高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海湾盆地渤中19⁃6凝析气田高蜡凝析油地球化学特征及成因分析

胡安文 于海波 刘朋波 邓辉 梁舒艺 沈桐

胡安文, 于海波, 刘朋波, 邓辉, 梁舒艺, 沈桐. 渤海湾盆地渤中19⁃6凝析气田高蜡凝析油地球化学特征及成因分析[J]. 沉积学报, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102
引用本文: 胡安文, 于海波, 刘朋波, 邓辉, 梁舒艺, 沈桐. 渤海湾盆地渤中19⁃6凝析气田高蜡凝析油地球化学特征及成因分析[J]. 沉积学报, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102
HU AnWen, YU HaiBo, LIU PengBo, DENG Hui, LIANG ShuYi, SHEN Tong. Geochemical Characteristics and Origin of High-wax Condensate in Bozhong 19-6 Condensate Gas Field, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102
Citation: HU AnWen, YU HaiBo, LIU PengBo, DENG Hui, LIANG ShuYi, SHEN Tong. Geochemical Characteristics and Origin of High-wax Condensate in Bozhong 19-6 Condensate Gas Field, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102

渤海湾盆地渤中19⁃6凝析气田高蜡凝析油地球化学特征及成因分析

doi: 10.14027/j.issn.1000-0550.2021.102
基金项目: 

中海石油(中国)有限公司重大科技专项 CNOOC-KJ 135 ZDXM 36 TJ 08 TJ

详细信息
  • 中图分类号: P618.13

Geochemical Characteristics and Origin of High-wax Condensate in Bozhong 19-6 Condensate Gas Field, Bohai Bay Basin

Funds: 

Science and Technology Major Project of CNOOC(China)Limited,No. CNOOC-KJ 135 ZDXM 36 TJ 08 TJ CNOOC-KJ 135 ZDXM 36 TJ 08 TJ

  • 摘要: 渤海湾盆地渤中19-6凝析气田凝析油以高含蜡为特征,综合前人研究成果和油气地球化学资料对渤中19-6凝析气田高蜡凝析油特征和成因进行了分析。结果表明,研究区凝析油具有低密度、低黏度、低沥青质和胶质、高蜡和高凝固点的物性特征,其低碳数与中—高碳数正构烷烃含量相当,C1-8轻烃组分以正构烷烃和环烷烃为主,C27、C28和C29规则甾烷呈“L”字型分布,C304-甲基甾烷含量较高、伽马蜡烷含量中等—低,3+4—甲基双金刚烷含量较低,主要为沙河街组三段烃源岩成熟阶段的产物。高蜡凝析油的形成主要受控于烃源岩母质类型和相控混溶的凝析气形成机制。研究区烃源岩有机显微组分以腐泥无定形体和腐殖无定形体为主,为高蜡凝析油的形成提供了充足的物质基础。相控混溶的凝析气成因机制为高蜡凝析油的形成与保存创造了良好的外部条件。
  • 图  1  渤中19⁃6凝析气田区域位置

    Figure  1.  Regional location of Bozhong 19⁃6 condensate gas field

    Fig.1

    图  2  渤中19⁃6凝析气田部分井流体相态图

    (a)W5井,3 500.0~3 566.0 m,孔店组;(b)W2井,3 879.0~3 998.7 m,太古界

    Figure  2.  Fluid phase diagram of some wells in Bozhong 19⁃6 condensate gas field

    Fig.2

    图  3  渤中19⁃6凝析气田烃源岩干酪根元素组成

    数据来源于渤中19⁃6凝析气田W1、W3、W4、W6、W7、W8、W13和W15井东营组三段、沙河街组一段和沙河街组三段烃源岩样品的实测数据

    Figure  3.  Elemental composition of kerogen in Bozhong 19⁃6 condensate gas field

    Fig.3

    图  4  渤中19⁃6凝析气田部分凝析油正构烷烃气相色谱图

    (a)W1井,3 566.8~3 634.0 m,古近系孔店组;(b)W2井,3 837.7~3 923.5 m,太古界;(c)W13井,4 543.0~5 079.0 m,太古界;(d)W15井,4 624.5~5 367.0 m,太古界

    Figure  4.  Gas chromatograms of n⁃alkanes in some condensate samples from Bozhong 19⁃6 condensate gas field

    Fig.4

    图  5  渤中19⁃6凝析气田凝析油Ph/nC18与Pr/nC17关系图

    Figure  5.  Correlation of Ph/nC18 and Pr/nC17 in condensate samples from Bozhong 19⁃6 condensate gas field

    Fig.5

    图  6  渤中19⁃6凝析气田部分凝析油和烃源岩甾萜烷生物标志化合物分布特征

    (a)W5井,3 901.5 m,古近系孔店组,凝析油;(b)W15井,4 624.5~5 367.0 m,太古界,凝析油;(c)W3井,3 750.0~3 760.0 m,沙河街组三段,烃源岩;(d)W3井,3 700.0~3 710.0 m,沙河街组一段,烃源岩;(e)W1井,3 350.0~3 360.0 m,东营组三段,烃源岩

    Figure  6.  Distributions of steroid and terpenoid biomarkers in some condensate and source rock samples from Bozhong 19⁃6 condensate gas field

    Fig.6

    图  7  渤中19⁃6凝析气田凝析油MAI与MDI关系图

    Figure  7.  Correlation of MAI and MDI in condensate samples from Bozhong 19⁃6 condensate gas field

    Fig.7

    图  8  渤中19⁃6凝析气田烃源岩和凝析油C30⁃4甲基甾烷/∑C29甾烷与伽马蜡烷/αβC30藿烷关系

    Figure  8.  Relationship between 4⁃methyl steranes/∑C29 steranes and gammacerane/αβC30 hopane of source rocks and condensate in Bozhong 19⁃6 condensate gas field

    Fig.8

    图  9  渤中19⁃6凝析气田W1井凝析油正构烷烃摩尔浓度与碳数的分布关系

    Figure  9.  Relationship between carbon number and mole concentration of n⁃alkanes in condensate of well W1 in Bozhong 19⁃6 condensate gas field

    Fig.9

    图  10  渤中19⁃6凝析气田部分井沥青镜下特征

    (a)W1井,3 585.0 m,孔店组砂岩粒间孔隙中含深褐色、黑褐色固体沥青,单偏光;(b)W2井,4 040.0 m,太古宇片麻岩部分缝洞中充填深褐色沥青,单偏光

    Figure  10.  Microscopic characteristics of bitumen from some wells of Bozhong 19⁃6 condensate gas field

    Fig.10

    表  1  渤中19⁃6凝析气田凝析油物性特征

    井号深度/m层位20 ℃密度/(g·cm-350 ℃黏度/(mPa·s)析蜡温度/℃凝固点/℃沥青质含量/%胶质含量/%含蜡量/%原油含蜡性质
    W13 566.8~3 634.0孔店组0.794 51.41639.022.00.310.7613.95
    W14 043.4~4 142.0太古界0.792 61.24429.012.00.150.8411.80
    W23 873.7~3 923.5太古界0.799 31.53932.017.00.280.4115.04
    W23 879.0~3 998.7太古界0.808 92.13634.022.00.141.2813.84
    W24 261.0太古界0.810 72.43851.020.00.251.4017.79
    W44 411.0~4 499.8太古界0.799 81.83433.018.00.140.7618.26
    W53 901.5孔店组0.816 92.50032.023.00.262.3020.52
    W53 500.0~3 566.0孔店组0.791 43.43826.016.00.740.9610.52
    W114 578.6~4 817.0太古界0.804 01.89234.015.00.230.4616.35
    W114 578.6~5 500.0太古界0.804 02.03835.020.00.630.0721.07
    W134 149.0太古界0.830 53.00050.020.02.455.9519.53
    W134 534.0~5 079.0太古界0.803 51.71434.020.00.051.0118.47
    W154 624.5~5 367.0太古界0.810 82.08646.020.01.273.3318.76
    平均值0.805 12.09836.518.80.531.5016.61
    下载: 导出CSV

    表  2  渤中19⁃6凝析气田部分凝析油轻烃组成与成熟参数

    井号深度/m层位C1-8轻烃组成/%成熟度参数
    正构烷烃异构烷烃环烷烃芳烃石蜡指数烷—芳指数T/℃
    W13 566.8~3 634.0孔店组38.7326.7524.859.663.010.7125.0
    W14 043.4~4 142.0太古界37.5024.1727.5610.773.012.1118.8
    W114 578.6~5 500.0太古界36.2522.9230.5810.242.911.5124.2
    W134 149.0孔店组31.7319.7943.205.291.65.6116.4
    W134 534.0~5 079.0太古界38.2024.9426.979.892.911.0125.6
    W154 624.5~5 367.0太古界39.4324.8226.089.673.010.9125.2
    注:石蜡指数=(2⁃甲基己烷+3⁃甲基己烷)/(1顺3+1反3+1反2)⁃2甲基环戊烷;烷—芳指数=[(苯+甲苯)/(i⁃C4⁃8烷烃+C4⁃8环烷烃)]×100%;T(生烃温度)=140+15×ln(2,4⁃二甲基戊烷/2,3⁃二甲基戊烷)。
    下载: 导出CSV

    表  3  渤中19⁃6凝析气田沙河街组三段烃源岩有机显微组分统计

    井号腐泥组/%壳质组/%镜质组/%惰质组/%
    腐泥无定形体藻类体合计孢粉体木栓质体角质体底栖藻无定形体腐殖无定形体合计
    W316.001.0017.002.303.001.501.0070.3078.103.901.00
    W66.004.5010.503.501.003.504.0074.5086.502.001.00
    W722.2015.4037.605.402.402.002.0047.0058.802.601.00
    W825.007.5032.501.001.501.001.0059.5064.002.501.00
    W1325.405.4030.803.602.802.401.8053.8064.403.401.40
    注:上述数据均为平均值。
    下载: 导出CSV

    表  4  渤中19⁃6凝析气田部分井沥青拉曼成熟度

    井号深度/m层位D峰峰位/cm-1G峰峰位/cm-1G-D位移差/cm-1沥青拉曼成熟度Ro/%
    W24 290.0太古界1 355.731 590.58234.851.06
    W23 905.0太古界1 356.961 592.66235.701.13
    W53 994.0孔店组1 358.241 589.54231.300.78
    W53 996.0孔店组1 354.811 588.50233.690.97
    W74 535.1太古界1 357.561 592.92235.361.10
    W74 678.3太古界1 358.601 593.69235.091.08
    W74 682.9太古界1 355.881 586.42230.540.72
    注:Ro%=0.078 98×(G⁃D)-17.701。
    下载: 导出CSV
  • [1] 侯读杰,冯子辉. 油气地球化学[M]. 北京:石油工业出版社,2011:260-261.

    Hou Dujie, Feng Zihui. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2011: 260-261.
    [2] 杨永才,张枝焕. 高蜡凝析油或轻质油的分布特征与成因机理[J]. 地质科技情报,2005,24(3):55-59.

    Yang Yongcai, Zhang Zhihuan. Occurrence and original mechanisms of high waxy condensates or light crude oils[J]. Geological Science and Technology Information, 2005, 24(3): 55-59.
    [3] 苏洲,张慧芳,韩剑发,等. 塔里木盆地库车坳陷中、新生界高蜡凝析油和轻质油形成及其控制因素[J]. 石油与天然气地质,2018,39(6):1255-1269.

    Su Zhou, Zhang Huifang, Han Jianfa, et al. Origin and controlling factors of Mesozoic-Cenozoic gas condensates with high wax content and high-gravity oil in Kuqa Depression[J]. Oil & Gas Geology, 2018, 39(6): 1255-1269.
    [4] 卢鸿,王铁冠,王春江,等. 千米桥潜山构造高蜡凝析油气藏的蜡质来源研究[J]. 地质地球化学,2003,31(1):1-9.

    Lu Hong, Wang Tieguan, Wang Chunjiang, et al. Wax source analysis of highly waxy condensate oil and gas pool in Qianmiqiao buried-hill zone, Huanghua Depression[J]. Geology-Geochemistry, 2003, 31(1): 1-9.
    [5] 张枝焕,黄志龙,张振英,等. 吐哈盆地西部地区高蜡凝析油和轻质油的地球化学特征及成因分析[J]. 地质学报,2004,78(4):551-559.

    Zhang Zhihuan, Huang Zhilong, Zhang Zhenying, et al. Geochemical characteristics and origin of high-wax condensate and high-gravity oil in the western Turpan-Hami Basin[J]. Acta Geologica Sinica, 2004, 78(4): 551-559.
    [6] 包建平,毛凤鸣,段云鹏,等. 苏北盆地盐城凹陷天然气和凝析油的地球化学特征和成因[J]. 天然气地球科学,2004,15(2):103-109.

    Bao Jianping, Mao Fengming, Duan Yunpeng, et al. The geochemical characteristics and origin of natural gas and condensates in Yancheng Sag, Subei Basin[J]. Natural Gas Geoscience, 2004, 15(2): 103-109.
    [7] 薛永安,李慧勇. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J]. 中国海上油气,2018,30(3):1-9.

    Xue Yong’an, Li Huiyong. Large condensate gas field in deep Archean metamorphic buried hill in Bohai Sea: Discovery and geological significance[J]. China Offshore Oil and Gas, 2018, 30(3): 1-9.
    [8] 施和生,王清斌,王军,等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探,2019,24(1):36-45.

    Shi Hesheng, Wang Qingbin, Wang Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong Sag[J]. China Petroleum Exploration, 2019, 24(1): 36-45.
    [9] 薛永安. 渤海海域深层天然气勘探的突破与启示[J]. 天然气工业,2019,39(1):11-20.

    Xue Yong’an. The breakthrough of the deep-buried gas exploration in the Bohai Sea area and its enlightenment[J]. Natural Gas Industry, 2019, 39(1): 11-20.
    [10] 胡安文,牛成民,王德英,等. 渤海湾盆地渤中凹陷渤中19-6构造凝析油气特征与形成机制[J]. 石油学报,2020,41(4):403-411.

    Hu Anwen, Niu Chengmin, Wang Deying, et al. The characteristics and formation mechanism of condensate oil and gas in Bozhong 19-6 structure, Bozhong Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(4): 403-411.
    [11] 胡安文,王德英,于海波,等. 渤海湾盆地渤中19-6凝析气田天然气成因及油气成因关系判识[J]. 石油与天然气地质,2020,41(5):903-912,984.

    Hu Anwen, Wang Deying, Yu Haibo, et al. Genesis of natural gas and genetic relationship between the gas and associated condensate in Bozhong 19-6 gas condensate field, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(5): 903-912, 984.
    [12] 叶涛,牛成民,王清斌,等. 渤海湾盆地大型基岩潜山储层特征及其控制因素:以渤中19-6凝析气田为例[J]. 地质学报,2021,95(6):1889-1902.

    Ye Tao, Niu Chengmin, Wang Qingbin, et al. Characteristics and controlling factors of large bedrock buried-hill reservoirs in the Bohai Bay Basin—A case study of the BZ19-6 condensate field[J]. Acta Geologica Sinica, 2021, 95(6): 1889-1902.
    [13] 徐长贵,于海波,王军,等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25-38.

    Xu Changgui, Yu Haibo, Wang Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38.
    [14] 石油地质勘探专业标准化委员会. SY/T 5735—2019 烃源岩地球化学评价方法 [S]. 国家能源局,2019:3-4.

    Petroleum Geological Exploration Professional Standardization Committee. SY/T 5735-2019 Geochemical method for source rock evaluation [S]. National Energy Administration, 2019: 3-4.
    [15] 中国海洋石油总公司勘探专业标准化委员会. Q/ HS 1026—2007:油气层、油气(藏)田及油气性质分类规范[S]. 北京:中海石油研究中心,2007:7-8. [Exploration Standardization Committee of CNOOC. Q/HS 1026-2007: The specification of hydrocarbon zone, oil-gas field & oil-gas property[S]. Beijing: CNOOC Research Center, 2007: 7-8.]
    [16] 陈建平,邓春萍,王绪龙,等. 准噶尔盆地南缘凝析油、蜡质油与稠油的形成机理[J]. 中国科学(D辑):地球科学,2017,47(5):567-585.

    Chen Jianping, Deng Chunping, Wang Xulong, et al. Formation mechanism of condensates, waxy and heavy oils in the southern margin of Junggar Basin, NW China[J]. Science China (Seri.D):Earth Sciences, 2017, 47(5): 567-585.
    [17] 梅博文,刘希江. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系[J]. 石油与天然气地质,1980,1(2):99-115.

    Mei Bowen, Liu Xijiang. The distribution of isoprenoid alkanes in China’s crude oil and its relation with the geologic environment[J]. Oil & Gas Geology, 1980, 1(2): 99-115.
    [18] Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4): 323-339.
    [19] 沈平,徐永昌,王先彬,等. 气源岩和天然气地球化学特征及成气机理研究[M]. 兰州:甘肃科学技术出版社,1991:115-122.

    Shen Ping, Xu Yongchang, Wang Xianbin, et al. Geochemical characteristics and gas-generational mechanism of natural gas and gas source rocks [M]. Lanzhou: Gansu Science and Technology Press, 1991: 115-122.
    [20] Mango F D. The light hydrocarbons in petroleum: A critical review[J]. Organic Geochemistry, 1997, 26(7/8): 417-440.
    [21] Huang W Y, Meinschein W G. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745.
    [22] Williams J A, Bjorøy M, Dolcater D L, et al. Biodegradation in south Texas Eocene oils—effects on aromatics and biomarkers[J]. Organic Geochemistry, 1986, 10(1/2/3): 451-461.
    [23] Chen J H, Fu J M, Sheng G Y, et al. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190.
    [24] Dahl J E, Moldowan J M, Peters K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57.
    [25] 马安来,金之钧,李慧莉,等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学,2020,45(5):1737-1753.

    Ma Anlai, Jin Zhijun, Li Huili, et al. Secondary alteration and preservation of ultra-deep Ordovician oil reservoirs of North Shuntuoguole area of Tarim Basin, NW China[J]. Earth Science, 2020, 45(5): 1737-1753.
    [26] 燕歌,王广源,许杰,等. 渤海海域蓬莱19-3油田原油生物降解气地球化学特征与成因[J]. 石油学报,2019,40(增刊2):46-56.

    Yan Ge, Wang Guangyuan, Xu Jie, et al. Geochemical characteristics and genesis of biodegradation gas from crude oil in PL19-3 oilfield in the Bohai Sea[J]. Acta Petrolei Sinica, 2019, 40(Suppl. 2): 46-56.
    [27] Lafargue E, Le Thiez P. Effect of waterwashing on light ends compositional heterogeneity[J]. Organic Geochemistry, 1996, 24(12): 1141-1150.
    [28] Lafargue E, Barker C. Effect of water washing on crude oil compositions[J]. AAPG Bulletin, 1988, 72(3): 263-276.
    [29] 张迈,刘成林,田继先,等. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学,2020,31(1):61-72.

    Zhang Mai, Liu Chenglin, Tian Jixian, et al. Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(1): 61-72.
    [30] 陈治军,马芳侠,肖刚,等. 银额盆地哈日凹陷巴音戈壁组精细油源对比[J]. 石油与天然气地质,2019,40(4):900-916.

    Chen Zhijun, Ma Fangxia, Xiao Gang, et al. Oil-sources rock correlation of Bayingebi Formation in Hari Sag, Yingen-Ejinaqi Basin[J]. Oil & Gas Geology, 2019, 40(4): 900-916.
    [31] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer-Verlag, 1984: 75-80.
    [32] 刁帆,王建伟,陈晓娜,等. 渤海湾盆地南堡凹陷高尚堡地区油源对比及高蜡油成因[J]. 石油实验地质,2020,42(1):117-125.

    Diao Fan, Wang Jianwei, Chen Xiaona, et al. Correlation of oils and source rocks and genesis of high wax oils in Gaoshangpu area, Nanpu Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 117-125.
    [33] Tegelaar E W, Matthezing R M, Jansen J B H, et al. Possible origin of n-alkanes in high-wax crude oils[J]. Nature, 1989, 342(6249): 529-531.
    [34] 黄海平,郑亚斌,张占文,等. 低等水生生物:高蜡油形成的重要来源[J]. 科学通报,2003,48(10):1092-1098.

    Huang Haiping, Zheng Yabin, Zhang Zhanwen, et al. Lacustrine biomass: An significant precursor of high wax oil[J]. Chinese Science Bulletin, 2003, 48(10): 1092-1098.
    [35] 王飞宇,郝石生,何萍,等. 泌阳凹陷湖相藻类体中藻质素作为高蜡油母质[J]. 科学通报,1997,42(11):1193-1197.

    Wang Feiyu, Hao Shisheng, He Ping, et al. Algaenans in alginate is the parent materials of waxy oil in Biyang Sag[J]. Chinese Science Bulletin, 1997, 42(11): 1193-1197.
    [36] 石油地质勘探专业标准化委员会. SY/T 5125—2014 :透射光—荧光干酪根显微组分鉴定及类型划分方法 [S]. 北京:石油工业出版社,2014:3-4.

    Petroleum Geological Exploration Standardization Committee. SY/T 5125-2014 : Method of identification microscopically the macerals of kerogen and indivision the kerogen type by transmitted-light and fluorescence [S]. Beijing: Petroleum Industry Press, 2014: 3-4.
    [37] 卢鸿,贾望鲁,肖中尧,等. 试论轮南地区原油类型多样性的主控因素[J]. 科学通报,2004,49(增刊Ⅰ):17-24.

    Lu Hong, Jia Wanglu, Xiao Zhongyao, et al. Constraints on the diversity of crude oil types in the Lunnan oilfield, Tarim Basin, NW China[J]. Chinese Science Bulletin, 2004, 49(Suppl. 1): 17-24.
    [38] 肖万生. 地球内部成烃新机制探索:含碳物质与水反应的实验研究[D]. 广州:中国科学院广州地球化学研究所,2001:12-31.

    Xiao Wansheng. Hydrocarbon formation mechanism in the Earth’s interior: Experimental study on reactions of carbon-containing materials with water[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2001: 12-31.
  • [1] 董济凯, 董春梅, 林承焰, 赵子茹.  湖相富有机质泥岩纹层组合类型及其储集意义——以济阳坳陷沙河街组泥页岩为例 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2023.131
    [2] 唐攀, 陈代钊, 汪远征, 杨钹.  塔里木盆地西北部震旦系-寒武系不整合面成因:来自沉积学的证据【碳酸盐岩与富有机岩形成环境专辑】 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.074
    [3] 朱红涛, 徐长贵, 李森, 杜晓峰.  陆相盆地限制性沉积体系 . 沉积学报, 2023, 41(6): 1903-1916. doi: 10.14027/j.issn.1000-0550.2022.137
    [4] 朱淑玥, 刘磊, 王峰, 侯云东, 王志伟, 张成弓, 付斯一, 陈洪德, 张靖芪.  鄂尔多斯盆地西缘及邻区石炭系羊虎沟组砂体成因机制与沉积过程 . 沉积学报, 2023, 41(4): 1153-1169. doi: 10.14027/j.issn.1000-0550.2022.001
    [5] 杨田, 操应长, 田景春.  浅谈陆相湖盆深水重力流沉积研究中的几点认识 . 沉积学报, 2021, 39(1): 88-111. doi: 10.14027/j.issn.1000-0550.2020.037
    [6] 庞谦, 李凌, 胡广, 谭秀成, 马腾, 赵东方, 芦飞凡, 陈虹宇, 熊鹰.  川北地区下寒武统筇竹寺组钙质结核特征及成因机制 . 沉积学报, 2017, 35(4): 681-690. doi: 10.14027/j.cnki.cjxb.2017.04.003
    [7] 程熊, 侯读杰, 徐长贵, 王飞龙.  庙西凹陷严重生物降解原油序列中三环萜烷的异常分布成因初探 . 沉积学报, 2017, 35(1): 193-202. doi: 10.14027/j.cnki.cjxb.2017.01.019
    [8] 张景军, 李凯强, 王群会, 王志坤, 韩江波.  渤海湾盆地南堡凹陷古近系重力流沉积特征及模式 . 沉积学报, 2017, 35(6): 1241-1253. doi: 10.14027/j.cnki.cjxb.2017.06.015
    [9] 张守鹏, 李保利, 贺振建, 张存霞.  渤海湾盆地古近纪沙三、四段沉积期古盐度不均衡性研究 . 沉积学报, 2016, 34(2): 397-403. doi: 10.14027/j.cnki.cjxb.2016.02.018
    [10] 罗冰.  蜀南地区飞仙关组鲕滩储层成因机制分析 . 沉积学报, 2009, 27(3): 404-409.
    [11] 李 军.  渤海湾盆地石炭二叠系稀土元素特征及其地质意义 . 沉积学报, 2007, 25(4): 589-596.
    [12] 张小莉.  单砂体高部位油水倒置分布的成因机制 . 沉积学报, 2006, 24(1): 148-152.
    [13] 马素萍, 张晓宝, 宋成鹏.  天然气伴生凝析油Mango参数的成因内涵——以渤海湾盆地上古生界为例 . 沉积学报, 2006, (6): 923-927.
    [14] 马素萍 张晓宝 宋成鹏.  天然气伴生凝析油Mango参数的成因内涵——以渤海湾盆地上古生界为例 . 沉积学报, 2006, 24(06): 923-927.
    [15] 袁文芳, 陈世悦, 曾昌民.  渤海湾盆地古近纪海侵问题研究进展及展望 . 沉积学报, 2005, 23(4): 604-612.
    [16] 操应长.  断陷湖盆中强制湖退沉积作用及其成因机制 . 沉积学报, 2005, 23(1): 84-90.
    [17] 段毅, 张辉, 郑朝阳, 吴保祥.  柴达木盆地原油成因研究 . 沉积学报, 2004, 22(S1): 61-65.
    [18] 关德师, 王兆云, 秦勇, 程克明.  二次生烃迟滞性定量评价方法及其在渤海湾盆地中的应用 . 沉积学报, 2003, 21(3): 533-538.
    [19] 金振奎, 邹元荣, 由伟丰, 蒋春雷.  渤海湾盆地北部奥陶纪岩相古地理 . 沉积学报, 2002, 20(1): 13-19.
    [20] 雷怀彦, 朱莲芳.  四川盆地震旦系白云岩成因研究 . 沉积学报, 1992, 10(2): 69-78.
  • 加载中
图(10) / 表 (4)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  46
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 修回日期:  2021-07-14
  • 刊出日期:  2022-12-10

目录

    渤海湾盆地渤中19⁃6凝析气田高蜡凝析油地球化学特征及成因分析

    doi: 10.14027/j.issn.1000-0550.2021.102
      基金项目:

      中海石油(中国)有限公司重大科技专项 CNOOC-KJ 135 ZDXM 36 TJ 08 TJ

    • 中图分类号: P618.13

    摘要: 渤海湾盆地渤中19-6凝析气田凝析油以高含蜡为特征,综合前人研究成果和油气地球化学资料对渤中19-6凝析气田高蜡凝析油特征和成因进行了分析。结果表明,研究区凝析油具有低密度、低黏度、低沥青质和胶质、高蜡和高凝固点的物性特征,其低碳数与中—高碳数正构烷烃含量相当,C1-8轻烃组分以正构烷烃和环烷烃为主,C27、C28和C29规则甾烷呈“L”字型分布,C304-甲基甾烷含量较高、伽马蜡烷含量中等—低,3+4—甲基双金刚烷含量较低,主要为沙河街组三段烃源岩成熟阶段的产物。高蜡凝析油的形成主要受控于烃源岩母质类型和相控混溶的凝析气形成机制。研究区烃源岩有机显微组分以腐泥无定形体和腐殖无定形体为主,为高蜡凝析油的形成提供了充足的物质基础。相控混溶的凝析气成因机制为高蜡凝析油的形成与保存创造了良好的外部条件。

    English Abstract

    胡安文, 于海波, 刘朋波, 邓辉, 梁舒艺, 沈桐. 渤海湾盆地渤中19⁃6凝析气田高蜡凝析油地球化学特征及成因分析[J]. 沉积学报, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102
    引用本文: 胡安文, 于海波, 刘朋波, 邓辉, 梁舒艺, 沈桐. 渤海湾盆地渤中19⁃6凝析气田高蜡凝析油地球化学特征及成因分析[J]. 沉积学报, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102
    HU AnWen, YU HaiBo, LIU PengBo, DENG Hui, LIANG ShuYi, SHEN Tong. Geochemical Characteristics and Origin of High-wax Condensate in Bozhong 19-6 Condensate Gas Field, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102
    Citation: HU AnWen, YU HaiBo, LIU PengBo, DENG Hui, LIANG ShuYi, SHEN Tong. Geochemical Characteristics and Origin of High-wax Condensate in Bozhong 19-6 Condensate Gas Field, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1774-1784. doi: 10.14027/j.issn.1000-0550.2021.102
      • 凝析油指在地下温度、压力超过临界条件后,液态烃逆蒸发为气态烃,开采至地表后温压降低,又反凝结成液态烃的一种特殊油气资源[13]。通常情况下,凝析油具有低密度、低胶质、低沥青质和低含蜡量的特征[1]。随着勘探程度的提高,近年我国东西部含油气盆地内也发现了一些高蜡凝析油。如卢鸿等[4]研究发现,渤海湾盆地黄骅坳陷千米桥奥陶系古潜山凝析油以高含蜡为特征,受控于“地层色效应”,随运移距离增加,凝析油含蜡量逐渐降低;张枝焕等[5]对比研究发现,吐哈盆地西部地区中、新生界储层中广泛发育高含蜡凝析油,这与烃源岩有机质显微组分以壳质组和镜质组为主,且壳质组富含角质体和木栓质体密切相关;包建平等[6]在分析苏北盆地盐城凹陷天然气和凝析油地球化学特征和成因时发现,高成熟度的干气侵入油藏并发生强烈气洗改造后可形成高蜡凝析油。

        渤海湾盆地渤中凹陷凝析油气资源丰富,相继发现了B、F和渤中19-6凝析气田。其中,渤中19-6凝析气田更是中国东部最大的、整装、高产凝析气田,也是全球最大的变质岩凝析气田[79]。该凝析气田凝析油最显著特征为含蜡量高,普遍在10%以上,最大可达21.07%。前人对渤中19-6凝析气田开展过系列研究[1013],但集中于天然气成因与凝析气藏形成机制、储层特征及控制因素和凝析气田形成条件等方面,缺乏对高蜡凝析油特征、成因机制的详细研究。笔者尝试通过分析凝析油物性、族组成和生物标志化合物特征,理清凝析油来源,探讨高蜡凝析油成因及控制因素,总结渤中19-6凝析气田高蜡凝析油成因模式。该研究既能为改善高蜡凝析油勘探开发效率提供依据,又对补充完善高蜡凝析油形成机制具有重要意义。

      • 渤中19-6凝析气田位于渤海湾盆地渤中凹陷西南部,地质构造上属于被多条近SN向和NE向断裂分割的洼中隆起带,东西宽约19 km,南北长约23 km,周缘分别被渤中主洼、渤中南洼和渤中西南洼所围限(图1),成藏条件优越。地层由太古宇潜山、古近系孔店组—东营组、新近系馆陶组和明化镇组及第四系平原组组成,缺失古生界和中生界地层。其中,太古宇潜山和古近系孔店组为渤中19-6凝析气田主力含气层系,盖层为上覆东营组至沙河街组的湖相泥岩。

        图  1  渤中19⁃6凝析气田区域位置

        Figure 1.  Regional location of Bozhong 19⁃6 condensate gas field

        渤中19-6凝析气田DST测试资料揭示,古近系孔店组和太古宇潜山凝析气藏实测地层压力分别为45.7~47.0 MPa和46.9~48.7 MPa,地层温度在134.1 ℃~171.9 ℃之间。整体来看,渤中19-6凝析气田的地层温度介于烃类体系的临界温度与临界凝析温度,地层压力大于对应地层温度下的露点压力,地层条件下流体相态呈凝析气相(图2)。此外,渤中19-6凝析气田气油比变化不大,介于1 023~1 421 m3/m3,凝析油含量一般在751~884 cm3/m3之间,属于特高含凝析油的凝析气藏。

        图  2  渤中19⁃6凝析气田部分井流体相态图

        Figure 2.  Fluid phase diagram of some wells in Bozhong 19⁃6 condensate gas field

        渤中19-6凝析气田周缘次洼主要发育三套烃源岩,分别为古近系渐新统东营组三段、始新统沙河街组一段和三段湖相泥岩。东营组三段97个烃源岩样品TOC分布范围为0.45%~11.20%,均值为2.30%,TOC大于2.00%以上的样品数占64%;沙河街组一段10个烃源岩样品TOC分布范围为1.33%~3.54%,均值为2.31%;沙河街组三段31个烃源岩样品TOC为0.68%~4.81%(平均值为2.80%),TOC小于2.00%的极少。依据陆相烃源岩地球化学评价标准[14],三套烃源岩均属于好—最好类型。由图3可见,渤中19-6周缘三套烃源岩有机质类型以混合型(Ⅱ1~Ⅱ2)为主,部分东营组三段烃源岩样品偏向Ⅲ型。有机质成熟度存在一定差异,沙河街组三段湖相泥岩埋藏深,Ro普遍大于0.70%~0.80%,深洼区可达2.00%及以上;沙河街组一段Ro介于0.70%~1.60%,深洼区部分烃源岩成熟度可达1.80%,主体处于成熟—高成熟阶段;东营组三段烃源岩埋藏相对浅,Ro主体为0.50%~1.20%,处于成熟阶段。

        图  3  渤中19⁃6凝析气田烃源岩干酪根元素组成

        Figure 3.  Elemental composition of kerogen in Bozhong 19⁃6 condensate gas field

      • 依据中国海油石油总公司企业标准[15]规定,原油含蜡量在2.5%~10.0%之间属于含蜡原油,含蜡量高于10%为高蜡原油,对渤中19-6凝析气田各井区凝析油物性进行分析统计,结果如表1所示。

        表 1  渤中19⁃6凝析气田凝析油物性特征

        井号深度/m层位20 ℃密度/(g·cm-350 ℃黏度/(mPa·s)析蜡温度/℃凝固点/℃沥青质含量/%胶质含量/%含蜡量/%原油含蜡性质
        W13 566.8~3 634.0孔店组0.794 51.41639.022.00.310.7613.95
        W14 043.4~4 142.0太古界0.792 61.24429.012.00.150.8411.80
        W23 873.7~3 923.5太古界0.799 31.53932.017.00.280.4115.04
        W23 879.0~3 998.7太古界0.808 92.13634.022.00.141.2813.84
        W24 261.0太古界0.810 72.43851.020.00.251.4017.79
        W44 411.0~4 499.8太古界0.799 81.83433.018.00.140.7618.26
        W53 901.5孔店组0.816 92.50032.023.00.262.3020.52
        W53 500.0~3 566.0孔店组0.791 43.43826.016.00.740.9610.52
        W114 578.6~4 817.0太古界0.804 01.89234.015.00.230.4616.35
        W114 578.6~5 500.0太古界0.804 02.03835.020.00.630.0721.07
        W134 149.0太古界0.830 53.00050.020.02.455.9519.53
        W134 534.0~5 079.0太古界0.803 51.71434.020.00.051.0118.47
        W154 624.5~5 367.0太古界0.810 82.08646.020.01.273.3318.76
        平均值0.805 12.09836.518.80.531.5016.61

        渤中19-6凝析气田凝析油含量蜡大于10%,平均值为16.61%,最高可达21.07%,属于典型的高蜡凝析油。析蜡温度为26.0 ℃~51.0 ℃,那么将凝析油气由地下开采至地表的过程中当温度降至析蜡温度后必然会发生结蜡现象,降低渗流条件,影响凝析油气的开发效果。此外,目前探井测试取得的凝析油样品在实验室常温条件下均见到大量的黄色蜡沉淀。凝固点高,在12.0 ℃~23.0 ℃之间,均值为18.8 ℃。凝析油密度和黏度低,分别介于0.791 4~0.830 5 g·cm-3和1.244~3.438 mPa·s。沥青质和胶质含量低,均值分别为0.53%和1.50%。凝析油中饱和烃(44.76%~73.75%)和芳烃(6.25%~24.23%)含量高,饱芳比值介于1.81~3.41,非烃和沥青质含量相对较低。

      • 饱和烃气相色谱分析结果表明,渤中19-6凝析气田凝析油正构烷烃碳数介于nC12~nC40,呈单峰形态,主峰碳数分布于nC15~nC19图4),∑nC21-/∑nC22+介于0.80~2.37,均值为1.26,说明低分子量与中—高分子量烷烃含量基本相当。通常,高成熟的凝析油多以低碳数烷烃为主,高碳数烷烃含量相对较低[16]。渤中19-6凝析气田凝析油饱和烃分布特征表明主体成熟度应该不是特别高,尚未达到高成熟阶段。在还原条件下,植醇通过脱水成植烯、加氢还原而形成植烷;在氧化环境下则先形成植烷酸,后脱羧基而形成姥鲛烷,因此姥鲛烷和植烷的分布特征可指示沉积环境[17]。一般而言,Pr/Ph介于0.20~0.80为强还原环境,0.80~2.80为还原环境,2.80~4.00为弱氧化—弱还原环境[17]。研究区凝析油样品的Pr/Ph在0.99~1.51之间,表明其成油母质形成于还原环境。此外,Pr/nC17与Ph/nC18的相关关系也能指示成油母质的形成环境[18],由图5可见,凝析油成油母质也主要形成于偏还原环境。

        图  4  渤中19⁃6凝析气田部分凝析油正构烷烃气相色谱图

        Figure 4.  Gas chromatograms of n⁃alkanes in some condensate samples from Bozhong 19⁃6 condensate gas field

        图  5  渤中19⁃6凝析气田凝析油Ph/nC18与Pr/nC17关系图

        Figure 5.  Correlation of Ph/nC18 and Pr/nC17 in condensate samples from Bozhong 19⁃6 condensate gas field

        渤中19-6凝析气田凝析油轻烃分析结果表明,在C1-8轻烃中,正构烷烃和环烷烃含量相对较高,分别为31.73%~39.43%和24.85%~43.20%;异构烷烃含量居中,占比19.79%~26.75%;芳烃含量最少,仅为5.29%~10.77%(表2)。具体来看,所有凝析油均以正辛烷含量最高,其次为正己烷、正庚烷、甲基环己烷和甲苯,其他的异构烷烃和环烷烃含量相对较低。此外,由表2可见,除W13井孔店组凝析油样品外,研究区凝析油的石蜡指数和烷—芳指数分布集中,石蜡指数在2.9~3.0之间,烷—芳指数在10.7~12.1之间。依据沈平等[19]在充分考虑有机质类型基础上建立的划分标准,研究区凝析油处于成熟阶段。另外,Mango[20]研究发现,轻烃中2,4-二甲基戊烷(2,4-DMC5)与2,3-二甲基戊烷(2,3-DMC5)的比值与有机质经历的生烃温度密切相关,并建立了相关关系式:T=140+15ln(2,4-DMC5/2,3-DMC5)。据此可计算得到研究区有机质经历的生烃温度在116.4 ℃~125.6 ℃之间,处于有机质成熟阶段的温度范围。

        表 2  渤中19⁃6凝析气田部分凝析油轻烃组成与成熟参数

        井号深度/m层位C1-8轻烃组成/%成熟度参数
        正构烷烃异构烷烃环烷烃芳烃石蜡指数烷—芳指数T/℃
        W13 566.8~3 634.0孔店组38.7326.7524.859.663.010.7125.0
        W14 043.4~4 142.0太古界37.5024.1727.5610.773.012.1118.8
        W114 578.6~5 500.0太古界36.2522.9230.5810.242.911.5124.2
        W134 149.0孔店组31.7319.7943.205.291.65.6116.4
        W134 534.0~5 079.0太古界38.2024.9426.979.892.911.0125.6
        W154 624.5~5 367.0太古界39.4324.8226.089.673.010.9125.2
        注:石蜡指数=(2⁃甲基己烷+3⁃甲基己烷)/(1顺3+1反3+1反2)⁃2甲基环戊烷;烷—芳指数=[(苯+甲苯)/(i⁃C4⁃8烷烃+C4⁃8环烷烃)]×100%;T(生烃温度)=140+15×ln(2,4⁃二甲基戊烷/2,3⁃二甲基戊烷)。
      • 质量色谱图特征表明,渤中19-6凝析气田凝析油的重排甾烷含量相对较高(图6a,b),重排甾烷/规则甾烷介于0.26~0.48,均值为0.36。一般认为,水生生物富含C27甾烷,而高等植物富含C29甾烷[21]。研究区凝析油C27、C28和C29规则甾烷呈“L”字型分布(图6a,b),C27和C29规则甾烷相对含量高于C28规则甾烷,指示成油母质以水生生物为主,混有一定比例的高等植物。20S/(20S+20R)-C29甾烷主体介于0.44~0.52,αββ/(αββ+ααα)-C29甾烷主体介于0.60~0.84,表明多数凝析油成熟度已处于生油窗的中后阶段。C304-甲基甾烷含量相对较高,C304-甲基甾烷/∑C29甾烷普遍大于0.21,最大可达0.52。在萜烷系列化合物中,伽马蜡烷含量中等—低(图6a,b),伽马蜡烷/αβC30藿烷分布于0.05~0.20,说明形成于淡水和咸水环境的两类烃源岩对凝析油可能均有贡献。

        图  6  渤中19⁃6凝析气田部分凝析油和烃源岩甾萜烷生物标志化合物分布特征

        Figure 6.  Distributions of steroid and terpenoid biomarkers in some condensate and source rock samples from Bozhong 19⁃6 condensate gas field

      • 金刚烷类化合物是一类具有类似金刚石晶格碳骨架的烃类化合物,与其他烃类化合物相比具有更高的热稳定性,可厘定高—过成熟烃源岩的有机质成熟度和判识原油成熟度与热裂解程度等[2224]。Chen et al.[23]研究发现甲基单金刚烷的组成特征与成熟度关系密切,并建立了金刚烷指数与镜质体反射率之间的关系。Dahl et al.[24]通过开展热模拟实验发现,甲基双金刚烷的浓度随原油热裂解程度增高而升高,并指出其可表征原油的裂解程度。

        金刚烷类化合物测试分析结果显示,研究区凝析油甲基单金刚烷指数(MAI)介于38.61~39.80,甲基双金刚烷指数(MDI)介于32.40~37.95。依据Chen et al.[23]建立的标准,由图7可知区内凝析油对应的Ro在1.1%~1.3%之间。这与正构烷烃、轻烃和甾烷化合物反映的成熟度特征基本一致。此外,渤中19-6凝析气田凝析油3甲基+4甲基双金刚烷绝对含量相对较低,仅为0.78~13.48 μg/g,意味着凝析油并未达到高—过成熟阶段,裂解程度较低。

        图  7  渤中19⁃6凝析气田凝析油MAI与MDI关系图

        Figure 7.  Correlation of MAI and MDI in condensate samples from Bozhong 19⁃6 condensate gas field

      • 在油气运聚成藏过程中,受外部环境的影响,油气常会遭受多种次生变化,如受热蚀变作用[25]、生物降解作用[26]和水洗作用[2728]等影响,改变原始地球化学性质。但同一来源的油气与烃源岩之间某些生物标志化合物(如原油中部分甾、萜烷化合物)仍会保持一定的相似性,可用于油源对比[2930]

        渤中19-6凝析气田凝析油最显著的生物标志化合物特征为相对较高的C30-4甲基甾烷(图6a,b),与沙河街组三段烃源岩类似(图6c),明显高于沙河街组一段(图6d)和东营组三段烃源岩(图6e)。C27/C29规则甾烷比值介于0.74~1.81,说明藻类等低等水生生物是有机质主要来源之一。C30-4甲基甾烷/∑C29甾烷主要分布于0.13~0.52,与沙河街组三段烃源岩一致(图8)。此外,伽马蜡烷含量中等—低,部分凝析油样品伽马蜡烷/αβC30藿烷值与沙河街组一段烃源岩一致(图8)。综上所述,研究区凝析油生物标志化合物特征主要与沙河街组三段烃源岩相似,油源应主要为沙河街组三段烃源岩,部分沙河街组一段烃源岩可能也有贡献。

        图  8  渤中19⁃6凝析气田烃源岩和凝析油C30⁃4甲基甾烷/∑C29甾烷与伽马蜡烷/αβC30藿烷关系

        Figure 8.  Relationship between 4⁃methyl steranes/∑C29 steranes and gammacerane/αβC30 hopane of source rocks and condensate in Bozhong 19⁃6 condensate gas field

      • 前人研究表明,经微生物强烈改造的陆源有机质是蜡质的重要来源[4,3132]。早在1984年,Tissot et al.[31]研究发现,湖盆中微生物的强烈改造可使带有纤维素、木质素的陆源有机质生成的干酪根主要由蜡质和土壤腐殖酸组成,可生成高蜡油。卢鸿等[4]在研究千米桥奥陶系潜山高蜡凝析油蜡质来源时也发现微生物对腐殖型或偏腐殖型原始母质的改造能提高“腐泥化”程度,利于高蜡油的生成。此外,高等植物中的孢粉体、角质体、树脂体和藻类与低等水生生物中的藻质素也是原油中蜡的重要来源[3335]。众多藻类(如蓝绿藻、盘星藻、丛粒藻和四角藻等)的细胞外壁常发育一种藻胶鞘,即藻质素[3435]。其是一种高度脂肪性生物大分子,具有很强的抗降解能力,在地质历史时期能够被选择性地保存下来形成干酪根的一部分[33]。有机质热演化过程中,藻质素会发生热解作用形成丰富的高碳数正构烷烃,成为蜡质的重要来源之一。王飞宇等[35]研究泌阳凹陷高蜡油母质来源时,开展了盘星藻藻类体加水热模拟实验及相关地球化学研究,也充分证实了上述观点。

        前已述及,渤中19-6凝析气田凝析油主要源自沙河街组三段烃源岩,有机质类型属于混合型(Ⅱ1~Ⅱ2)。具体而言,沙河街组三段烃源岩干酪根显微组分以腐泥组和壳质组为主,含量分别为17.00%~37.60%和58.80%~86.50%,镜质组和惰质组含量较低(表3)。腐泥组主要由腐泥无定形体和藻类体组成,壳质组主要显微组分为腐殖无定形体,可见孢粉体、木栓质体、角质体和底栖藻无定形体。其中,腐泥无定形体主要是由藻类为主的低等水生生物在还原条件下经强烈腐泥化而形成,腐殖无定形体为陆源高等植物经微生物强烈改造而形成的[36]。在有机质热演化过程中,两者都可生成高碳数蜡质烷烃,是凝析油中蜡的重要来源。综合来看,研究区沙河街组三段烃源岩中腐泥无定形体、腐殖无定形体和藻类体等具备成蜡能力的组分占比达90.00%以上。此外,渤中19-6凝析气田周缘次洼沙河街组三段烃源岩有机质丰度高,深凹处镜质组反射率Ro已达2.00%,主体处于高—过成熟阶段,具备生成大量蜡质烃类和天然气的条件,为高蜡凝析油气田的形成提供了充足的物质基础。

        表 3  渤中19⁃6凝析气田沙河街组三段烃源岩有机显微组分统计

        井号腐泥组/%壳质组/%镜质组/%惰质组/%
        腐泥无定形体藻类体合计孢粉体木栓质体角质体底栖藻无定形体腐殖无定形体合计
        W316.001.0017.002.303.001.501.0070.3078.103.901.00
        W66.004.5010.503.501.003.504.0074.5086.502.001.00
        W722.2015.4037.605.402.402.002.0047.0058.802.601.00
        W825.007.5032.501.001.501.001.0059.5064.002.501.00
        W1325.405.4030.803.602.802.401.8053.8064.403.401.40
        注:上述数据均为平均值。
      • 流体包裹体特征和盆地模拟结果揭示,渤中19-6凝析气田经历了“早油晚气”的成藏过程,12.0 Ma开始充注油,5.0 Ma以来大量充注天然气[1011]。钻井揭示渤中19-6凝析气田及围区东营组二段至沙河街组底部连续发育半深湖—深湖相的暗色泥岩。该套泥岩厚度介于400~1 000 m,且大于3 400 m后普遍发育超压,压力系数最大可达2.0。压力史恢复结果揭示,该套厚层泥岩的超压是5.1 Ma以来快速形成的[10],则恰能封盖晚期充注的大量天然气。换而言之,受东营组至沙河街组厚层超压泥岩盖层的封盖,研究区内5.0 Ma以来充注至早期油藏中天然气未再发生调整[10]。晚期天然气注入早期油藏后,油气会发生混合,形成含液态烃的气流体。随着晚期天然气注入量的持续增大和地下温度、压力的升高,占少数相的物质(早期注入的原油)在多数相物质(晚期充注的大量天然气)中溶解度增高,当温压条件达到露点以上,则形成现今的凝析气藏[10],此即“相控混溶”机制。其与典型气侵作用的不同体现在晚期天然气侵入早期油藏后并未离开原始油气藏而发生分馏作用。渤中19-6凝析气田凝析油低碳数正构烷烃未发生明显损失也表明其未遭受气侵分馏作用(图9)。

        图  9  渤中19⁃6凝析气田W1井凝析油正构烷烃摩尔浓度与碳数的分布关系

        Figure 9.  Relationship between carbon number and mole concentration of n⁃alkanes in condensate of well W1 in Bozhong 19⁃6 condensate gas field

        在此过程中,一方面随着晚期大量天然气进入早期油藏,必然会增大储层压力,从而提高中、高碳数烷烃的溶解度,发生“增蜡脱沥青”现象[37],形成低含沥青质、高含蜡的凝析油。由图9可见,W1井古近系孔店组和太古宇潜山凝析油C21~C32正构烷烃摩尔浓度对数值相对升高,反映了凝析气藏内部发生了“增蜡”现象,形成高蜡凝析油。沥青质多属极性分子,晚期侵入的天然气属非极性分子。依据相似相溶原理,沥青质不易溶于极性溶剂,会从凝析油气中析出沉淀于储层中,导致凝析油中沥青质含量低。渤中19-6凝析气田古近系孔店组和太古宇潜山储层薄片中可见无荧光显示的深褐色、黑褐色固体沥青(图10)。固体沥青激光拉曼测试分析结果显示,沥青反射率Ro为0.72%~1.13%(表4),远低于热裂解成因的沥青成熟度,显然为上述过程所形成。另一方面,受上覆超压泥岩盖层的强封盖和晚期大量天然气的侵入,渤中19-6凝析气田主力含气层系普遍发育超压,压力系数达1.26~1.35。异常高压可抑制高碳数烷烃的断裂,提高烃类物质的稳定性[38],有利于高蜡凝析油的保存。总之,渤中19-6凝析气藏相控混溶的成因机制不仅有利于高蜡凝析油的形成,而且为高蜡凝析油提供了良好的保存条件。

        图  10  渤中19⁃6凝析气田部分井沥青镜下特征

        Figure 10.  Microscopic characteristics of bitumen from some wells of Bozhong 19⁃6 condensate gas field

        表 4  渤中19⁃6凝析气田部分井沥青拉曼成熟度

        井号深度/m层位D峰峰位/cm-1G峰峰位/cm-1G-D位移差/cm-1沥青拉曼成熟度Ro/%
        W24 290.0太古界1 355.731 590.58234.851.06
        W23 905.0太古界1 356.961 592.66235.701.13
        W53 994.0孔店组1 358.241 589.54231.300.78
        W53 996.0孔店组1 354.811 588.50233.690.97
        W74 535.1太古界1 357.561 592.92235.361.10
        W74 678.3太古界1 358.601 593.69235.091.08
        W74 682.9太古界1 355.881 586.42230.540.72
        注:Ro%=0.078 98×(G⁃D)-17.701。

        综上所述,渤中19-6凝析气田周缘沙河街组三段混合型有机质中富含腐泥无定形体和腐殖无定形体等为高蜡凝析油的形成奠定了物质基础,相控混溶的成因机制为高蜡凝析油的形成和保存创造了良好的外部条件。

      • (1) 渤中19-6凝析气田凝析油具有低密度、低黏度、低沥青质和胶质、高蜡和高凝固点的物性特征,饱和烃含量最高、芳烃含量次之、非烃和沥青质含量相对较低的族组成特征。

        (2) 凝析油生物标志化合物特征主要为正构烷烃呈单峰形态,低分子量与中—高分子量烷烃含量基本相当,Pr/Ph介于0.99~1.51,生油母质主要形成于偏还原环境。C1-8轻烃组分中正构烷烃和环烷烃含量相对较高,异构烷烃含量居中,芳烃含量最少。石蜡指数、烷—芳指数、有机质经历的生烃温度、甾烷异构化指数和金刚烷指数表明凝析油主要处于成熟阶段。C27、C28和C29规则甾烷呈“L”字型分布,C304-甲基甾烷含量相对较高,伽马蜡烷含量中等—低,表明渤中19-6凝析气田凝析油主要为沙河街组三段烃源岩成熟阶段的产物,沙河街组一段烃源岩可能也有少量贡献。

        (3) 渤中19-6凝析气田高蜡凝析油的形成主要受控于烃源岩母质类型和凝析气的形成机制,其中烃源岩有机显微组分以腐泥无定形体和腐殖无定形体为主,为凝析油高蜡的形成提供了充足的物质基础,相控混溶的凝析气成因机制为高蜡凝析油的形成和保存创造了良好条件。

    参考文献 (38)

    目录

      /

      返回文章
      返回