高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海微孔泥晶碳酸盐岩储层研究进展

李云 胡作维 詹旗胜 史格 管晋红 王兴建

李云, 胡作维, 詹旗胜, 史格, 管晋红, 王兴建. 浅海微孔泥晶碳酸盐岩储层研究进展[J]. 沉积学报, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063
引用本文: 李云, 胡作维, 詹旗胜, 史格, 管晋红, 王兴建. 浅海微孔泥晶碳酸盐岩储层研究进展[J]. 沉积学报, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063
LI Yun, HU ZuoWei, ZHAN QiSheng, SHI Ge, GUAN JinHong, WANG XingJian. Research Progress on Shallow-sea Microporous Micritic Carbonate Reservoirs[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063
Citation: LI Yun, HU ZuoWei, ZHAN QiSheng, SHI Ge, GUAN JinHong, WANG XingJian. Research Progress on Shallow-sea Microporous Micritic Carbonate Reservoirs[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063

浅海微孔泥晶碳酸盐岩储层研究进展

doi: 10.14027/j.issn.1000-0550.2021.063
基金项目: 

国家自然科学基金 41772100, 41372113

详细信息
    作者简介:

    李云,女,1983年出生,博士研究生,高级实验师,沉积岩石学,E-mail: liycdut@foxmail.com

    通讯作者:

    胡作维,男,教授,沉积地球化学、储层沉积学,E-mail: huzuowei@foxmail.com

  • 中图分类号: P588.2

Research Progress on Shallow-sea Microporous Micritic Carbonate Reservoirs

Funds: 

National Natural Science Foundation of China 41772100, 41372113

  • 摘要: 微孔泥晶灰岩储层是一种重要的油气储层类型,尤其是对于中东地区白垩系碳酸盐岩储层,这明显不同于典型碳酸盐岩储层—古风化壳型岩溶储层、礁滩相储层及层状白云岩储层等三大类型。泥晶基质具有致密镶嵌结构和白垩质结构两种结构类型。泥晶晶体具有微菱形、圆形和它形三种晶体形态,以圆形泥晶储层物性最好,微菱形泥晶储层其次,它形泥晶为致密储层。微孔(直径小于10 μm)是泥晶基质中孔隙的主体,除此还发育铸模孔、海绵状基质溶孔和溶蚀沟道等。微孔的形成主要受原始矿物组分和成岩条件的共同制约:低镁方解石灰泥是微孔泥晶灰岩形成的先决原始矿物条件,相对矿物学稳定性可促进原始组构包括原生晶间微孔的保存。特殊的成岩环境是微孔泥晶灰岩发育的必要改造条件,泥晶灰岩中孔隙的形成是早期浅层埋藏下大气淡水淋滤及埋藏成岩期间有机酸溶蚀作用等两期溶蚀叠加的结果。在浅埋藏淡水透镜体内,方解石次生加大(奥斯特瓦尔德成熟过程)形成了沉积物早期胶结,防止压实的同时部分保留了原始结构和晶间微孔网络,还通过消除小晶体提高了渗透性;淡水选择性淋滤也形成了较广泛发育的铸模孔。在埋藏成岩过程中,有机酸性流体溶蚀作用形成海绵状基质溶孔及溶蚀沟道,也导致了圆形泥晶晶体的形成。
  • 图  1  微孔泥晶灰岩储层的三种主要类型泥晶形态及其岩石物性特征[39]

    I型储层质量最好,对应于粒状半自形结构,孔隙度和渗透率较高,孔喉半径较大;II型储层质量中等,特征为粒状自形和聚集状疏松结构,中等孔隙度、中等渗透率,中等孔喉半径;III型储层质量最差,其孔隙度、渗透率和孔喉半径最小,且以拟合状结构为主

    Figure  1.  Micrite morphology and petrophysical properties of the three main microporous micritic limestone[39]

    图  2  泥晶结构中泥晶的三种形态及形态术语[17]

    (a)具微孔的圆形泥晶;(b)具微孔的微菱形泥晶;(c)致密的它形泥晶;(d~f)对应(a~c)三种泥晶形态的三维模拟图

    Figure  2.  Three morphologies and morphological terms for micrites in micritic limestones[17]

    图  3  微孔泥晶灰岩的微孔孔隙特征[39]

    (a)中东白垩系微孔泥晶灰岩储层的显微薄片照片。蓝色环氧树脂铸体薄片,在平面偏振光下显示为典型的微孔“蓝色雾霾”;(b)同一蓝色环氧树脂铸体薄片的背散射照片,低镁方解石泥晶基质(灰色)中发育的微孔(小黑点)包围着大孔(黑色);(c)在更高的放大倍数下,与(b)部分相同薄片的背散射照片,显示泥晶晶体的详细排列特征;(d)新破碎表面(同一样品位置)的二次电子扫描电镜显微照片,显示了含有微孔隙的泥晶晶体格架

    Figure  3.  Micropore characteristics of microporous micritic limestones[39]

    图  4  微孔泥晶灰岩中基质溶孔、铸模孔及溶蚀沟通的显微特征

    (a)海绵状基质溶孔,生屑泥晶灰岩;(b)海绵状基质溶孔,含生屑泥晶灰岩;(c)溶蚀沟道,生屑泥晶灰岩;(d)铸模孔,含生屑泥晶灰岩

    Figure  4.  Microscopic characteristics of matrix dissolution pores, mold pores and dissolution communication in microporous micritic limestones

    图  5  中东地区微孔碳酸盐岩的分布时段与全球显生宙不同时期海水性质分布图[11]

    (a)不同时期微孔碳酸盐岩储层分布时段;(b)全球显生宙不同时期海水Mg/Ca比值

    Figure  5.  Seawater properties and distribution of microporous carbonate rocks in different periods[11]

    图  6  微孔泥晶碳酸盐岩与致密泥晶碳酸盐岩在早成岩期间成岩过程的区别[12,16]

    1~4代表了在方解石海和长期海侵或高位时期沉积的浅海相碳酸盐岩台地。A~D(微孔相)、W~Z(致密相)显示了泥晶基质的演化过程(图宽约15 μm)。第一阶段:碳酸盐泥构成了核形石、球粒、有孔虫、双壳、棘皮、绿藻和腹足等粒屑沉积物的基质,主要由低镁方解石晶体和少量文石针及来自生物解体的高镁方解石晶体组成(图A和W)。第二阶段:在短期海退过程中,沉积物中形成了一个淡水潜水透镜体。在透镜体内(主要是在其顶部),最不稳定的晶体(文石、高镁方解石和最小的低镁方解石)溶蚀,有利于最稳定的泥晶(最大的低镁方解石)次生加大(图B)。方解石次生加大巩固了泥晶基质的原始微结构,在一定程度上保护了晶间微孔。位于淡水透镜体之外的碳酸盐沉积物不受这些溶解—再沉淀过程的影响,它们基本上保持不变(图X)。第三阶段:海侵再次淹没沉积物回到海洋环境,泥晶基质的溶解—再沉淀过程终止并不再发生改变(图C),淡水透镜体内部的碳酸盐沉积物构成了早期胶结层。位于淡水透镜体之外的沉积物基本保持不变(图Y)。第四阶段:可容纳空间内沉积的沉积物(浅灰色)使先前沉积物压实(深灰色)。早期胶结层抵抗压实形成微孔泥晶灰岩(图D,点状到锯齿状接触的微组构),而早期未发生强烈胶结的沉积物则被压实并形成致密泥晶灰岩(图Z为致密微组构)

    Figure  6.  Different diagenetic processes for microporous micritic carbonate rocks and tight micritic carbonate rocks during early diagenesis[12,16]

    图  7  微孔碳酸盐岩储层的埋藏溶蚀成因模式图[17]

    Figure  7.  Burial dissolution genetic model of microporous carbonate reservoirs[17]

    图  8  泥晶灰岩微孔的成因机制

    Figure  8.  Genetic mechanism of micritic limestone micropores

  • [1] Wilson J L. Carbonate facies in geologic history[M]. Berlin: Springer-Verlag, 1975: 1-471.
    [2] Bebout D G, Pendexter C. Secondary carbonate porosity as related to early Tertiary depositional facies, Zelten field, Libya[J]. AAPG Bulletin, 1975, 59(4): 665-693.
    [3] Friedman G M. Reefs and porosity: Examples from the Indonesian Archipelago[J]. Proceedings of the South East Asia Petroleum Exploration Society, 1983, 6: 35-40.
    [4] Loucks R L, Sullivan P A. Microrhombic calcite diagenesis and associated microporosity in deeply buried Lower Cretaceous shelf-margin limestones (abstract)[C]//SEPM annual midyear meeting abstracts. 1987: 49-50.
    [5] Budd D A. Micro-rhombic calcite and microporosity in limestones: A geochemical study of the Lower Cretaceous thamama Group, U.A.E.[J]. Sedimentary Geology, 1989, 63(3/4): 293-311.
    [6] Moshier S O. Microporosity in micritic limestones: A review[J]. Sedimentary Geology, 1989, 63(3/4): 191-213.
    [7] Moshier S O. Development of microporosity in a micritic limestone reservoir, Lower Cretaceous, Middle East[J]. Sedimentary Geology, 1989, 63(3/4): 217-240.
    [8] Perkins R D. Origin of micro-rhombic calcite matrix within Cretaceous reservoir rock, West Stuart City Trend, Texas[J]. Sedimentary Geology, 1989, 63(3/4): 313-321.
    [9] Witt W, Gokdag H. Orbitolinid biostratigraphy of the Shuaiba Formation (Aptian), Oman: Implications for reservoir development[M]//Simmons M D. Micropaleontology and hydrocarbon exploration in the Middle East. London: Chapman and Hall, 1994: 221-234.
    [10] Alsharhan A S, Nairn A E M. Sedimentary basins and petroleum geology of the Middle East[M]. Amsterdam: Elsevier, 1997: 1-843.
    [11] Volery C, Davaud E, Foubert A, et al. Shallow-marine microporous carbonate reservoir rocks in the Middle East: Relationship with seawater Mg/Ca ratio and eustatic sea level[J]. Journal of Petroleum Geology, 2009, 32(4): 313-325.
    [12] Volery C, Davaud E, Durlet C, et al. Microporous and tight limestones in the Urgonian Formation (Late Hauterivian to early Aptian) of the French Jura Mountains: Focus on the factors controlling the Formation of microporous facies[J]. Sedimentary Geology, 2010, 230(1/2): 21-34.
    [13] de Periere M D, Durlet C, Vennin E, et al. Morphometry of micrite particles in Cretaceous microporous limestones of the Middle East: Influence on reservoir properties[J]. Marine and Petroleum Geology, 2011, 28(9): 1727-1750.
    [14] Wilson J L. Limestone and dolomite reservoirs[M]//Hobson G D. Developments in petroleum geology2. London: Applied Science Publishers Ltd., 1980: 1-51.
    [15] Maliva R G, Missimer T M, Clayton E A, et al. Diagenesis and porosity preservation in Eocene microporous limestones, South Florida, USA[J]. Sedimentary Geology, 2009, 217(1/2/3/4): 85-94.
    [16] Volery C, Davaud E, Foubert A, et al. Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir Formation (Cenomanian to Early Turonian, Middle East)[J]. Facies, 2010, 56(3): 385-397.
    [17] Lambert L, Durlet C, Loreau J P, et al. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing[J]. Marine and Petroleum Geology, 2006, 23(1): 79-92.
    [18] 高计县,田昌炳,张为民,等. 伊拉克鲁迈拉油田Mishrif组碳酸盐岩储层特征及成因[J]. 石油学报,2013,34(5):843-852.

    Gao Jixian, Tian Changbing, Zhang Weimin, et al. Characteristics and genesis of carbonate reservoir of the Mishrif Formation in the Rumaila oil field, Iraq[J]. Acta Petrolei Sinica, 2013, 34(5): 843-852.
    [19] 王昱翔,周文,郭睿,等. 伊拉克哈勒法耶油田塞迪组碳酸盐岩储层特征及高孔低渗成因分析[J]. 石油实验地质,2016,38(2):224-230.

    Wang Yuxiang, Zhou Wen, Guo Rui, et al. Characteristics and origin of high porosity and low permeability carbonate reservoirs in the Sa’di Formation, Halfaya oil field, Iraq[J]. Petroleum Geology & Experiment, 2016, 38(2): 224-230.
    [20] 金值民,谭秀成,郭睿,等. 伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素[J]. 沉积学报,2018,36(5):981-994.

    Jin Zhimin, Tan Xiucheng, Guo Rui, et al. Pore structure characteristics and control factors of carbonate reservoirs: The Cretaceous Mishrif Formation, Halfaya oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2018, 36(5): 981-994.
    [21] 邓虎成,周文,郭睿,等. 伊拉克艾哈代布油田中—下白垩统碳酸盐岩储层孔隙结构及控制因素[J]. 岩石学报,2014,30(3):801-812.

    Deng Hucheng, Zhou Wen, Guo Rui, et al. Pore structure characteristics and control factors of carbonate reservoirs: The Middle-Lower Cretaceous Formation, AI Hardy cloth oilfield, Iraq [J]. Acta Petrologica Sinica, 2014, 30(3): 801-812.
    [22] 周文,郭睿,伏美燕,等. 伊拉克艾哈代布油田白垩系生物铸模孔及体腔孔发育的灰岩储层特征及成因分析[J]. 岩石学报,2014,30(3):813-821.

    Zhou Wen, Guo Rui, Fu Meiyan, et al. Characteristics and origin of Cretaceous limestone reservoir with bio-moldic pore and intrafossil pore, in AHDEB oilfield, Iraq[J]. Acta Petrologica Sinica, 2014, 30(3): 813-821.
    [23] 李峰峰,郭睿,余义常. 伊拉克M油田白垩系Mishrif组沉积特征及控储机理[J]. 沉积学报,2020,38(5):1076-1087.

    Li Fengfeng, Guo Rui, Yu Yichang, et al. Sedimentary characteristics and control in reservoirs in the Cretaceous Mishrif Formation, M oilfield, Iraq[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1076-1087.
    [24] 孙文举,乔占峰,邵冠铭,等. 伊拉克哈法亚油田中白垩统Mishrif组MB1-2亚段沉积与储集层构型[J]. 石油勘探与开发,2020,47(4):713-722.

    Sun Wenju, Qiao Zhanfeng, Shao Guanming, et al. Sedimentary and reservoir architectures of MB1-2 sub-member of Middle Cretaceous Mishrif Formation of Halfaya oilfield in Iraq[J]. Petroleum Exploration and Development, 2020, 47(4): 713-722.
    [25] Choquette P W, Pray L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250.
    [26] Hollis C, Vahrenkamp V, Tull S, et al. Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies[J]. Marine and Petroleum Geology, 2010, 27(4): 772-793.
    [27] Bruna P O, Guglielmi Y, Lamarche J, et al. Porosity gain and loss in unconventional reservoirs: Example of rock typing in Lower Cretaceous hemipelagic limestones, SE France (Provence)[J]. Marine and Petroleum Geology, 2013, 48: 186-205.
    [28] Eltom H, Abdullatif O, Makkawi M, et al. Microporosity in the Upper Jurassic Arab-D carbonate reservoir, central Saudi Arabia: An outcrop analogue study[J]. Journal of Petroleum Geology, 2013, 36(3): 281-297.
    [29] Pittman E D. Microporosity in carbonate rocks: Geological notes[J]. AAPG Bulletin, 1971, 55(10): 1873-1878.
    [30] Cantrell D L, Hagerty R M. Microporosity in Arab Formation carbonates, Saudi Arabia[J]. GeoArabia, 1999, 4(2): 129-154.
    [31] Trabelsi A, Beg M A. Characterization and mapping of burrowed and microporous intervals in the Arab D reservoir, dukhan field, Qatar[C]//Abu Dhabi international petroleum exhibition and conference. Abu Dhabi, United Arab: Society of Petroleum Engineers, 2000.
    [32] Smith L B, Eberli G P, Masaferro J L, et al. Discrimination of effective from ineffective porosity in heterogeneous Cretaceous carbonates, Al Ghubar field, Oman[J]. AAPG Bulletin, 2003, 87(9): 1509-1529.
    [33] Richard J, Sizun J P, Machhour L. Development and compartmentalization of chalky carbonate reservoirs: The Urgonian Jura-Bas Dauphiné platform model (Génissiat, southeastern France)[J]. Sedimentary Geology, 2007, 198(3/4): 195-207.
    [34] Fournier F, Borgomano J. Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks[J]. Geophysics, 2009, 74(2): E93-E109.
    [35] Vincent B, Fleury M, Santerre Y, et al. NMR relaxation of neritic carbonates: An integrated petrophysical and petrographical approach[J]. Journal of Applied Geophysics, 2011, 74(1): 38-58.
    [36] Petricola M J C, Takezaki H, Asakura S. Saturation evaluation in micritic reservoirs: Raising to the challenge[C]//Abu Dhabi international petroleum exhibition and conference. Abu Dhabi, United Arab: Society of Petroleum Engineers, 2002.
    [37] Mallon A J, Swarbrick R E. How should permeability be measured in fine-grained lithologies? Evidence from the chalk[J]. Geofluids, 2008, 8(1): 35-45.
    [38] Hasiuk F J, Kaczmarek S E, Fullmer S M. Diagenetic origins of the calcite microcrystals that host microporosity in limestone reservoirs[J]. Journal of Sedimentary Research, 2016, 86(10): 1163-1178.
    [39] Kaczmarek S E, Fullmer S M, Hasiuk F J. A universal classification scheme for the microcrystals that host limestone microporosity[J]. Journal of Sedimentary Research, 2015, 85(10): 1197-1212.
    [40] Lucia F J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization[J]. AAPG Bulletin, 1995, 79(9): 1275-1300.
    [41] Lucia F J. Carbonate reservoir characterization[M]. Berlin: Springer-Verlag, 1999: 1-226.
    [42] Melim L A, Anselmetti F S, Eberli G P. The importance of pore type on permeability of Neogene carbonates, Great Bahama bank[M]//Ginsburg R N. Subsurface geology of a prograding carbonate platform margin, great bahama bank: Results of the Bahamas drilling project. Tulsa: SEPM Society for Sedimentary Geology, 2001: 217-238.
    [43] Rifai R I. Origin of micro-rhombic calcite and associated microporosity in Upper Jurassic carbonate rocks, North Sinai, Egypt[J]. Al-Azhar Bulletin of Science, 2002, 13(1): 59-78.
    [44] Clerke E A, Mueller III H W, Phillips E C, et al. Application of Thomeer hyperbolas to decode the pore systems, facies and reservoir properties of the Upper Jurassic Arab D limestone, Ghawar field, Saudi Arabia: A “Rosetta Stone” approach[J]. GeoArabia, 2008, 13(4): 113-160.
    [45] Loucks R G, Lucia F J, Waite L E. Origin and description of the micropore network within the Lower Cretaceous Stuart City Trend tight-gas limestone reservoir in Pawnee Field in South Texas[J]. GCAGS Journal, 2013, 2: 29-41.
    [46] Lønøy A. Making sense of carbonate pore systems[J]. AAPG Bulletin, 2006, 90(9): 1381-1405.
    [47] Archie G E. Classification of carbonate reservoir rocks and petrophysical considerations[J]. AAPG Bulletin, 1952, 36(2): 278-298.
    [48] Jodry R L. Pore geometry of carbonate rocks, basic geologic concepts[M]//Chilingar G V, Mannon R W, Rieke H H. Oil and gas production from carbonate rocks. Amsterdam: Elsevier, 1972: 35-82.
    [49] Ahr W M. Early diagenetic microporosity in the Cotton Valley Limestone of east Texas[J]. Sedimentary Geology, 1989, 63(3/4): 275-292.
    [50] Kaldi J. Diagenetic microporosity (chalky porosity), Middle Devonian Kee Scarp reef complex, Norman Wells, Northwest Territories, Canada[J]. Sedimentary Geology, 1989, 63(3/4): 241-252.
    [51] Saller A H, Moore C H. Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands[J]. Sedimentary Geology, 1989, 63(3/4): 253-272.
    [52] Munnecke A, Westphal H, Reijmer J J G, et al. Microspar development during early marine burial diagenesis: A comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden)[J]. Sedimentology, 1997, 44(6): 977-990.
    [53] Turpin M, Emmanuel L, Renard M. Nature and origin of carbonate particles along a transect on the western margin of Great Bahama Bank (Middle Miocene): Sedimentary processes and depositional model[J]. Bulletin de la Société Géologique de France, 2008, 179(3): 231-244.
    [54] Turpin M, Emmanuel L, Reijmer J J G, et al. Whiting-related sediment export along the Middle Miocene carbonate ramp of Great Bahama Bank[J]. International Journal of Earth Sciences, 2011, 100(8): 1875-1893.
    [55] Al-Aasm I S, Azmy K K. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp Reefs, Norman Wells, Northwest Territories, Canada: Petrographic and chemical evidence[J]. AAPG Bulletin, 1996, 80(1): 82-99.
    [56] Loucks R G, Moody R T J, Bellis J K, et al. Regional depositional setting and pore network systems of the El Garia Formation (Metlaoui Group, Lower Eocene), offshore Tunisia[M]//MacGregor D S, Moody R T J, Clark-Lowes D D. Petroleum geology of North Africa. Geological Society, London, Special Publications, 1998, 132(1): 355-374.
    [57] Land L S. Chert-chalk diagenesis: The Miocene island slope of North Jamaica[J]. Journal of Sedimentary Petrology, 1979, 49(1): 223-232.
    [58] Dravis J J. Sedimentology and diagenesis of the Upper Cretaceous Austin Chalk Formation, south Texas and northern Mexico[D]. Houston: Rice University, 1980: 1-367.
    [59] Holail H, Lohmann K C. The role of early lithification in development of chalky porosity in calcitic micrites: Upper Cretaceous chalks, Egypt[J]. Sedimentary Geology, 1994, 88(3/4): 193-200.
    [60] Ehrenberg S N, Aqrawi A A M, Nadeau P H. An overview of reservoir quality in producing Cretaceous strata of the Middle east[J]. Petroleum Geoscience, 2008, 14(4): 307-318.
    [61] Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929): 19-22.
    [62] Hardie L A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y[J]. Geology, 1996, 24(3): 279-283.
    [63] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions[J]. Science, 2001, 294(5544): 1086-1088.
    [64] Stanley S M, Ries J B, Hardie L A. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24): 15323-15326.
    [65] Dickson J A D. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans[J]. Science, 2002, 298(5596): 1222-1224.
    [66] Dickson J A D. Echinoderm skeletal preservation: Calcite-aragonite Seas and the Mg/Ca ratio of Phanerozoic oceans[J]. Journal of Sedimentary Research, 2004, 74(3): 355-365.
    [67] Siemann M G. Extensive and rapid changes in seawater chemistry during the Phanerozoic: Evidence from Br contents in basal halite[J]. Terra Nova, 2003, 15(4): 243-248.
    [68] Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144(1/2): 3-19.
    [69] Moss S, Tucker M E. Diagenesis of Barremian-Aptian platform carbonates (the Urgonian Limestone Formation of SE France): Near-surface and shallow-burial diagenesis[J]. Sedimentology, 1995, 42(6): 853-874.
    [70] Lasemi Z, Sandberg P A. Transformation of aragonite-dominated lime muds to microcrystalline limestones[J]. Geology, 1984, 12(7): 420-423.
    [71] Melim L A, Westphal H, Swart P K, et al. Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas[J]. Marine Geology, 2002, 185(1/2): 27-53.
    [72] Hamilton G D. Styles of reservoir development in Middle Devonian carbonates of southwestern Ontario[D]. Waterloo: University of Waterloo, 1991: 1-203.
    [73] Cox P A, Wood R A, Dickson J A D, et al. Dynamics of cementation in response to oil charge: Evidence from a Cretaceous carbonate field, U.A.E.[J]. Sedimentary Geology, 2010, 228(3/4): 246-254.
    [74] Dravis J J. Deep-burial microporosity in Upper Jurassic Haynesville oolitic grainstones, East Texas[J]. Sedimentary Geology, 1989, 63(3/4): 325-341.
    [75] 叶德胜. 碳酸盐岩中的一种储集空间:微孔隙[J]. 石油与天然气地质,1992,13(2):125-134.

    Ye Desheng. A reservoir type in carbonate rocks: Microporosity[J]. Oil & Gas Geology, 1992, 13(2): 125-134.
    [76] Coimbra R, Immenhauser A, Olóriz F. Matrix micrite δ13C and δ18O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones (Betic Cordillera, SE Spain)[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 332-348.
    [77] Jones B, Kahle C F. Origin of endogenetic micrite in karst terrains: A case study from the Cayman islands[J]. Journal of Sedimentary Research (SEPM), 1995, 65A(2): 283-293.
    [78] Rameil N, Immenhauser A, Csoma A É, et al. Surfaces with a long history: The Aptian top Shu'aiba Formation unconformity, Sultanate of Oman[J]. Sedimentology, 2012, 59(1): 212-248.
    [79] Léonide P, Fournier F, Reijmer J J G, et al. Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian limestone, Barremian-Aptian, SE France)[J]. Sedimentary Geology, 2014, 306: 1-23.
    [80] Hollis C. Diagenetic controls on reservoir properties of carbonate successions within the Albian-Turonian of the Arabian Plate[J]. Petroleum Geoscience, 2011, 17(3): 223-241.
    [81] de Periere M D, Durlet C, Vernnin E, et al. Influence of a major exposure surface on the development of microporous micritic limestones -Example of the Upper Mishrif Formation (Cenomanian) of the Middle East[J]. Sedimentary Geology, 2017, 353: 96-113.
    [82] Farzadi P. The development of Middle Cretaceous carbonate platforms, Persian Gulf, Iran: Constraints from seismic stratigraphy, well and biostratigraphy[J]. Petroleum Geoscience, 2006, 12(1): 59-68.
    [83] Farzadi P, Hesthammer J. Diagnosis of the Upper Cretaceous palaeokarst and turbidite systems from the Iranian Persian Gulf using volume-based multiple seismic attribute analysis and pattern recognition[J]. Petroleum Geoscience, 2007, 13(3): 227-240.
    [84] Hajikazemi E, Al-Aasm I S, Coniglio M. Chemostratigraphy of Cenomanian-Turonian carbonates of the Sarvak Formation, southern Iran[J]. Journal of Petroleum Geology, 2012, 35(2): 187-205.
    [85] Ostwald W. Lehrbuch der allgemeinen chemie[M]. Leipzig: Verlag von Wilhelm Engelmann, 1887: 1-909.
    [86] Baronnet A. Ostwald ripening in solution -The case of calcite and mica[J]. Estudios Geologicos, 1982, 38: 185-198.
    [87] Morse J W, Casey W H. Ostwald processes and mineral paragenesis in sediments[J]. American Journal of Science, 1988, 288(6): 537-560.
    [88] Wonders A A H. Middle and Late Cretaceous pelagic sediments of the Umbrian sequence in the Central Apennines[J]. Koninklijke Nederlandse Akademie van Wetenschappen, B, 1978, 82: 171-205.
    [89] Ferry S, Schaaf A. The early Cretaceous environment at deep sea drilling project site 463 (Mid-Pacific Mountains), with reference to the vocontian trough (French Subalpine Ranges)[M]//Thiede J, Vallier T L, Adelseck C G. Initial reports of the deep sea drilling project, volume62. Washington, US: Government Printing Office, 1981: 669-682.
    [90] Carpentier C, Ferry S, Lécuyer C, et al. Origin of micropores in Late Jurassic (Oxfordian) micrites of the eastern Paris Basin, France[J]. Journal of Sedimentary Research, 2015, 85(6): 660-682.
    [91] 叶德胜. 塔里木盆地北部上丘里塔格群致密灰岩微孔储层的发现及意义[J]. 石油实验地质,1993,15(2):174-184.

    Ye Desheng. The discovery of compacted limestone microporous reservoir in the Upper Qiulitage Group, the northern Tarim Basin and its significance[J]. Experiment Petroleum Geology, 1993, 15(2): 174-184.
  • [1] 姚泾利, 石小虎, 杨伟伟, 张雷, 解丽琴, 安文宏, 王慧玲, 张仁燕.  鄂尔多斯盆地陇东地区二叠系太原组铝土岩系储层特征及勘探意义 . 沉积学报, 2023, 41(5): 1583-1597. doi: 10.14027/j.issn.1000-0550.2022.034
    [2] 伍坤宇, 熊鹰, 谭秀成, 刘向君, 张云峰, 陈晓冬, 李亚锋, 郭荣涛, 曹喆, 王鹏.  储层孔隙系统“水—岩”反应结晶动力学研究进展 . 沉积学报, 2022, 40(4): 996-1009. doi: 10.14027/j.issn.1000-0550.2021.029
    [3] 任娜娜, 韩波, 张军涛, 冯菊芳, 王晓涛, 朱爽, 马强, 田海芹, 何治亮.  海水进退、滩坪出没、云化岩溶等与碳酸盐岩储层关系研究——以上扬子地台龙王庙组为例 . 沉积学报, 2018, 36(6): 1190-1205. doi: 10.14027/j.issn.1000-0550.2018.068
    [4] 吴其林, 但志伟, 肖为, 曾驿, 周小康, 侯志平.  珠江口盆地H区块碳酸盐岩储层地震沉积学应用研究 . 沉积学报, 2015, 33(4): 828-835. doi: 10.14027/j.cnki.cjxb.2015.04.021
    [5] 李婷婷, 朱如凯, 白斌, 王崇孝, 李铁峰.  混积岩储层特征——以酒泉盆地青西凹陷下白垩统混积岩为例 . 沉积学报, 2015, 33(2): 376-384. doi: 10.14027/j.cnki.cjxb.2015.02.017
    [6] 赵国祥, 王清斌, 杨波, 刘丰, 王飞龙.  渤海海域旅大21构造沙四段水体环境对储层成岩作用及物性的影响 . 沉积学报, 2014, 32(5): 957-965.
    [7] 马朗凹陷芦草沟组泥页岩储层含油性特征与评价 . 沉积学报, 2014, 32(1): 166-173.
    [8] 东营凹陷泥页岩矿物组成及脆度分析 . 沉积学报, 2013, 31(04): 616-620.
    [9] 郭建华, 石媛媛, 刘辰生, 朱锐.  塔里木盆地阿克库勒凸起西缘东河砂岩储集物性非均质性研究 . 沉积学报, 2005, 23(3): 406-411.
    [10] 李斌, 孟自芳, 李相博, 卢红选, 郑民.  靖安油田上三叠统长6储层成岩作用研究 . 沉积学报, 2005, 23(4): 574-583.
    [11] 岳伏生, 马龙, 李天顺.  查干凹陷下白垩统碎屑岩储层成岩演化与油气成藏 . 沉积学报, 2002, 20(4): 644-649.
    [12] 董冬.  断陷湖盆陡坡带碎屑流沉积单元的沉积序列和储集特征——以东营凹陷永安地区为例 . 沉积学报, 1999, 17(4): 566-571.
    [13] 李儒峰, 鲍志东.  鄂尔多斯盆地中部马五1亚段高分辨率层序地层格架中风化成岩模式和储层特征 . 沉积学报, 1999, 17(3): 390-396.
    [14] 张廷山, 兰光志, S.Kershaw, 边立曾, 俞剑华.  四川盆地南北缘志留纪生物礁成岩作用及储层特征 . 沉积学报, 1999, 17(3): 374-382.
    [15] 李忠, 周海民, 丛良滋.  南堡凹陷成岩场及其对下第三系储层成岩格架的控制 . 沉积学报, 1997, 15(S1): 114-119.
    [16] 徐志强, 熊明.  饶阳凹陷下第三系碎屑岩储集条件分析 . 沉积学报, 1996, 14(2): 95-101.
    [17] 马永生, 李启明, 关德师.  鄂尔多斯盆地中部气田奥陶系马五1-4碳酸盐岩微相特征与储层不均质性研究 . 沉积学报, 1996, 14(1): 22-32.
    [18] 郭建华.  塔里木盆地轮南地区奥陶系潜山古岩溶及其所控制的储层非均质性 . 沉积学报, 1993, 11(1): 56-64.
    [19] 何海清, 晋慧娟.  准噶尔盆地陆1井砂岩成岩作用及其对储层的影响 . 沉积学报, 1991, 9(4): 69-77.
    [20] 童熙盛, 唐勇.  重庆凉风垭飞仙关组风暴流沉积 . 沉积学报, 1990, 8(3): 121-127.
  • 加载中
图(8)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  44
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-05-04
  • 刊出日期:  2021-12-10

目录

    浅海微孔泥晶碳酸盐岩储层研究进展

    doi: 10.14027/j.issn.1000-0550.2021.063
      基金项目:

      国家自然科学基金 41772100, 41372113

      作者简介:

      李云,女,1983年出生,博士研究生,高级实验师,沉积岩石学,E-mail: liycdut@foxmail.com

      通讯作者: 胡作维,男,教授,沉积地球化学、储层沉积学,E-mail: huzuowei@foxmail.com
    • 中图分类号: P588.2

    摘要: 微孔泥晶灰岩储层是一种重要的油气储层类型,尤其是对于中东地区白垩系碳酸盐岩储层,这明显不同于典型碳酸盐岩储层—古风化壳型岩溶储层、礁滩相储层及层状白云岩储层等三大类型。泥晶基质具有致密镶嵌结构和白垩质结构两种结构类型。泥晶晶体具有微菱形、圆形和它形三种晶体形态,以圆形泥晶储层物性最好,微菱形泥晶储层其次,它形泥晶为致密储层。微孔(直径小于10 μm)是泥晶基质中孔隙的主体,除此还发育铸模孔、海绵状基质溶孔和溶蚀沟道等。微孔的形成主要受原始矿物组分和成岩条件的共同制约:低镁方解石灰泥是微孔泥晶灰岩形成的先决原始矿物条件,相对矿物学稳定性可促进原始组构包括原生晶间微孔的保存。特殊的成岩环境是微孔泥晶灰岩发育的必要改造条件,泥晶灰岩中孔隙的形成是早期浅层埋藏下大气淡水淋滤及埋藏成岩期间有机酸溶蚀作用等两期溶蚀叠加的结果。在浅埋藏淡水透镜体内,方解石次生加大(奥斯特瓦尔德成熟过程)形成了沉积物早期胶结,防止压实的同时部分保留了原始结构和晶间微孔网络,还通过消除小晶体提高了渗透性;淡水选择性淋滤也形成了较广泛发育的铸模孔。在埋藏成岩过程中,有机酸性流体溶蚀作用形成海绵状基质溶孔及溶蚀沟道,也导致了圆形泥晶晶体的形成。

    English Abstract

    李云, 胡作维, 詹旗胜, 史格, 管晋红, 王兴建. 浅海微孔泥晶碳酸盐岩储层研究进展[J]. 沉积学报, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063
    引用本文: 李云, 胡作维, 詹旗胜, 史格, 管晋红, 王兴建. 浅海微孔泥晶碳酸盐岩储层研究进展[J]. 沉积学报, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063
    LI Yun, HU ZuoWei, ZHAN QiSheng, SHI Ge, GUAN JinHong, WANG XingJian. Research Progress on Shallow-sea Microporous Micritic Carbonate Reservoirs[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063
    Citation: LI Yun, HU ZuoWei, ZHAN QiSheng, SHI Ge, GUAN JinHong, WANG XingJian. Research Progress on Shallow-sea Microporous Micritic Carbonate Reservoirs[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1580-1592. doi: 10.14027/j.issn.1000-0550.2021.063
      • 在中东、北非、东南亚和北美墨西哥湾海岸,尤其是在中东地区,白垩系浅海低能环境沉积的、以分散状微孔隙为主要储集空间、以泥晶基质胶结或支撑为特色的含生屑泥晶灰岩、生屑泥晶灰岩或泥晶生屑灰岩等碳酸盐岩类(统称“微孔泥晶碳酸盐岩Microporous Micritic Carbonate Rock”)是一种重要的油气储集岩类型[1-13]。微孔泥晶灰岩从潮坪到浅海台地都可发育,泥晶基质中存在丰富的弥散状微孔,形成特殊的多孔的白垩质结构(Chalky texture)[1,5,9,14],直径常小于10 μm的微孔[15]是其孔隙的主要构成部分。在这些微孔泥晶灰岩储层中,由微菱形和圆形低镁方解石组成微孔晶间格架,泥晶方解石晶体直径一般小于8 μm,特别是在中东地区[10-11];孔隙度为0~25%,渗透率可达数百毫达西[11-13]。与之相伴且形成明显对比的是,泥晶灰岩也可形成孔隙度和渗透率很低(常小于5%)的致密层[12,16-17]

        尽管微孔泥晶碳酸盐岩储层明显不同于传统的古风化壳型岩溶储层(古潜山储层)、礁滩相储层及层状白云岩储层等三大典型碳酸盐岩储层,但其油气地质意义不可忽视并且越来越重要。然而,目前对作为泥晶灰岩孔隙主体的微孔孔隙的成因却仍然知之甚少且争议巨大,原因共有三方面:1)研究微米级大小的泥晶晶体及微孔(直径小于10 μm)所涉及的分析技术和操作方法与常规储层相比显得较为复杂和明显困难得多;2)目前缺乏可进行类比研究的类似的碳酸盐岩沉积物,热带海洋碳酸盐台地中沉积的现代碳酸盐灰泥主要是由不稳定的文石和高镁方解石组成,在成岩过程中没有保留原有的微孔结构而呈致密状,与中东地区白垩系微孔泥晶灰岩储层中以低镁方解石为主要成分的泥晶基质完全不同;目前也仅见西班牙马德里盆地晚中新世湖相微孔泥晶灰岩与中东地区下土伦阶Mishrif组浅海碳酸盐岩储层的基质微组构相似[12,16];3)以泥晶灰岩或泥晶支撑的碳酸盐岩储层类型在很多国家和地区并不发育,长期以来没有得到充分认识,其在我国的相关研究也只是随着近年来海外油气项目的拓展得以关注,并对该类微孔泥晶碳酸盐岩储层的发育特征、成因、主控因素等进行了初步研究[18-24]。因此,到目前为止,微孔泥晶灰岩比常规粗孔大孔灰岩储层受到的关注程度明显要少得多。

        尽管微孔泥晶灰岩储层的孔隙体积通常类似于相对粗粒灰岩中发育的大孔隙(孔隙直径>62 μm[25]),但其渗透性变化很大,常形成非均质油藏[13,15,26-28];束缚水常见[15,29-35],强大的毛细管力将大部分石油保留在原位,导致石油采收变得困难,也使得水油饱和度、采收率难以预测和实现[36-37]。因此,本文基于国外研究现状以及我国海外油气勘探现状,综合分析归纳微孔泥晶灰岩储层晶体形态特征、孔隙结构特征及孔隙成因等特征,以期能够对提高非常规成熟油田的油气采收率、提高非常规油藏产量等提出指导性建议,并进一步丰富对碳酸盐岩储层类型的认识。

      • 中东地区白垩系浅海相微孔泥晶灰岩中的泥晶基质由泥晶低镁方解石晶体组成[38],晶体粒径总体小于4 μm,较大的晶体可以达到8 μm,即微亮晶。泥晶碳酸盐岩中泥晶基质通常具有多孔的白垩质结构(Chalky texture)和致密镶嵌结构(Mosaic textures)两种结构类型。白垩质结构又叫晶体骨架结构(Crystal-framework texture),发育在具有微孔的浅水碳酸盐台地泥晶沉积物而非真正的远洋白垩沉积中[6-7],具有较大的晶间孔隙度(图1a,b),孔隙度一般介于15%~30%,渗透率超过1.0×10-3 μm2。致密镶嵌结构在古老的灰泥中十分常见,最常见的特点是泥晶晶体呈它形,具有曲线状和平直晶棱,晶间孔隙度小于5%(图1c)。

        图  1  微孔泥晶灰岩储层的三种主要类型泥晶形态及其岩石物性特征[39]

        Figure 1.  Micrite morphology and petrophysical properties of the three main microporous micritic limestone[39]

        泥晶颗粒结晶学、晶体形态和晶间接触类型是控制微孔泥晶碳酸盐岩储层物性的最重要参数,泥晶形态结构(包括晶体形状和接触关系)在微孔泥晶碳酸盐岩储层与无孔致密镶嵌储层之间存在较大的差异[13,17,33,39-42]。很多学者已经[5,7,17,39]分别提出了中东地区白垩系泥晶灰岩储层泥晶基质的形态分类,在总体上分别分为三种主要类型的泥晶形态并对应三种储层分类。

        Kaczmarek et al.[39]根据泥晶晶体形状、堆积和晶棱密度的不同,将泥晶分为粒状半自形晶(Granular-subhedral)、粒状自形晶(Granular-euhedral)、松散聚集状(Clustered-loose)、熔结聚集状(Clustered-fused)、部分拟合(Fitted-partial)和熔结拟合(Fitted-fused)等六种形态类型,并进一步总结划分为粒状、聚集状和拟合状三大结构组合类型。粒状结构包括半自形和自形晶体,由未固结的菱形到多面体泥晶构成,表现出直线—曲线状边界和中等晶棱密度。聚集状结构包括松散和熔结聚集状晶体,由不规则形状的泥晶构成,具有相对高密度的不连续曲线状晶棱。拟合状结构包括部分熔结和熔结拟合类晶体,表现为较大的泥晶晶体密集镶嵌,大多数具曲线边界和相对较低的晶棱密度。三种结构类型对应着三种岩石物理微孔“类型”(图1)。I型与粒状半自形晶体结构一致,通常表现出较大的平均孔喉半径(0.7 µm)以及高的孔隙度(>20%)和渗透率((1~20)×10-3 μm2);II型包括粒状自形和聚集状结构,具有中等平均孔喉半径(0.2 µm)、孔隙度(10%~20%)和渗透率((0.1~1)×10-3 μm2);III型包括拟合状结构,通常具有较小的平均孔喉半径(0.06 µm)及相对较低的孔隙度(<10%)和渗透率(<0.1×10-3 μm2),相当于Moshier[7]所称的“无孔晶体镶嵌结构”。

        但Kaczmarek et al.[39]形态描述分类较多且术语相对复杂,在实际应用中比较困难。在微孔泥晶灰岩的相关研究中,较早地识别出一种典型的微菱形泥晶方解石(Micro-rhombic calcite)[5,8,43]。Lambert et al.[17]将泥晶灰岩中泥晶分为圆形泥晶、微菱形泥晶和致密它形泥晶三种典型的微观形态特征(图2),这种更为直观且易于理解的形态描述术语得到较广泛使用[12-13,16]。微孔泥晶灰岩储层常由圆形和微菱形泥晶构成,圆形泥晶最常出现在微孔油藏顶部附近,微菱形泥晶发育于油层或水层中部至底部及储层侧翼微孔相中;圆形泥晶相的储层物性最好,微菱形泥晶在好储层和差储层中都存在,圆形泥晶的平均孔隙度比微菱形泥晶的高8%~13%;而它形泥晶常出现在储层基部或侧翼富缝合线的非储层相致密层中[17]。圆形晶体晶面极少呈平面状,晶体之间呈点接触。微菱形晶体呈自形到半自形,晶体之间通常呈点接触,有时呈锯齿状接触。它形晶体呈半自形到它形(或异型),晶体之间呈锯齿状接触。

        图  2  泥晶结构中泥晶的三种形态及形态术语[17]

        Figure 2.  Three morphologies and morphological terms for micrites in micritic limestones[17]

      • 微孔在中东、北非、东南亚、北美和欧洲的中新生界(尤其是中东白垩系)泥晶灰岩储层中普遍存在[11-13,15-17,35,44-45]。“微孔”一词通常用于描述蓝色环氧树脂铸体的石灰岩岩石薄片中观察到的“蓝色雾霾”(图3a)。通过扫描电子显微镜对“蓝色雾霾”进行详细研究,发现绝大多数微孔的特征是孔隙空间发育于密度不等的泥晶晶体格架内(图3b~d)。对微孔的定义通常是基于孔隙直径大小,微孔直径一般小于10 μm[25,30,46]。具有微孔的泥晶灰岩储层具白垩质结构(Chalky texture)或晶体骨架结构(Crystal-framework texture),具有较大的晶间孔隙度(图3),一般在15%~30%之间,渗透率超过1.0×10-3 μm2,大多数孔隙为直径5~10 μm的多面体孔洞,由直径0.5~2 μm的孔喉相互连接,孔隙高度分散,沿着晶棱呈狭窄的、平直的或层状空间,是碳酸盐基质晶间微孔的主要组成部分。微孔泥晶灰岩的毛管压力曲线显示孔喉大小分布一般呈“分选良好”和倾斜较细[47-48]

        图  3  微孔泥晶灰岩的微孔孔隙特征[39]

        Figure 3.  Micropore characteristics of microporous micritic limestones[39]

        微孔泥晶灰岩中发育多种孔隙类型,包括原生晶间微孔和溶蚀增强的基质晶间溶孔(或称海绵状基质溶孔),还可发育铸模孔和溶蚀沟道(Microchannels)(图4)。溶蚀作用可增强晶体骨架结构的晶间微孔。次生微孔直径一般小于64 μm。微孔空间连通性好时,一些晶间微孔或微裂隙或缝合线为溶蚀性流体提供通道,沿基质边界溶蚀形成明显的次生晶间微孔隙,骨骼碎片和微化石的溶解会产生微铸模孔,也可能产生较大的溶洞和溶蚀沟道,使孔隙度和渗透率增加。

        图  4  微孔泥晶灰岩中基质溶孔、铸模孔及溶蚀沟通的显微特征

        Figure 4.  Microscopic characteristics of matrix dissolution pores, mold pores and dissolution communication in microporous micritic limestones

      • 微孔泥晶碳酸盐岩中微孔的成因与灰泥的成岩作用密切相关,因为碳酸盐岩中的微孔结构是岩石石化过程中发生的物质和孔隙度转变以及随后的灰泥蚀变的产物。对于白垩质结构及微孔的形成提出了许多假说和多种成岩模式[5-8,17,49-52],尤其是当成岩模式中又叠加了成岩阶段和演化时间等影响因素时,目前还没有一个结论性的模型能令人满意地解释它们的成因,但确定这些控制沉积和成岩因素是了解和预测微孔泥晶碳酸盐岩储层分布的关键。尽管关于微孔泥晶灰岩成因的观点分歧大、争论剧烈,但总体上来说,特殊的原始矿物组成及特殊的成岩条件是其主要控制因素目前得到了较广泛的认可。

      • 泥晶方解石晶体是目前灰岩中微孔隙发育的主要赋存矿物[6-7,38-39],而原始矿物学(文石、高镁方解石和低镁方解石)控制着早期矿物学稳定的强度,从而控制着早期胶结和溶蚀的强度,被认为是微孔泥晶灰岩储层形成的主要控制因素之一[11-12,16]。解释泥晶灰岩基质及其相关微孔的主要问题之一是确定灰泥的来源和初始矿物[53-54],对于这种物质的原始沉积矿物有两种观点:一种认为原始沉积矿物是文石和/或高镁方解石[5,12-13,16-17,30,49,51,55-56],另一种观点认为原始矿物是低镁方解石[15,57-59]

        不管灰泥主要是来自于海水直接沉淀,还是来自于碳酸盐质生物的机械分解,海水性质都控制了原生碳酸盐矿物的性质。Volery et al.[11]根据不同海水化学特征,发现中东地区在晚石炭世至三叠纪文石海时期形成的36个碳酸盐岩储层都未形成微孔碳酸盐岩;而已知的微孔碳酸盐岩储层多发育于白垩纪方解石海期间;新生代方解石海向文石海过渡时期,4个微孔碳酸盐岩储层之中的3个是在海水成分发生变化之前形成的(图5a)。并且白垩纪是中东储层沉积时代在体积和数量上最重要的时期,白垩纪地层的可采石油和可采天然气分别占50%和13%;白垩纪储层也比中东任何其他地质时期的储层都要多[60]

        图  5  中东地区微孔碳酸盐岩的分布时段与全球显生宙不同时期海水性质分布图[11]

        Figure 5.  Seawater properties and distribution of microporous carbonate rocks in different periods[11]

        白垩纪是一个以方解石海洋为特征的时期(图5b)[61-67],主要由低镁方解石组成的厚壳蛤生物是主要的碳酸盐建造者[68],低镁方解石是主要的非生物成因海相沉积物[61],文石和高镁方解石主要是生物成因的,微孔泥晶灰岩储层的原始沉积物是一个“方解石海”环境中沉积的多矿物组合[33,69],低镁方解石灰泥是有利于微孔泥晶灰岩发育的原始沉积物。因此,这些浅海微孔碳酸盐岩似乎是主要由低镁方解石晶体组成的原始灰泥发展而来的。

        热带海洋碳酸盐台地沉积的现代碳酸盐泥主要由不稳定的文石和高镁方解石组成,在成岩过程中没有保留原有的微孔结构。在淡水[70]或埋藏成岩作用[52,71]中,文石和高镁方解石灰泥转化为由低镁方解石组成的石灰岩。它们的结构与中东地区微孔泥晶灰岩中的基质显著不同,其晶体一般大于4 μm,呈它形致密状,常含残余文石针。虽然新鲜的文石质和高镁方解石灰泥的孔隙度可以达到70%,但在成岩固结后,岩石的孔隙度只有5%左右[70],比在典型的微孔泥晶灰岩中发现的孔隙度要低得多,因而文石和高镁方解石灰泥不可能是微孔泥晶碳酸盐岩的潜在原始沉积物;以文石和高镁方解石为主的现代浅海环境不能作为地质记录中微孔泥晶碳酸盐岩研究的类似物。这些灰泥的矿物学不稳定性阻止了其原始微孔结构的保存,会转化为致密泥晶灰岩。

        低镁方解石灰泥的相对高稳定性可能解释了为什么浅海微孔碳酸盐岩在方解石海期间发育。与由文石或高镁方解石晶体组成的灰泥相比,低镁方解石灰泥矿物学性质相对稳定,可促进原始微组构(包括原生晶间微孔)在中等成岩作用条件下部分保存下来。以低镁方解石为主的灰泥与文石和高镁方解石灰泥相比具有相对较高的矿物学稳定性,是形成微孔泥晶灰岩的先决条件。

      • 低镁方解石灰泥是微孔灰岩形成的先决原始矿物条件,但也有其他因素影响其演化,特殊的成岩条件是微孔泥晶灰岩发育的必要改造条件。根据岩石学和地球化学数据,各种成岩环境与微孔隙的形成有关,包括大气潜水[5-6,12,16,58-59],淡水—海水混合[17,49],早埋藏[13,15,17,30,55,72-73]和深埋藏[74-75]。同时,对于控制浅层碳酸盐台地微孔形成的具体成岩过程也有很多说法,如海水中稳定作用[7,55,59,76]、极浅至浅埋藏条件下大气淡水影响的早期成岩过程[5,8,11,13,16,77-78]、深埋藏期间的溶蚀作用[17]、构造暴露表生期溶蚀[21,79]等,因而目前成岩因素的观点分歧较大。然而,目前主要有两种成因观点得到比较广泛地认可:与暴露有关的极浅至浅埋藏条件下大气淡水影响的早期成岩过程[5,8,11,13,16,77-78]、埋藏期间溶蚀[17]

      • 在白垩纪和新生代,中东地区微孔碳酸盐岩储层的发育一般与大型海侵和相对海平面的高位有关[12,16]。有利条件出现在主要的海侵期,在海平面停滞或低幅度海平面下降期间,大气潜水透镜体发育,并在随后的海平面上升期间迅速被反应性较弱的海水所取代。相比之下,在海平面下降时期,会导致渗透性胶结作用的形成,随着原始泥晶组构的破坏,原生晶间微孔隙度急剧减少[80-81],而其他类型的储层可在此条件下发育(如岩溶储层、古土壤和铝土矿)[82-84],但不会形成微孔泥晶灰岩。

        与具有较高δ 13C值、晶体细小(<2 μm)、晶体以它形为主、阴极发光下明亮发光的泥晶基质占优势的致密泥晶灰岩相比,在微孔泥晶灰岩中,泥晶粗大(>2 μm),以半自形为主,在阴极发光下发光非常暗,δ 13C比值偏负[81],再加上微孔泥晶灰岩中出现小晶体与大晶体共存的双峰晶粒模式[16],表明方解石次生加大是大气潜水透镜体内沉积物的早期成岩转变(图6)。不稳定晶体(文石、高镁方解石与小的低镁方解石晶体)的溶解为更稳定晶体(大的低镁方解石晶体)上发育的次生加大生长提供了物质[85-87]。小晶体的溶解有利于大晶体的次生加大(奥斯特瓦尔德成熟过程[85]),这些溶解—再沉淀过程或进积新生变形作用形成了沉积物的早期胶结,使沉积物硬化,防止压实,同时部分保留了原始的结构和原始的晶间微孔网络[12,16],使泥晶区域孔隙网络发生改变[33];该过程还通过消除小尺寸的晶体来提高渗透性。如果在进积新生变形作用之前发生海底岩化,使泥晶胶结物沉淀和(或)泥晶区域内晶体生长导致固—固接触增加,则可发育致密灰岩。Volery et al.[12,16]根据与中东地区下土伦阶Mishrif组浅海泥晶碳酸盐岩储层的基质微组构相似的西班牙马德里盆地晚中新世湖相微孔泥晶灰岩研究认为:在马德里盆地的白垩纪海水和中新世晚期淡水湖泊中,低镁方解石是主要的碳酸盐沉淀矿物,致密相的压实作用较强,微孔相的压实作用较弱,而致密相和微孔相灰岩的岩石结构、沉积成分、矿物学和化学成分基本一致,唯一的区别在于方解石次生加大普遍存在于微孔灰岩中,但在致密碳酸盐中几乎不存在。

        图  6  微孔泥晶碳酸盐岩与致密泥晶碳酸盐岩在早成岩期间成岩过程的区别[12,16]

        Figure 6.  Different diagenetic processes for microporous micritic carbonate rocks and tight micritic carbonate rocks during early diagenesis[12,16]

        然而,对于深海远洋沉积的微孔泥晶灰岩,如意大利东南部的赛诺曼阶和马斯特里赫特阶“Scaglia”灰岩[88]或中太平洋海山的上白垩统碳酸盐浊积岩[89],则很难考虑这种情况。

        除此之外,Léonide et al.[79]认为早期大气淡水成岩作用是法国东南部巴雷姆阶—阿普特阶碳酸盐台地灰泥中原生孔隙全部封闭的原因,认为孔隙度的增加主要是由于早期埋藏时的奥斯特瓦尔德成熟和表生期间(Telogenesis)淡水流体的溶解。Carpentier et al.[90]研究法国巴黎盆地东部上侏罗统牛津阶泥晶灰岩微孔时,认为地表以下大气淡水的渗入可能有利于矿物稳定过程,增强早期的孔隙闭合,早期暴露表面下的大气淡水成岩作用并不是泥晶灰岩孔隙形成的系统原因,相反可能导致致密泥晶灰岩的形成。出现这种情况,可能与海平面下降时间长和形成渗透性胶结作用有关,随着原始泥晶组构的破坏,原生晶间微孔隙度急剧减少。

      • 微孔泥晶灰岩在埋藏成岩期间可能发育溶蚀作用[17,33]。Richard et al.[33]研究了法国东南部Jura and Bas台地下白垩统巴雷姆阶上部和阿普特阶中部Urgonian灰岩中微孔的形成过程,认为溶解过程在泥晶区形成了铸模孔和晶间宏观孔隙。Lambert et al.[17]对中东地区侏罗系—白垩系潟湖相灰泥研究后,认为在埋藏成岩过程中,可能在油气充注阶段之前和期间发生运移的酸性流体(特别是沿通道和盖层上方的流体)会改善微菱形泥晶的储层特性(图7),造成埋藏溶解作用,形成圆形泥晶晶体,增加孔隙度(8%~13%),减小泥晶晶体晶粒大小(平均约1 μm)。

        图  7  微孔碳酸盐岩储层的埋藏溶蚀成因模式图[17]

        Figure 7.  Burial dissolution genetic model of microporous carbonate reservoirs[17]

        由此可见,泥晶灰岩中孔隙(包括原生晶间微孔和溶蚀增强的海绵状基质溶孔以及铸模孔和溶蚀沟道)的形成有可能是早期浅层埋藏下大气淡水淋滤以及埋藏成岩期间有机酸溶蚀作用等两期溶蚀作用叠加的结果(图8)。在近地表海洋环境中,泥晶化形成了部分晶间微孔隙。在浅层埋藏大气淡水环境下,淡水透镜体内部的文石和高镁方解石的矿物学相对不稳定作用导致生物骨骼颗粒溶解形成了铸模大孔隙。不稳定晶体的溶解(文石、高镁方解石与小的低镁方解石晶体)有利于更稳定的、大的低镁方解石晶体发生次生加大生长(奥斯特瓦尔德成熟过程或进积新生变形作用),形成了沉积物的早期胶结使沉积物硬化,在防止压实作用进行的同时,还部分保留了原始的结构和原始的晶间微孔网络,并通过消除小尺寸的晶体提高了渗透性。最后,在埋藏成岩过程中,有机酸性流体溶蚀作用可能会改善微菱形泥晶的储层特性,形成圆形泥晶晶体并进一步形成海绵状基质溶孔及溶蚀沟道,增加了孔隙度。

        图  8  泥晶灰岩微孔的成因机制

        Figure 8.  Genetic mechanism of micritic limestone micropores

      • 尽管浅海微孔泥晶碳酸盐岩储层研究在国外已经得到了广泛关注,但由于这类储层多发育在中生界白垩系海相地层,而我国白垩系多为陆相地层,同时近期的一些相关研究也是基于海外区块油气项目,因而总的来说,我国对以泥晶灰岩或泥晶支撑的碳酸盐岩储层并没有给予太多关注。

        事实上,前期已有一些学者对我国古生代泥微晶灰岩储层给予了一些关注,如叶德胜[75,91]研究了塔里木盆地北部上丘里塔格群致密灰岩微孔储层,并认为上述泥微晶灰岩是重要的潜在储集岩。但值得注意的是,上述泥微晶灰岩储层的孔隙度很小,大多数均小于1.5%[75,91],同时其储集空间颇有争议(裂隙型、裂隙—缝合线型或缝合线—微孔型?),且其微孔几乎只能通过扫描电镜进行观察,因而这些泥微晶灰岩储层与国外浅海微孔泥晶碳酸盐岩储层仍有很大差别,而且我国古生代浅海泥晶灰岩所在层系总体具有时代老、成因多、埋藏深、成岩强、改造大等特点,造成其储层形成机理非常复杂,因而我国古生代浅海泥晶灰岩油气勘探仍然面临着诸多挑战。当然,我国古生代浅海泥晶灰岩相当发育,这类储层仍具有一定的油气勘探潜力。

      • (1) 泥晶灰岩通常具有微孔的白垩质结构和致密的镶嵌结构两种结构类型。泥晶颗粒结晶学、晶体形态和晶间接触类型是控制微孔泥晶碳酸盐岩储层物性的最重要参数,泥晶形态结构(包括晶体形状和接触面)在微孔泥晶碳酸盐岩储层相与非微孔致密泥晶储层之间存在较大的差异,泥晶基质总体上分为三种主要类型的泥晶形态并对应三种储层分类:常由圆形泥晶和微菱形泥晶构成的微孔泥晶灰岩储层,由它形泥晶构成的致密灰岩。

        (2) 泥晶灰岩中存在多种孔隙类型孔,包括原生晶间微孔和溶蚀增强的海绵状基质溶孔,以及铸模孔和溶蚀沟道。碳酸盐基质的晶间微孔宽度一般为5~10 μm,是碳酸盐基质晶间微孔的主要组成部分。溶蚀可增强晶体格架结构的晶间微孔隙度。

        (3) 微孔的形成主要受到原始矿物组分和成岩条件的共同制约。以低镁方解石晶体为主的灰泥与文石和高镁方解石灰泥相比具有较高的稳定性,是形成微孔泥晶灰岩的先决矿物条件。特殊的成岩条件是微孔泥晶灰岩发育的必要改造条件,表现为泥晶灰岩中孔隙(包括原生晶间微孔和溶蚀增强的海绵状基质溶孔、铸模孔和溶蚀沟道)的形成是早期浅层埋藏下大气淡水淋滤以及埋藏成岩期间有机酸溶蚀作用等两期溶蚀作用叠加的结果。在浅埋藏淡水透镜体内,方解石次生加大(奥斯特瓦尔德成熟过程)形成了沉积物早期胶结抵抗压实作用,部分保留了原始结构和原始晶间微孔网络,并通过消除小尺寸晶体提高了渗透性;淡水选择性淋滤也形成了较广泛发育的铸模孔。在埋藏成岩过程中,有机酸性流体溶蚀作用形成海绵状基质溶孔及溶蚀沟道,也导致了圆形泥晶形状的形成。

    参考文献 (91)

    目录

      /

      返回文章
      返回