.0 0.062 22.7
        Y-2 8.4 0.050 23.9
        Y-3 16.7 0.075 17.9
        Y-4 17.2 0.071 16.6
        Y-5 10.7 0.082 30.8
        Y-6 12.7 0.088 27.9
        Y-7 11.1 0.079 28.5
        Y-8 8.7 0.051 23.4
        Y-9 10.7 0.068 25.6
        Y-10 12.0 0.072 24.1
        Y-11 10.7 0.073 27.4
        Y-12 9.3 0.056 24.0
        Y-13 10.4 0.064 24.8
        L-1 22.4 0.090 16.1
        L-2 21.6 0.100 18.4
        L-3 23.4 0.111 18.1
        L-4 22.0 0.088 15.9
        L-5 22.3 0.082 14.7
        L-6 25.1 0.092 14.7
        L-7 28.0 0.095 13.6
        L-8 29.8 0.098 13.1
        L-9 27.3 0.097 14.1
        L-10 27.0 0.092 13.6
        L-11 24.4 0.094 15.4
        L-12 33.0 0.094 11.4
        L-13 31.7 0.102 12.9
        L-14 36.5 0.093 10.1
        N-1 15.5 0.086 22.3
        N-2 16.9 0.093 22.1
        N-3 18.6 0.091 19.5
        N-4 18.3 0.082 18.0
        N-5 18.6 0.081 17.4
        N-6 22.8 0.101 17.7
        N-7 19.4 0.102 21.1
        N-8 17.8 0.099 22.3
        N-9 26.5 0.107 16.1
        N-10 28.2 0.095 13.6
        N-11 32.0 0.074 9.3
        N-12 25.9 0.062 9.6
        N-13 30.6 0.072 9.5
        N-14 25.4 0.072 11.3
        S-1 11.7 0.066 22.6
        S-2 12.2 0.066 21.7
        S-3 14.9 0.079 21.3
        S-4 10.2 0.068 26.5
        S-5 13.0 0.069 21.1
        S-6 10.5 0.066 25.2
        S-7 13.6 0.067 19.6
        S-8 13.3 0.064 19.3
        S-9 8.0 0.055 27.5
        S-10 8.6 0.050 23.1
        S-11 15.5 0.076 19.6
        S-12 10.0 0.050 19.9
      • 3~6显示不同热成熟度泥页岩中的孔隙发育特征差异明显。延长组样品基本不发育有机质孔隙,但发育有较多的矿物粒间孔及微裂隙;有机质周围发育有较多微裂隙,对于烃类运移有重要作用(图3)。龙马溪组泥页岩有机质孔隙极为发育,多为大孔和介孔,且形态多样,主要以圆形、椭圆形、不规则的狭缝型为主(图4)。牛蹄塘组泥页岩中多数有机质颗粒无纳米孔隙,且有机质与矿物颗粒之间往往发育因成岩演化所形成的微裂隙[46-47];也有部分有机质发育介孔,多为圆形、椭圆形(图5)。这种有机质孔隙发育的非均质性与孔隙的排烃作用是否完全密切相关[12]。值得注意的是,龙马溪组和牛蹄塘组泥页岩中有机质—黏土复合体中发育有较多的纳米孔隙(图4d,e、图5d,f),且形态特征与有机质颗粒中的孔隙有一定差异,源于黏土层对孔隙的影响。山西组样品与延长组类似,有机质孔隙基本不发育(图6b,c),这与其III型干酪根生烃潜量较低(不易发育纳米孔隙)有密切关系[38];但明显可见部分有机质的塌陷(图6d~f),可使数个甚至数十个小孔转化为大孔,因此产生了较多数百纳米甚至微米级大孔,说明这部分有机质在演化过程中产生过较多的纳米级孔隙,之后由于过高的热演化程度导致有机质结构发生改变造成孔隙坍塌。

        图  3  延长组(T3 y)泥页岩样品的微结构特征

        Figure 3.  Microstructure characteristics of the T3 y shale samples

        图  4  龙马溪组(S1 l)泥页岩样品的微结构特征

        Figure 4.  Microstructure characteristics of the S1 l shale samples

        图  5  牛蹄塘组(Є1 n)泥页岩样品的微结构特征

        Figure 5.  Microstructure characteristics of the Є1 n shale samples

        图  6  山西组(P1 s)泥页岩样品的微结构特征

        Figure 6.  Microstructure characteristics of the P1 s shale samples

        根据TOC与孔隙参数的相关性分析(图7),可见有机质对于孔隙参数有重要影响,热演化程度不同两者之间的相关性也会发生明显改变。随着热成熟度的增加,比表面积与TOC先呈负相关,后呈明显的正相关,最后趋于无明显相关性;同时,平均孔径与TOC表现出正好相反的相关性变化规律,这表明有机质发生了从无孔到多孔再到消失的转化;而孔体积总体上与TOC的相关性较弱,这主要是因为孔体积是由与矿物相关的大孔所主导。另外,龙马溪组和牛蹄塘组样品的TOC与孔隙参数具有相似的相关性,只是牛蹄塘组的相关系数更大,并且牛蹄塘组样品的孔体积与TOC呈弱负相关,根据SEM观察分析有机质孔隙的收缩导致孔径减小,使得TOC与比表面积的正相关、与平均孔径的负相关都更为显著,而孔体积则随TOC增加而减小。TOC与孔隙参数的相关性变化趋势表明有机质在向烃类转化过程中所产生的孔隙演化过程十分复杂。结合SEM观察结果及前人的热模拟研究,尽管热演化是泥页岩中有机质孔隙形成、发展及转化或者消失的驱动力[10],但并非唯一影响因素。前人研究也表明有机质的热成熟过程既有新孔隙的产生,也伴随着孔隙被石油、沥青等填充以及孔隙之间的转化[48]。因此,为了探讨除热成熟度以外其他影响有机质孔隙发育特征的因素,我们依据对上述四组样品(延长组、龙马溪组、牛蹄塘组、山西组)大量的FE-SEM观察,通过定量统计分析来深入探讨有机质孔隙发育特征的主要影响因素。

        图  7  TOC与孔隙参数的相关性分析

        Figure 7.  Correlation analysis between total organic carbon (TOC) and pore parameters

      • 四组泥页岩的热成熟度逐步递增表示其处于不同的热演化阶段,但由于沉积环境、构造背景及区域性特征差异,各组泥页岩储层在保存条件、矿物组成、有机质丰度、类型及显微组分等方面也存在明显不同,进而影响着泥页岩中有机质的生烃潜力和储集能力。因此,各组泥页岩中有机质孔隙发育特征必然受多重因素共同控制。通过对四组泥页岩样品的大量观察分析,本文分别论述了各演化阶段泥页岩中有机质孔隙发育的主要影响因素。

      • 为更好地对比有机质孔隙发育的差异性,我们利用Image J软件根据灰度差异对发育纳米孔隙的有机质进行了孔隙的定量统计分析。依据延长组泥页岩FE-SEM图像发现大多数有机质无孔隙发育(图3),少量有机质发育有大孔、介孔,甚至微孔(图8)(FE-SEM的分辨率不足以识别)。针对同一区域的有机质孔隙,定量统计发现孔隙发育特征有明显差异:如图8A所示,区域a中纳米孔隙的孔径(78 nm)是区域b(47 nm)的近两倍,而另一个样品中的有机质孔隙孔径只有5 nm(表3)。由此可见,对于延长组样品,既存在不发育孔隙的有机质,也存在孔径差异较大的有机质孔隙。

        图  8  延长组泥页岩中有机质孔隙发育特征对比分析

        Figure 8.  Comparison of organic matter (OM) pore development in T3 y shales

        表 3  图8中三个区域的孔隙统计分析

        Table 3.  Pore statistical analysis for the three regions in Fig.8

        位置 孔隙数量 平均孔隙面积/nm2 平均孔径/nm
        a 423 3 000 78
        b 210 1 000 47
        c 398 19 5

        结合前人研究,不同类型有机质的生烃能力、生烃时限有明显差异。根据干酪根显微组分比例,一般将有机质分为I型、II1型、II2型、III型。I型和II型干酪根发育有机质孔隙的潜力远高于III型。这是由于I型和II型干酪根具有比III型更好的生烃潜力[6,17-18]。延长组热演化程度相对较低,此时干酪根类型及显微组分对于孔隙产生的时间有重要影响。易于生烃的组分往往更早地产生孔隙,而生烃较晚或生烃能力较弱的组分则难以形成有机质孔隙。例如腐泥组和镜质组往往比惰质组具有更好的生烃潜能,因此也更易产生孔隙[6,20,38]。延长组泥页岩中有机质孔隙发育特征的非均质性说明孔隙产生的时间差异明显,表明其正处于有机质孔隙的形成阶段,有机质类型及显微组分对于有机质孔隙的发育有主导作用。

      • 泥页岩热演化达到一定程度时,生烃潜能较高的有机质(如I型)大量生烃会形成丰富的纳米孔隙,并且随着生烃过程的进行,孔隙结构也会随之发生改变。龙马溪组泥页岩I型有机质占主导地位,普遍发育纳米孔隙。通过对有机质孔隙进行统计分析发现,有机—无机相互作用严重影响着有机质孔隙的结构特征。根据无机矿物组分特征,可将有机—无机作用进一步划分为有机质—脆性矿物相互作用和有机质—黏土矿物相互作用。由于有机质对应力的抵抗性较弱,有机质与脆性矿物的接触往往造成有机质发生一定程度的变形[49]。如图9所示,当有机质处于挤压环境时,孔隙发育较少且孔径很小,且沿矿物颗粒边缘孔隙展现出定向分布的特征;当远离应力来源的矿物颗粒时,压应力减弱,孔隙逐渐发育,且孔径变大。而当有机质颗粒处于拉张环境时,孔隙往往更为发育且孔径更大。造成这种现象的原因主要有两个:一是有机质生烃反应是一个体积增大的反应,根据化学平衡原理,压力增大使生烃反应受到抑制,从而延迟有机质的成熟进程[50];二是在孔隙产生后,脆性矿物对有机质颗粒的挤压造成垂直应力方向孔宽减小,易于形成定向排列,而拉张环境则更利于孔隙的生长[49]

        图  9  应力条件对有机质孔隙发育的影响

        Figure 9.  Influence of stress conditions on OM pore development

        泥页岩中部分可溶有机质可与黏土矿物相互作用形成复合体,其对有机质的聚集、沉积、保存均有重要作用,是烃源岩中油气生成的一种天然母质。有机质和黏土矿物的结合过程既有矿物的转化(如蒙脱石的伊利石化),也伴随着有机质的生烃,因此有机质—黏土复合体中的有机质孔隙具有比颗粒有机质孔隙更为复杂的演化过程。通过对比相同区域有机质—黏土复合体和颗粒有机质中的孔隙大小(图10),发现颗粒有机质孔隙(29 nm和30 nm)比复合体中的孔隙(21 nm和23 nm)更大(表4)。分析认为该阶段有机质—黏土复合体对于孔隙的发育起到一定的抑制作用,限制了孔隙的生长。这是因为在热演化过程中,有机质—黏土复合体中的黏土层通过隔绝或吸收外部温压而抑制有机质的热演化。泥页岩中蒙脱石的伊利石化与干酪根生油的埋深和温度范围一致[51-52],且随着热演化程度的增加,混层矿物(伊蒙混层)中伊利石的含量逐渐增加[50,53-54],表明在这个过程中蒙脱石可吸收部分温压而发生矿物转化,进而对内部有机质形成保护,不利于有机质的热演化和孔隙生长。另外黏土层之间的狭小空间及微小的有机质颗粒也不利于纳米孔隙的生长[12]

        图  10  龙马溪组泥页岩颗粒有机质和有机质—黏土复合体中纳米孔隙对比分析

        Figure 10.  Comparison of nanopores in discrete OM and organic⁃clay composites for S1 l shales

        表 4  图10中四个区域的孔隙统计分析

        Table 4.  Pore statistical analysis for the four regions in Fig.10

        位置 孔隙数量 平均孔隙面积/nm2 平均孔径/nm
        a 190 424 29
        b 350 151 21
        c 167 394 30
        d 231 182 23

        综合上述分析,龙马溪组泥页岩处于有机质孔隙发育的高峰阶段,有机—无机相互作用制约着有机质孔隙的形貌和结构特征,主要体现在两个方面:脆性矿物对有机质颗粒所形成的应力作用和有机质—黏土复合体对孔隙生长的抑制作用。

      • 泥页岩达到生烃高峰后,排烃作用开始占据主导地位,有机质孔隙中烃类的逸散加剧了这一进程[12]。相比于龙马溪组,牛蹄塘组泥页岩排烃作用更为完全,有机质孔隙因地层应力较大更易被压实甚至消失[46-47]。微裂隙(成岩裂隙或构造成因裂隙)作为排烃作用的主要通道,能够有效增加有机质孔隙的连通性,从而促进烃类逸散[55]。如图11所示,相同区域的有机质颗粒孔隙发育差异明显,A图因周围微裂隙的发育造成有机质孔隙中烃类散失,使得孔隙内部压力降低,在地层压力作用下而被压实;D图则因无微裂隙发育,孔隙仍然保持着内部压力而免于被压实。

        图  11  牛蹄塘组泥页岩颗粒有机质中孔隙发育的差异性及其与有机质—黏土复合体中纳米孔隙的对比分析

        Figure 11.  The difference of pore development in discrete OM and the comparison with pores in organic⁃clay composites for Є1 n shales

        此外,需要注意的是,牛蹄塘组泥页岩中的有机质—黏土复合体也发育有大量的纳米孔隙,并且复合体周围是否存在微裂隙对孔隙发育几乎没有影响。通过对比统计分析有机质—黏土复合体和颗粒有机质中的孔隙大小(图11C~F),发现两种形态的有机质孔隙孔径较为一致(表5)。结合龙马溪组泥页岩中两种形态有机质中的孔隙分析,表明一方面牛蹄塘组中的颗粒有机质孔隙可能因压实作用而使孔径减小甚至消失,另一方面有机质—黏土复合体对孔隙有保护作用,分析认为在孔隙的发育过程中因黏土层的隔绝作用而降低了孔隙连通性,使有机质孔隙不会因为失去内部压力而被压实。另外,有机质—黏土复合体的结构特征也对孔隙有一定的保护作用,主要体现在:1)黏土层之间的表面张力。由于黏土矿物层之间相互连接,两个黏土层之间一般为几个纳米到上百纳米,使得层间的表面张力能够对有机质形成强有力的吸附,从而使有机质不会因热演化而收缩[56-57]。2)有机质—黏土复合体的结构稳定性。对于应力作用,复合体具有比颗粒有机质更强的抵抗能力[58],这进一步保护了复合体中的孔隙不被压实。

        表 5  图11中四个区域的孔隙统计分析

        Table 5.  Pore statistical analysis for the four regions in Fig.11

        位置 孔隙数量 平均孔隙面积/nm2 平均孔径/nm
        a 699 107 18
        b 900 121 18
        c 651 161 19
        d 699 91 17

        综上所述,牛蹄塘组泥页岩处于有机质孔隙的收缩阶段,颗粒有机质周围微裂隙的发育情况(或保存条件)决定着孔隙的发育。该阶段有机质—黏土相互作用在一定程度上抑制了孔隙的收缩,也是孔隙发育的主要影响因素。

      • 豫西地区上古生界二叠系烃源岩热成熟度普遍过高,可能与区域热事件有关[33,38]。该地区大规模的热事件所形成的过高的地温促使豫西地区烃源岩快速达到过高成熟阶段,并生成终极产物CH4。山西组过高的热演化程度虽能使该地区干酪根充分反应成烃,但由于有机质类型主要为III型,生烃潜能较差[38,59],产生有机质孔隙的能力十分有限。另外,该区域烃源岩生气高峰的时代以中侏罗世为主,三叠纪和白垩纪次之,明显早于南方龙马溪组海相页岩气古近纪的生气高峰[33]。生气高峰时间越早,越不利于页岩气的保存。豫西地区野外露头剖面和钻井地层中发育了大量的裂隙和断层,FE-SEM也观察到微裂隙十分发育(图6a~c)。这既有可能是生烃作用产生的不规则裂隙,也可能是后期构造作用形成的规则破裂,但无论成因如何都可促使烃类的逸散[33,38]。因此即使在热成熟过程中产生了有机质孔隙,也会在后期因保存条件差使有机质孔隙被逐渐压实而消失。

        此外,山西组过高的热演化程度也可能引起部分有机质发生变质或结构塌陷(图6d~f)。前人关于高演化阶段有机质的力学性能研究表明有机质的杨氏模量值与化学结构参数之间存在良好的正相关性,说明有机质表面微观力学性能受控于其内部化学结构,有机质的微观力学性能可影响其在生气阶段生成并保留纳米孔隙的能力[60]。也就是说,随着热成熟度的持续增加,部分有机质达到变质期,其固体干酪根和焦沥青的物理化学性质均趋近于石墨,导致其有机质内部不发育孔隙[8]。另一方面,有机质从粘弹态演变为玻璃态,产生的气态烃无法保留形成孔隙,内部生成的纳米孔隙不断坍塌、合并[60],最终使得有机质孔隙转化形成大孔甚至微米级孔隙或者消失。综上,我们认为山西组泥页岩处于有机质孔隙的转化和消失阶段,保存条件和有机质类型及结构是该组泥页岩有机质孔隙发育情况的主要影响因素。

      • (1) 延长组泥页岩基本不发育有机质孔隙,但发育有较多的矿物粒间孔及微裂隙;龙马溪组泥页岩有机质孔隙极为发育,多为大孔和介孔,且形态多样;牛蹄塘组泥页岩中多数有机质不发育纳米孔隙,部分有机质发育介孔,这种有机质孔隙发育的非均质性可能与孔隙的排烃作用是否完全有关。山西组泥页岩部分有机质不发育孔隙,部分有机质有明显结构塌陷,可能发生了孔隙的转化。

        (2) 随着热成熟度的增加,孔隙参数特征与TOC的相关性有明显变化:比表面积与TOC先呈负相关,后呈明显地正相关,最后趋于无明显相关性;平均孔径与TOC表现出正好相反的相关性变化规律;而孔体积总体上与TOC的相关性较弱,可能是因为孔体积是由与矿物相关的大孔所主导。这种相关性变化体现了不同演化阶段有机质对于孔隙的贡献有明显差异。造成这种差异的因素除热成熟度外,还有其他因素,如有机质类型及显微组分、有机—无机相互作用及保存条件等。

        (3) 四组泥页岩储层分别处于有机质孔隙演化的四个阶段:形成阶段、高峰阶段、收缩阶段、转化和消失阶段,各阶段孔隙发育特征的主导因素不同。延长组陆相泥页岩处于有机质孔隙形成阶段,有机质类型及显微组分主导着有机质孔隙的发育;龙马溪组海相泥页岩处于有机质孔隙发育高峰阶段,有机—无机相互作用制约着有机质孔隙的形貌和结构特征;牛蹄塘组海相泥页岩处于有机质孔隙收缩阶段,颗粒有机质周围微裂隙和有机质—黏土复合体的发育情况决定着孔隙的发育特征;山西组海陆过渡相泥页岩处于有机质孔隙的转化和消失阶段,有机质孔隙是否发育以及形态特征受制于保存条件和有机质类型及结构。

    参考文献 (60)

    目录

      /

      返回文章
      返回