高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北冰洋及白令海表层沉积物XRD全岩矿物分布特征

刘杨 汪卫国 董林森

刘杨, 汪卫国, 董林森. 西北冰洋及白令海表层沉积物XRD全岩矿物分布特征[J]. 沉积学报, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168
引用本文: 刘杨, 汪卫国, 董林森. 西北冰洋及白令海表层沉积物XRD全岩矿物分布特征[J]. 沉积学报, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168
LIU Yang, WANG WeiGuo, DONG LinSen. XRD Bulk Mineral Distribution Patterns of Surface Sediments in the Western Arctic Ocean and Bering Sea[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168
Citation: LIU Yang, WANG WeiGuo, DONG LinSen. XRD Bulk Mineral Distribution Patterns of Surface Sediments in the Western Arctic Ocean and Bering Sea[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168

西北冰洋及白令海表层沉积物XRD全岩矿物分布特征

doi: 10.14027/j.issn.1000-0550.2021.168
基金项目: 

自然资源部第三海洋研究所基本科研业务费 2018006

国家自然科学基金项目 41876229

详细信息

XRD Bulk Mineral Distribution Patterns of Surface Sediments in the Western Arctic Ocean and Bering Sea

Funds: 

The Basic Scientific Research Operation Fee of the Third Institute of Oceanography, the Ministry of Natural Resources 2018006

National Natural Science Foundation of China 41876229

  • 摘要: 为了探明北极地区沉积物矿物的组成、分布、来源及运输途径,对西北冰洋及白令海82个站位的表层沉积物进行XRD(X射线衍射)全岩矿物分析。结果表明,石英、斜长石、钾长石、云母和绿泥石等为主要矿物,白云石、辉石、角闪石区域性分布。沉积物中矿物含量区域性差异明显,指示了不同的物质来源。其中,拉普捷夫海接收了西伯利亚地台沉积物以及新西伯利亚群岛花岗岩碎屑,其中部分在穿极流与波弗特旋回作用下通过海冰输送至加拿大海盆;楚科奇海阿拉斯加近岸水域沉积物中富含的石英,为海岸侵蚀和河流搬运进入楚科奇海;育空河搬运来自阿拉斯加大陆的富含长石、云母、绿泥石等矿物的沉积物到白令海,其中部分在洋流的作用下进一步搬运至楚科奇海—加拿大海盆;加拿大海盆沉积物中广泛分布的白云石,来自北极群岛和马更些流域。
  • 图  1  研究区区域背景及采样点位置(岩性据文献[2425],洋流据文献[26])

    Figure  1.  Study area and locations of sediment samples (lithology after references [24⁃25], currents after reference [26])

    Fig.1

    图  2  西北冰洋及白令海表层沉积物典型X射线衍射峰特征

    Qz.石英;Pl.斜长石;Kfs.钾长石;Ms.云母;Chl.绿泥石;Dol.白云石;Hbl.角闪石;Aug.普通辉石

    Figure  2.  X⁃Ray Diffraction (XRD) spectra of representative samples

    Qz. quartz; Pl. plagioclase; Kfs. potassium feldspar; Ms. Muscovite; Chl. chlorite; Dol. dolomite; Aug. Augite; Hbl. hornblende

    图  3  西北冰洋及白令海表层沉积物全岩矿物含量分布

    (a)石英;(b)斜长石;(c)钾长石;(d)云母;(e)绿泥石;(f)白云石;(g)辉石;(g)角闪石

    Figure  3.  Distribution patterns of minerals in surface sediments from the western Arctic Ocean and Bering Sea

    Fig.3

    图  4  Q型聚类分析结果

    Figure  4.  The result of Q cluster analysis

    Fig.4

    图  5  XRD全岩矿物Q型聚类分区图

    Figure  5.  Distribution map of Q⁃model clusters for XRD bulk minerals

    Fig.5

    图  6  西北冰洋及白令海表层沉积物中长石/石英比值分布

    Figure  6.  Feldspar/quartz ratio of surface sediments from western Arctic Ocean and Bering Sea

    Fig.6

    表  1  北冰洋周边大陆河流输沙量及流域内主要岩性

    河流汇入地输沙量/(106·t·a-1流域内主要岩性参考文献
    鄂毕河喀拉海16.5砂岩、页岩[2829]
    叶尼塞河喀拉海4.2~14.5变质岩、玄武岩[2930]
    哈坦加河拉普捷夫海1.7砂岩、玄武岩[2829]
    勒拿河拉普捷夫海20.7页岩、变质岩[29,31]
    亚纳河拉普捷夫海3.5砂岩、页岩[2829]
    因迪吉尔卡河东西伯利亚海12.9砂岩、页岩[2829]
    科雷马河东西伯利亚海16.1砂岩、页岩、玄武岩[2829]
    马更些河波弗特海124.0页岩、碳酸盐、变质岩[32]
    育空河白令海60.0页岩、砂岩、变质岩、新生—中生代火山岩[33]
    下载: 导出CSV

    表  2  矿物衍射数据

    矿物名称特征峰2θ/(°)参考文献
    石英20.84, 26.62, 50.11[39]
    斜长石21.97, 27.82, 28.03[40]
    钾长石20.88, 27.05, 27.65[41]
    云母8.87, 19.80, 34.83[42]
    绿泥石6.20, 12.41, 24.97[43]
    白云石30.86[44]
    辉石29.76[45]
    角闪石10.47, 28.47, 32.97[46]
    注:矿物衍射数据均来自http://rruff.geo.arizona.edu/AMS/amcsd.php#opennewwindow
    下载: 导出CSV

    表  3  西北冰洋及白令海表层样品矿物含量

    站位点区域经度/(°)纬度/(°)石英/%斜长石/%钾长石/%云母/%绿泥石/%白云石/%辉石/%角闪石/%RpRwp
    ARC4-B02阿留申岛弧169.958 253.331 227.540.98.211.02.40.57.71.86.89.8
    ARC4-B04阿留申海盆171.404 854.591 815.427.714.833.68.56.29.9
    ARC4-B06阿留申海盆174.493 857.005 019.124.817.127.111.94.16.2
    ARC4-B11阿留申海盆179.917 359.992 528.423.316.024.57.60.26.610.1
    ARC4-B14白令海陆架-177.692 260.921 236.127.611.217.56.50.60.55.98.7
    ARC4-BB01白令海陆架-177.476 361.287 539.232.57.016.64.10.40.26.79.6
    ARC4-BB05白令海陆架-175.331 262.544 036.531.714.511.15.50.40.37.511.0
    ARC4-BB06白令海陆架-174.380 863.008 034.028.511.419.95.40.50.36.09.0
    ARC4-BN03加拿大海盆-158.899 878.499 341.65.25.930.99.16.90.46.29.5
    ARC4-BN04加拿大海盆-159.039 279.471 228.66.07.630.19.413.93.80.65.68.1
    ARC4-BN06加拿大海盆-164.939 581.461 532.83.09.427.08.815.53.56.28.8
    ARC4-BN07加拿大海盆-166.471 382.482 528.28.15.633.810.19.24.60.45.37.9
    ARC4-BN09加拿大海盆-167.126 884.186 829.36.813.127.05.611.26.80.25.98.6
    ARC4-BN10加拿大海盆-178.643 385.503 527.913.26.434.48.14.84.80.45.47.9
    ARC4-BN12马克洛夫海盆-170.488 587.071 227.013.19.132.68.36.43.20.35.37.6
    ARC4-BN13马克洛夫海盆-176.629 588.394 325.85.27.845.913.41.60.35.27.3
    ARC4-BS02白令海陆架-171.000 564.335 752.421.414.96.50.70.52.70.98.411.6
    ARC4-BS05白令海陆架-169.502 864.333 364.220.27.22.60.75.18.812.8
    ARC4-BS08白令海陆架-168.018 864.328 567.515.49.55.50.90.11.18.912.9
    ARC4-C02楚科奇海陆架-167.335 869.123 349.219.83.518.56.22.20.20.46.08.9
    ARC4-C04楚科奇海陆架-167.029 871.011 845.323.15.218.56.01.70.26.09.0
    ARC4-C05楚科奇海陆架-164.728 370.760 082.010.31.93.71.50.30.38.512.0
    ARC4-C06楚科奇海陆架-162.763 370.516 781.37.02.86.10.81.60.20.28.912.9
    ARC4-C07楚科奇海陆架-165.325 772.541 233.019.58.029.99.20.30.14.66.4
    ARC4-C09楚科奇海陆架-159.714 771.813 844.416.89.519.57.62.10.17.010.3
    ARC4-CC1楚科奇海陆架-168.956 267.672 241.119.914.017.16.01.30.20.47.210.2
    ARC4-CC4楚科奇海陆架-167.863 568.133 870.311.25.49.33.00.60.27.511.8
    ARC4-CC8楚科奇海陆架-166.963 368.300 073.68.11.38.33.54.50.50.27.411.2
    ARC4-CO-5楚科奇海陆架-157.492 771.415 847.58.58.123.56.06.10.36.08.6
    ARC4-CO-10楚科奇海陆架-157.926 871.620 236.018.67.427.88.51.30.45.37.7
    ARC4-M02加拿大海盆-171.988 876.999 028.79.09.731.67.06.57.30.25.78.5
    ARC4-M03加拿大海盆-171.832 776.502 330.09.46.331.24.710.37.80.35.98.6
    ARC4-M05加拿大海盆-172.127 775.651 729.513.27.035.711.72.70.24.56.5
    ARC4-M06楚科奇海陆架-171.997 575.330 030.112.910.235.49.81.64.87.1
    ARC4-M07楚科奇海陆架-172.031 274.994 726.318.30.842.211.30.20.95.49.4
    ARC4-MOR2加拿大海盆-158.985 874.547 240.38.16.122.54.615.13.20.15.78.0
    ARC4-MS01加拿大海盆-154.707 373.174 730.111.95.838.611.52.00.14.97.7
    ARC4-MS02加拿大海盆-156.367 573.675 230.712.57.836.610.51.70.24.97.0
    ARC4-MS03加拿大海盆-157.298 774.067 524.621.08.232.38.82.32.85.88.6
    ARC4-NB01白令海陆架-175.075 861.233 732.026.811.521.77.40.20.45.38.0
    ARC4-NB02白令海陆架-173.686 361.378 240.931.54.916.65.00.80.35.78.8
    ARC4-NB03白令海陆架-172.197 061.506 839.05.912.527.78.26.70.06.48.5
    ARC4-NB06白令海陆架-167.511 261.827 752.224.69.67.72.72.50.78.312.2
    ARC4-NB08白令海陆架-167.342 062.658 745.332.26.67.05.41.11.80.68.112.0
    ARC4-NB-A白令海陆架-171.002 262.833 349.228.38.67.63.50.71.30.87.410.6
    ARC4-R06楚科奇海陆架-168.983 369.500 041.922.06.321.76.31.70.16.39.3
    ARC4-R08楚科奇海陆架-168.980 271.003 244.724.08.516.15.40.90.10.36.39.0
    ARC4-R09楚科奇海陆架-168.940 071.963 334.620.911.523.57.81.00.75.48.3
    ARC4-S21楚科奇海陆架-154.722 271.623 550.112.03.020.86.57.20.46.49.1
    ARC4-S23楚科奇海陆架-153.763 571.929 239.54.99.531.09.23.52.10.35.68.1
    ARC4-S24加拿大海盆-153.212 072.250 531.09.03.936.910.58.74.05.9
    ARC4-S25加拿大海盆-152.500 072.342 232.112.08.635.210.21.60.35.28.0
    ARC4-S26加拿大海盆-153.552 072.700 730.913.76.137.811.54.97.2
    ARC4-SR01楚科奇海陆架-168.970 067.004 061.620.65.47.52.30.61.40.66.28.8
    ARC4-SR02楚科奇海陆架-168.981 267.499 046.026.88.212.84.10.71.46.49.7
    ARC4-SR03楚科奇海陆架-169.015 367.997 540.129.45.617.65.91.20.25.78.6
    ARC4-SR04楚科奇海陆架-168.996 568.498 040.529.03.918.36.51.85.88.3
    ARC4-SR05楚科奇海陆架-168.997 769.001 738.924.98.021.06.40.85.47.9
    ARC4-SR10楚科奇海陆架-169.000 873.000 737.320.79.023.77.70.80.85.68.7
    ARC4-SR11楚科奇海陆架-168.987 573.994 825.617.56.338.710.80.70.45.37.9
    ARC4-SR12楚科奇海陆架-169.001 374.497 732.613.79.534.57.61.40.74.77.1
    AMK78-01俄罗斯极地海149.065 976.595 529.224.615.023.57.60.16.28.7
    AMK78-02俄罗斯极地海160.940 274.904 531.523.49.027.08.40.76.79.7
    AMK78-03俄罗斯极地海160.888 174.914 331.626.77.324.89.66.710.1
    AMK78-04俄罗斯极地海160.942 574.922 830.221.18.029.510.90.35.78.0
    AMK78-05俄罗斯极地海160.531 674.937 732.320.47.531.08.50.36.59.5
    AMK78-06俄罗斯极地海130.499 273.122 728.322.612.424.011.61.16.08.7
    AMK78-07俄罗斯极地海130.345 673.108 728.826.67.022.613.21.70.15.57.5
    AMK78-08俄罗斯极地海130.367 273.113 730.323.311.424.310.76.28.8
    AMK78-09俄罗斯极地海130.279 973.092 529.821.019.218.59.02.20.10.25.98.2
    AMK78-10俄罗斯极地海129.143 075.199 827.523.114.826.97.20.56.910.7
    AMK78-11俄罗斯极地海128.645 575.226 423.720.614.231.89.20.40.15.88.7
    AMK78-12俄罗斯极地海125.424 776.394 639.526.58.918.17.07.611.2
    AMK78-13俄罗斯极地海125.536 076.781 632.121.98.828.08.90.10.26.18.5
    AMK78-14俄罗斯极地海127.792 676.892 939.523.915.017.34.10.10.18.513.0
    AMK78-15俄罗斯极地海127.805 376.892 540.227.710.118.73.20.17.811.4
    AMK78-16俄罗斯极地海120.668 177.311 624.219.07.736.412.60.14.56.7
    AMK78-17俄罗斯极地海104.010 877.949 630.323.73.828.613.65.58.1
    AMK78-18俄罗斯极地海104.234 477.949 628.717.85.931.116.54.25.5
    AMK78-19俄罗斯极地海73.179 373.333 529.020.05.431.713.80.14.56.2
    AMK78-20俄罗斯极地海73.339 973.576 732.220.011.725.610.30.25.78.1
    AMK78-21俄罗斯极地海73.250 073.832 533.723.07.025.910.30.15.67.8
    续表注:“—”表示未检测到该矿物。
    下载: 导出CSV

    表  4  Q型聚类分区中矿物平均含量(%)

    区域石英斜长石钾长石云母绿泥石白云石辉石角闪石
    A130.821.910.026.610.00.500.2
    A217.326.316.030.410.2000
    B129.28.77.632.08.19.54.60.3
    B228.313.87.336.510.02.41.50.3
    C43.87.76.525.77.17.81.10.2
    D149.026.79.68.33.30.61.70.9
    D240.224.89.018.65.91.200.2
    E64.418.77.45.21.30.22.50.2
    F76.89.22.96.92.21.70.30.2
    所有区域37.419.08.623.87.52.41.10.3
    下载: 导出CSV
  • [1] Novigatsky A N, Lisitzin A P. Concentration, composition, and fluxes of dispersed sedimentary material in the snow and ice cover of the polar arctic[J]. Oceanology, 2019, 59(3): 406-410.
    [2] Dethleff D. Entrainment and export of Laptev Sea ice sediments, Siberian Arctic[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07009.
    [3] Osadchiev A A, Pisareva M N, Spivak E A, et al. Freshwater transport between the Kara, Laptev, and East-Siberian seas[J]. Scientific Reports, 2020, 10(1): 13041.
    [4] Phillips R L, Grantz A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of Late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001, 172(1/2): 91-115.
    [5] Viscosi-Shirley C, Pisias N, Mammone K. Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves[J]. Continental Shelf Research, 2003, 23(11/12/13): 1201-1225.
    [6] Darby D A. Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3257.
    [7] Middleton G V. Hydraulic interpretation of sand size distributions[J]. The Journal of Geology, 1976, 84(4): 405-426.
    [8] Flemming B W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis[J]. Sedimentary Geology, 2007, 202(3): 425-435.
    [9] Vogt C. Bulk mineralogy in surface sediments from the eastern central Arctic Ocean[M]//Stein R; Ivanov G I; Levitan M A, et al. Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1996: 159-171.
    [10] Dong L S, Shi X F, Liu Y G, et al. Mineralogical study of surface sediments in the western Arctic Ocean and their implications for material sources[J]. Advances in Polar Science, 2014, 25(3): 192-203.
    [11] Wang R, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: Implications and perspectives for palaeoenvironmental reconstructions[J]. Geo-Marine Letters, 2016, 36(4): 259-270.
    [12] Kobayashi D, Yamamoto M, Irino T, et al. Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial Period[J]. Polar Science, 2016, 10(4): 519-531.
    [13] Vogt C, Knies J, Spielhagen R F, et al. Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years[J]. Global and Planetary Change, 2001, 31(1/2/3/4): 23-44.
    [14] Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: Mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the northern Mendeleev Ridge[J]. Quaternary Science Reviews, 2014, 92: 140-154.
    [15] Gamboa A, Montero-Serrano J C, St-Onge G, et al. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(2): 488-512.
    [16] Ortiz J D, Polyak L, Grebmeier J M, et al. Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray Diffraction analysis[J]. Global and Planetary Change, 2009, 68(1/2): 73-84.
    [17] 马礼敦. X射线粉末衍射的新起点:Rietveld全谱拟合[J]. 物理学进展,1996,16(2):115-135.

    Ma Lidun. New starting of X ray powder diffraction rietveld whole pattern fitting[J]. Progress in Physics, 1996, 16(2): 115-135.
    [18] 国家海洋局极地专项办公室. 北极海域海洋地质考察[M]. 北京:海洋出版社,2016:1-12.

    Polar Special Office of the State Oceanic Administration. Arctic marine geological investigation[M]. Beijing: China Ocean Press, 2016: 1-12.
    [19] Darby D A, Ortiz J, Polyak L, et al. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments[J]. Global and Planetary Change, 2009, 68(1/2): 58-72.
    [20] Ganelin V G, Biakov A S. The Permian biostratigraphy of the Kolyma-Omolon region, northeast Asia[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 225-234.
    [21] Parfenov L M. Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics[J]. Tectonophysics, 1991, 199(2/3/4): 319-342.
    [22] Sharma M, Basu A R, Nesterenko G V. Nd-Sr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR[J]. Geochimica et Cosmochimica Acta, 1991, 55(4): 1183-1192.
    [23] Tikhomirov P L, Akinin V V, Ispolatov V O, et al. The Okhotsk-Chukotka volcanic belt: Age of its northern part according to new Ar-Ar and U-Pb geochronological data[J]. Stratigraphy and Geological Correlation, 2006, 14(5): 524-537.
    [24] Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12): Q12004.
    [25] Zhang S X, Jowett D M S, Barnes C R. Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands[J]. Canadian Journal of Earth Sciences, 2017, 54(9): 936-960.
    [26] Macdonald R W, Harner T, Fyfe J, et al. The influence of global change on contaminant pathways to, within, and from the Arctic[M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2003: xii+65.
    [27] Asahara Y, Takeuchi F, Nagashima K, et al. Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 155-171.
    [28] Gordeev V V, Martin J M, Sidorov I S, et al. A reassessment of the Eurasian River input of water, sediment, major elements, and nutrients to the Arctic Ocean[J]. American Journal of Science, 1996, 296(6): 664-691.
    [29] Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.
    [30] Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 1098.
    [31] Are F, Reimnitz E. An overview of the Lena River delta setting: Geology, tectonics, geomorphology, and hydrology[J]. Journal of Coastal Research, 2000, 16(4): 1083-1093.
    [32] Burn C R, Kokelj S V. The environment and permafrost of the Mackenzie Delta area[J]. Permafrost and Periglacial Processes, 2009, 20(2): 83-105.
    [33] Brabets T P, Wang B, Meade R H. Environmental and hydrologic overview of the Yukon River Basin, Alaska and Canada[R]. Anchorage: U.S. Geological Survey, 2000: 106-106.
    [34] Roach A T, Aagaard K, Pease C H, et al. Direct measurements of transport and water properties through the Bering Strait[J]. Journal of Geophysical Research: Oceans, 1995, 100(C9): 18443-18457.
    [35] Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: A wind- and buoyancy-forced Arctic coastal current[J]. Journal of Geophysical Research: Oceans, 1999, 104(C12): 29697-29713.
    [36] Nagashima K, Asahara Y, Takeuchi F, et al. Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intensity and crystallinity of quartz[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 145-154.
    [37] Watanabe E, Onodera J, Harada N, et al. Enhanced role of eddies in the Arctic marine biological pump[J]. Nature Communications, 2014, 5: 3950.
    [38] 黄继武,李周. 多晶材料X射线衍射:实验原理、方法与应用[M]. 北京:冶金工业出版社,2012:1-117.

    Huang Jiwu, Li Zhou. Experimental principles, methods and applications of X-ray diffraction for polycrystalline materials[M]. Beijing: Metallurgical Industry Press, 2012: 1-117.
    [39] Ikuta D, Kawame N, Banno S, et al. First in situ X-ray identification of coesite and retrograde quartz on a glass thin section of an ultrahigh-pressure metamorphic rock and their crystal structure details[J]. American Mineralogist, 2007, 92(1): 57-63.
    [40] Fitz Gerald J D, Parise J B, MacKinnon I D R. Average structure of an An48 plagioclase from the Hogarth ranges[J]. American Mineralogist, 1986, 71(11/12): 1399-1408.
    [41] Ribbe P H. The structure of a strained intermediate microcline in cryptoperthitic association with twinned plagioclase[J]. American Mineralogist, 1979, 64(3/4): 402-408.
    [42] Brigatti M F, Frigieri P, Poppi L. Crystal chemistry of Mg-, Fe-bearing muscovites-2M1 [J]. American Mineralogist, 1998, 83(7/8): 775-785.
    [43] Zanazzi P F, Montagnoli M, Nazzareni S, et al. Structural effects of pressure on monoclinic chlorite: A single-crystal study[J]. American Mineralogist, 2007, 92(4): 655-661.
    [44] Steinfink H, Sans F J. Refinement of the crystal structure of dolomite[J]. American Mineralogist, 1959, 44(5/6): 679-682.
    [45] Peacor D R. Refinement of the crystal structure of a pyroxene of formula MⅠ MⅡ (Si1.5Al0.5)O6 1 [J]. American Mineralogist, 1967, 52(1/2): 31-41.
    [46] Oberti R, Ungaretti L, Cannillo E, et al. The mechanism of Cl incorporation in amphibole[J]. American Mineralogist, 1993, 78(7/8): 746-752.
    [47] 李秋玲. 北极东西伯利亚陆架沉积物特征及物源分析[D]. 青岛:自然资源部第一海洋研究所,2020.

    Li Qiuling. Sediment characteristics and provenance analysis of the east siberian arctic shelf[D]. Qingdao: The First Institute of Oceanography, MNR, 2020.
    [48] Peregovich B, Hoops E, Rachold V. Sediment transport to the Laptev Sea (Siberian Arctic) during the Holocene: Evidence from the heavy mineral composition of fluvial and marine sediments[J]. Boreas, 1999, 28(1): 205-214.
    [49] 陈志华. 北冰洋西部沉积物地球化学特征及环境指示意义[D]. 青岛:中国海洋大学,2004.

    Chen Zhihua. Geochemistry of sediments in the western arctic ocean and implications of spatial and temporal changes of sedimentary environments[D]. Qingdao: Ocean University of China, 2004.
    [50] Kyzs’michev A B, Soloviev A V, Gonikberg V E, et al. Mesozoic syncollision siliciclastic sediments of the Bols’shoi Lyakhov Island (New Siberian Islands)[J]. Stratigraphy and Geological Correlation, 2006, 14(1): 30-48.
    [51] Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size sorting[J]. Continental Shelf Research, 2003, 23(11/12/13): 1175-1200.
    [52] Eicken H, Kolatschek J, Freitag J, et al. A key source area and constraints on entrainment for basin-scale sediment transport by Arctic sea ice[J]. Geophysical Research Letters, 2000, 27(13): 1919-1922.
    [53] Darby D A, Myers W B, Jakobsson M, et al. Modern dirty sea ice characteristics and sources: The role of anchor ice[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09008.
    [54] Byers F M. Geology of umnak and bogoslof islands, aleutian islands, alaska[R]. Washington: United States Government Printing Office, 1959: 267-369.
    [55] 汪卫国,戴霜,陈莉莉,等. 白令海和西北冰洋表层沉积物磁化率特征初步研究[J]. 海洋学报,2014,36(9):121-131.

    Wang Weiguo, Dai Shuang, Chen Lili, et al. Magnetic susceptibility characteristics of surface sediments in Bering Sea and western Arctic Ocean: Preliminary results[J]. Acta Oceanologica Sinica, 2014, 36(9): 121-131.
    [56] 赵蒙维,汪卫国,方建勇,等. 白令海北部悬浮体含量分布及其颗粒组分特征[J]. 海洋学报,2016,38(1):82-93.

    Zhao Mengwei, Wang Weiguo, Fang Jianyong, et al. The distribution and composition of suspended particles in the northern Bering Sea[J]. Acta Oceanologica Sinica, 2016, 38(1): 82-93.
    [57] Naidu A S, Han M W, Mowatt T C, et al. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic[J]. Marine Geology, 1995, 127(12/3/4): 87-104.
    [58] Darby D A, Naidu A S, Mowatt T C, et al. Sediment composition and sedimentary processes in the Arctic Ocean[M]//Herman Y. The arctic seas: Climatology, oceanography, geology, and biology. Boston: Springer, 1989: 657-720.
    [59] Eberl D D. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance[J]. American Mineralogist, 2004, 89(11/12): 1784-1794.
    [60] Zhang T L, Wang R J, Xiao W S, et al. Characteristics of terrigenous components of Amerasian Arctic Ocean surface sediments: Implications for reconstructing provenance and transport modes[J]. Marine Geology, 2021, 437: 106497.
    [61] Wang W G, Yang J C, Zhao M W, et al. Spatial variation in grain-size population of surface sediments from northern Bering Sea and western Arctic Ocean: Implications for provenance and depositional mechanisms[J]. Advances in Polar Science, 2020, 31(3): 192-204.
    [62] Stein R, Matthießen J, Frank N, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2): 97-121.
    [63] 董红梅,宋友桂. 黏土矿物在古环境重建中的应用[J]. 海洋地质与第四纪地质,2009,29(6):119-130.

    Dong Hongmei, Song Yougui. Clay mineralogy and its application to paleo-environmental reconstruction[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 119-130.
    [64] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
    [65] Moros M, McManus J F, Rasmussen T, et al. Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: A proxy for ice rafting in the northern North Atlantic?[J]. Earth and Planetary Science Letters, 2004, 218(3/4): 389-401.
  • [1] 林武辉, 余锦萍, 余克服, 刘昕明, 莫珍妮, 宁秋云, 李英花, 李玉婷.  北部湾涠洲岛海域沉积物中物质来源解析 . 沉积学报, 2021, 39(3): 621-630. doi: 10.14027/j.issn.1000-0550.2020.048
    [2] 林思达, 关平, 牛小兵, 付玲, 梁小斌.  长庆油田长7段黏土矿物X衍射分析K因子的求取及应用 . 沉积学报, 2017, 35(4): 781-788. doi: 10.14027/j.cnki.cjxb.2017.04.012
    [3] 席雅娟, 师育新, 戴雪荣, 刘朝, 吴紫阳.  杭州湾潮滩沉积物黏土矿物空间差异与物源指示 . 沉积学报, 2016, 34(2): 315-325. doi: 10.14027/j.cnki.cjxb.2016.02.010
    [4] 张凯棣, 李安春, 董江, 张晋.  东海表层沉积物碎屑矿物组合分布特征及其物源环境指示 . 沉积学报, 2016, 34(5): 902-911. doi: 10.14027/j.cnki.cjxb.2016.05.009
    [5] 辽东湾周边河流沉积物碎屑矿物组成及其物源意义 . 沉积学报, 2013, 31(04): 663-671.
    [6] 台湾海峡表层沉积物中黏土矿物特征及物质来源 . 沉积学报, 2013, 31(1): 120-129.
    [7] 沉积物岩芯X光片图像灰度数值及其影响因素 . 沉积学报, 2012, 30(2): 318-324.
    [8] 何梦颖.  长江流域沉积物黏土矿物组合特征及物源指示意义 . 沉积学报, 2011, 29(3): 544-551.
    [9] 孟 昌.  塔里木盆地西北缘海相白垩系—古近系界线沉积物环境指标研究 . 沉积学报, 2011, 29(2): 245-254.
    [10] 刘志飞.  南海沉积物中的黏土矿物:指示东亚季风演化历史? . 沉积学报, 2010, 28(5): 1012-1019.
    [11] 闵凤阳.  深圳湾西北部海域表层沉积物的分布特征及输运趋势 . 沉积学报, 2009, 27(4): 714-722.
    [12] 刘子琳.  北冰洋沉积物和海水叶绿素α浓度分布的区域性特征 . 沉积学报, 2008, 26(6): 1035-1042.
    [13] 长江水系沉积物碎屑矿物组成及其示踪意义 . 沉积学报, 2006, 24(4): 570-578.
    [14] 乌梁素海沉积物中全磷的分布特征 . 沉积学报, 2006, 24(4): 579-584.
    [15] 沈守文, 沈明道, 梁大川, 张国钊.  泥页岩的X射线衍射定向指数与理化性能及井壁稳定的关系 . 沉积学报, 1998, 16(2): 117-123.
    [16] 邓学能.  粘土沉积物XRD定量分析方法 . 沉积学报, 1993, 11(4): 99-104.
    [17] 朱桂海, Jame M.Brooks.  三维全扫描荧光法探讨长江口邻近陆架有机沉积物来源 . 沉积学报, 1989, 7(1): 117-125.
    [18] 秦匡宗, 张秀义, 劳永新.  干酪根的X射线衍射研究 . 沉积学报, 1987, 5(1): 26-36.
    [19] 范德廉, 陈志明, 刘铁兵.  X射线照像术在泥质岩岩石学研究中的应用 . 沉积学报, 1986, 4(2): 122-124.
    [20] 游仲华.  太平洋中部沉积物中粘土矿物的初步研究 . 沉积学报, 1985, 3(3): 115-124.
  • 加载中
图(6) / 表 (4)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  48
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-12-20
  • 录用日期:  2022-02-15
  • 网络出版日期:  2022-02-15
  • 刊出日期:  2023-08-10

目录

    西北冰洋及白令海表层沉积物XRD全岩矿物分布特征

    doi: 10.14027/j.issn.1000-0550.2021.168
      基金项目:

      自然资源部第三海洋研究所基本科研业务费 2018006

      国家自然科学基金项目 41876229

      作者简介:

      刘杨,女,1997年出生,硕士研究生,海洋地质,E-mail: yliu2019@lzu.edu.cn

      通讯作者: 汪卫国,男,研究员,E-mail: wangweiguo@tio.org.cn
    • 中图分类号: P736.21

    摘要: 为了探明北极地区沉积物矿物的组成、分布、来源及运输途径,对西北冰洋及白令海82个站位的表层沉积物进行XRD(X射线衍射)全岩矿物分析。结果表明,石英、斜长石、钾长石、云母和绿泥石等为主要矿物,白云石、辉石、角闪石区域性分布。沉积物中矿物含量区域性差异明显,指示了不同的物质来源。其中,拉普捷夫海接收了西伯利亚地台沉积物以及新西伯利亚群岛花岗岩碎屑,其中部分在穿极流与波弗特旋回作用下通过海冰输送至加拿大海盆;楚科奇海阿拉斯加近岸水域沉积物中富含的石英,为海岸侵蚀和河流搬运进入楚科奇海;育空河搬运来自阿拉斯加大陆的富含长石、云母、绿泥石等矿物的沉积物到白令海,其中部分在洋流的作用下进一步搬运至楚科奇海—加拿大海盆;加拿大海盆沉积物中广泛分布的白云石,来自北极群岛和马更些流域。

    English Abstract

    刘杨, 汪卫国, 董林森. 西北冰洋及白令海表层沉积物XRD全岩矿物分布特征[J]. 沉积学报, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168
    引用本文: 刘杨, 汪卫国, 董林森. 西北冰洋及白令海表层沉积物XRD全岩矿物分布特征[J]. 沉积学报, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168
    LIU Yang, WANG WeiGuo, DONG LinSen. XRD Bulk Mineral Distribution Patterns of Surface Sediments in the Western Arctic Ocean and Bering Sea[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168
    Citation: LIU Yang, WANG WeiGuo, DONG LinSen. XRD Bulk Mineral Distribution Patterns of Surface Sediments in the Western Arctic Ocean and Bering Sea[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1054-1066. doi: 10.14027/j.issn.1000-0550.2021.168
      • 北冰洋沉积物来源多样,沉积过程复杂、种类繁多[16]。对北冰洋及其周边海域现代沉积物的研究,可加深对该地区物质来源、搬运方式及运移路径等的理解,并对北冰洋古海洋研究中代用指标的解释、现代污染物迁移路径的预测具有重要意义。为了探明北冰洋沉积物的源—汇问题,前人运用了多种技术手段和物源指标,但是高纬度地区以物理风化为主,沉积物中碎屑矿物占主导,沉积物中包含了不同物质来源和沉积机制的颗粒组分[78],如果仅针对沉积物中特定颗粒组分、矿物或化学成分进行研究,可能无法全面反映沉积物的源—汇特征。因此,进行XRD(X射线衍射)全岩矿物研究可对区域内沉积物来源、搬运路径和沉积机制有一个全面的认识[911]。Vogt[9]对北冰洋全岩矿物进行研究,在加拿大北极群岛和北格陵兰岛附近的沉积物中发现了大量的碳酸盐碎屑,而西伯利亚大陆架则主要是硅质碎屑。Dong et al.[10]在北冰洋西部识别出了18种矿物,并研究了其中10种矿物在西北冰洋的平面分布,查明了沉积物的来源及搬运路径。Kobayashi et al.[12]在楚科奇与白令海大陆架的全岩矿物研究中,检测出石英、长石、伊利石、绿泥石、高岭石、角闪石、方解石和白云石等矿物,并认为(绿泥石+高岭石)/伊利石和绿泥石/伊利石比率可指示波弗特旋回与白令海陆架流。前人在北极与白令海地区开展的XRD(X射线衍射)全岩研究中,多数仅对沉积物进行定性分析或仅研究个别矿物间的比值[11,13],半定量研究其使用的计算方法也不相同[12,1416],这就导致了难以对现有研究进行统一分析。

        由于北极复杂的沉积机制,致使小范围内的研究难以反映整体沉积特征,尤其是远距离搬运特征。因此,本文对西北冰洋和白令海表层沉积物进行XRD(X射线衍射)全岩分析,在Dong et al.[10]对楚科奇海陆架、马克洛夫海盆、加拿大海盆的研究基础上增加了西伯利亚陆架、白令海陆架、阿留申海盆和阿留申岛弧等海域。并采用Rietveld全谱拟合法获得沉积物中主要矿物含量,通过矿物分布规律分析不同区域沉积物的来源及运输路径。相较于传统的XRD半定量分析方法(如:内标法、K值法、外标法等),Rietveld全谱拟合法无需标样,且能很好地解决多相混合物重叠峰问题,能有效消除结晶度和择优取向等干扰因素的影响,从而获得更准确的半定量结果[17],更好地反映各矿物相在北极区域的空间分布特征。

      • 北冰洋因其被欧亚大陆和北美大陆围绕,仅通过白令海峡和弗拉姆海峡分别与太平洋和北大西洋相连,也称“北极地中海”[18]。北冰洋沉积物主要通过河流、冰山、海冰、沿岸崩塌、粉尘等形式输入[19],周边大陆岩性很大程度上决定了北冰洋表层沉积物的矿物组成。环北冰洋陆地由波罗的(Baltica)、北美、西伯利亚三个克拉通及其相间的褶皱带组成,三个克拉通为前寒武结晶基底和其上的沉积岩组成,其中,北美加拿大极地群岛区以古生代碳酸盐为主,而波罗的和东西伯利亚区以碎屑岩为主。褶皱带区,如楚科奇半岛、阿拉斯加等地分布火山碎屑岩和变质岩[2023]。叶尼塞河和哈坦加河流经西伯利亚火成岩省(图1)。

        图  1  研究区区域背景及采样点位置(岩性据文献[2425],洋流据文献[26])

        Figure 1.  Study area and locations of sediment samples (lithology after references [24⁃25], currents after reference [26])

        河流输入是北冰洋沉积物的一个重要来源。其中,以位于美洲大陆的马更些河输沙量最大,其次为欧亚大陆的勒拿河、鄂毕河、科雷马河和叶尼塞河等(表1)。流入白令海的育空河,有1/3的泥沙被洋流带入属于北冰洋的楚科奇海[27]。其他一些较小的北极河流,如哈坦加河和亚纳河,其输沙量较上述河流的输沙量低一个量级。各河流流域内的岩性差异导致沉积物中矿物的区域性差异(表1)。

        表 1  北冰洋周边大陆河流输沙量及流域内主要岩性

        河流汇入地输沙量/(106·t·a-1流域内主要岩性参考文献
        鄂毕河喀拉海16.5砂岩、页岩[2829]
        叶尼塞河喀拉海4.2~14.5变质岩、玄武岩[2930]
        哈坦加河拉普捷夫海1.7砂岩、玄武岩[2829]
        勒拿河拉普捷夫海20.7页岩、变质岩[29,31]
        亚纳河拉普捷夫海3.5砂岩、页岩[2829]
        因迪吉尔卡河东西伯利亚海12.9砂岩、页岩[2829]
        科雷马河东西伯利亚海16.1砂岩、页岩、玄武岩[2829]
        马更些河波弗特海124.0页岩、碳酸盐、变质岩[32]
        育空河白令海60.0页岩、砂岩、变质岩、新生—中生代火山岩[33]

        北冰洋受多个洋流的控制(图1),其中,太平洋水经白令海峡后,在楚科奇海陆架向北流,最终汇入加拿大海盆[34];发源于拉普捷夫海的穿极流向北经过北冰洋中部,并经弗拉姆海峡汇入北欧海;波弗特旋回位于美亚海盆,呈顺时针方向流动。受进入北冰洋的北大西洋流的影响,在北冰洋俄罗斯陆架形成自西向东的西伯利亚沿岸流,其在楚科奇海转向北流[35]。海冰和冰山在洋流的作用下漂流并释放沉积物。陆架和陆坡沉积物可在波浪、涡旋、重力流的作用下再次搬运[3637]

      • 研究区位于西北冰洋及白令海。本次研究所使用样品为2010年“中国第四次北极科学考察”以及2019年“中俄联合北极考察(AMK78航次)”的82个站位的表层沉积物样品(图1)。所有样品用箱式取样器采集,取最表层5 cm的沉积物装入自封袋中4 ℃冷藏保存,用于实验室分析。

        样品冷冻干燥后,用玛瑙研钵将样品研磨细至200目以下。将研磨好的粉末样品装入XRD样品台凹槽中,用光滑的平板玻璃将凹槽表面压实,确保测试样品表面平整且不会产生明显的择优取向。在自然资源部第三海洋研究所用X’Pert Pro MPD多晶X射线衍射仪进行XRD全岩测试。测试条件:Cu-Kα辐射;工作电压和电流分别为40 kV和40 mA;发散狭缝与散射狭缝均为1°,接收狭缝5.5 mm;采用连续扫描方式,扫描范围:5~80°(2θ),扫描时间29.845 s;扫描步长0.016 7113°。所有样品测试条件相同。

        得到的XRD图谱,用HighScore Plus软件进行矿物相检索,并用“三强线”法[38]补充与检测定性结果。得到矿物定性信息后,用Rietveld全谱拟合法进行半定量分析。单个矿物含量表示为其在全岩矿物中的占比。RwpRp为反映计算图谱与实测图谱拟合程度的两个因子。R值越小,拟合效果越好[38]。本次所有样品的Rwp(平均值为9.5%)与Rp(平均值为6.4%)均小于15%(表2),说明拟合谱线重现性较好,结果可信[38]

        表 2  矿物衍射数据

        矿物名称特征峰2θ/(°)参考文献
        石英20.84, 26.62, 50.11[39]
        斜长石21.97, 27.82, 28.03[40]
        钾长石20.88, 27.05, 27.65[41]
        云母8.87, 19.80, 34.83[42]
        绿泥石6.20, 12.41, 24.97[43]
        白云石30.86[44]
        辉石29.76[45]
        角闪石10.47, 28.47, 32.97[46]
        注:矿物衍射数据均来自http://rruff.geo.arizona.edu/AMS/amcsd.php#opennewwindow
      • 在所有82个站点沉积物中均检测到石英、斜长石、钾长石、云母和绿泥石;另在63个站点检测到白云石;在32个站点检测到辉石;在60个站点检测出角闪石(矿物卡片峰位置信息见表2,样品定相结果见图2)。所有识别出来的矿物含量以百分制表示(表3)。

        图  2  西北冰洋及白令海表层沉积物典型X射线衍射峰特征

        Figure 2.  X⁃Ray Diffraction (XRD) spectra of representative samples

        表 3  西北冰洋及白令海表层样品矿物含量

        站位点区域经度/(°)纬度/(°)石英/%斜长石/%钾长石/%云母/%绿泥石/%白云石/%辉石/%角闪石/%RpRwp
        ARC4-B02阿留申岛弧169.958 253.331 227.540.98.211.02.40.57.71.86.89.8
        ARC4-B04阿留申海盆171.404 854.591 815.427.714.833.68.56.29.9
        ARC4-B06阿留申海盆174.493 857.005 019.124.817.127.111.94.16.2
        ARC4-B11阿留申海盆179.917 359.992 528.423.316.024.57.60.26.610.1
        ARC4-B14白令海陆架-177.692 260.921 236.127.611.217.56.50.60.55.98.7
        ARC4-BB01白令海陆架-177.476 361.287 539.232.57.016.64.10.40.26.79.6
        ARC4-BB05白令海陆架-175.331 262.544 036.531.714.511.15.50.40.37.511.0
        ARC4-BB06白令海陆架-174.380 863.008 034.028.511.419.95.40.50.36.09.0
        ARC4-BN03加拿大海盆-158.899 878.499 341.65.25.930.99.16.90.46.29.5
        ARC4-BN04加拿大海盆-159.039 279.471 228.66.07.630.19.413.93.80.65.68.1
        ARC4-BN06加拿大海盆-164.939 581.461 532.83.09.427.08.815.53.56.28.8
        ARC4-BN07加拿大海盆-166.471 382.482 528.28.15.633.810.19.24.60.45.37.9
        ARC4-BN09加拿大海盆-167.126 884.186 829.36.813.127.05.611.26.80.25.98.6
        ARC4-BN10加拿大海盆-178.643 385.503 527.913.26.434.48.14.84.80.45.47.9
        ARC4-BN12马克洛夫海盆-170.488 587.071 227.013.19.132.68.36.43.20.35.37.6
        ARC4-BN13马克洛夫海盆-176.629 588.394 325.85.27.845.913.41.60.35.27.3
        ARC4-BS02白令海陆架-171.000 564.335 752.421.414.96.50.70.52.70.98.411.6
        ARC4-BS05白令海陆架-169.502 864.333 364.220.27.22.60.75.18.812.8
        ARC4-BS08白令海陆架-168.018 864.328 567.515.49.55.50.90.11.18.912.9
        ARC4-C02楚科奇海陆架-167.335 869.123 349.219.83.518.56.22.20.20.46.08.9
        ARC4-C04楚科奇海陆架-167.029 871.011 845.323.15.218.56.01.70.26.09.0
        ARC4-C05楚科奇海陆架-164.728 370.760 082.010.31.93.71.50.30.38.512.0
        ARC4-C06楚科奇海陆架-162.763 370.516 781.37.02.86.10.81.60.20.28.912.9
        ARC4-C07楚科奇海陆架-165.325 772.541 233.019.58.029.99.20.30.14.66.4
        ARC4-C09楚科奇海陆架-159.714 771.813 844.416.89.519.57.62.10.17.010.3
        ARC4-CC1楚科奇海陆架-168.956 267.672 241.119.914.017.16.01.30.20.47.210.2
        ARC4-CC4楚科奇海陆架-167.863 568.133 870.311.25.49.33.00.60.27.511.8
        ARC4-CC8楚科奇海陆架-166.963 368.300 073.68.11.38.33.54.50.50.27.411.2
        ARC4-CO-5楚科奇海陆架-157.492 771.415 847.58.58.123.56.06.10.36.08.6
        ARC4-CO-10楚科奇海陆架-157.926 871.620 236.018.67.427.88.51.30.45.37.7
        ARC4-M02加拿大海盆-171.988 876.999 028.79.09.731.67.06.57.30.25.78.5
        ARC4-M03加拿大海盆-171.832 776.502 330.09.46.331.24.710.37.80.35.98.6
        ARC4-M05加拿大海盆-172.127 775.651 729.513.27.035.711.72.70.24.56.5
        ARC4-M06楚科奇海陆架-171.997 575.330 030.112.910.235.49.81.64.87.1
        ARC4-M07楚科奇海陆架-172.031 274.994 726.318.30.842.211.30.20.95.49.4
        ARC4-MOR2加拿大海盆-158.985 874.547 240.38.16.122.54.615.13.20.15.78.0
        ARC4-MS01加拿大海盆-154.707 373.174 730.111.95.838.611.52.00.14.97.7
        ARC4-MS02加拿大海盆-156.367 573.675 230.712.57.836.610.51.70.24.97.0
        ARC4-MS03加拿大海盆-157.298 774.067 524.621.08.232.38.82.32.85.88.6
        ARC4-NB01白令海陆架-175.075 861.233 732.026.811.521.77.40.20.45.38.0
        ARC4-NB02白令海陆架-173.686 361.378 240.931.54.916.65.00.80.35.78.8
        ARC4-NB03白令海陆架-172.197 061.506 839.05.912.527.78.26.70.06.48.5
        ARC4-NB06白令海陆架-167.511 261.827 752.224.69.67.72.72.50.78.312.2
        ARC4-NB08白令海陆架-167.342 062.658 745.332.26.67.05.41.11.80.68.112.0
        ARC4-NB-A白令海陆架-171.002 262.833 349.228.38.67.63.50.71.30.87.410.6
        ARC4-R06楚科奇海陆架-168.983 369.500 041.922.06.321.76.31.70.16.39.3
        ARC4-R08楚科奇海陆架-168.980 271.003 244.724.08.516.15.40.90.10.36.39.0
        ARC4-R09楚科奇海陆架-168.940 071.963 334.620.911.523.57.81.00.75.48.3
        ARC4-S21楚科奇海陆架-154.722 271.623 550.112.03.020.86.57.20.46.49.1
        ARC4-S23楚科奇海陆架-153.763 571.929 239.54.99.531.09.23.52.10.35.68.1
        ARC4-S24加拿大海盆-153.212 072.250 531.09.03.936.910.58.74.05.9
        ARC4-S25加拿大海盆-152.500 072.342 232.112.08.635.210.21.60.35.28.0
        ARC4-S26加拿大海盆-153.552 072.700 730.913.76.137.811.54.97.2
        ARC4-SR01楚科奇海陆架-168.970 067.004 061.620.65.47.52.30.61.40.66.28.8
        ARC4-SR02楚科奇海陆架-168.981 267.499 046.026.88.212.84.10.71.46.49.7
        ARC4-SR03楚科奇海陆架-169.015 367.997 540.129.45.617.65.91.20.25.78.6
        ARC4-SR04楚科奇海陆架-168.996 568.498 040.529.03.918.36.51.85.88.3
        ARC4-SR05楚科奇海陆架-168.997 769.001 738.924.98.021.06.40.85.47.9
        ARC4-SR10楚科奇海陆架-169.000 873.000 737.320.79.023.77.70.80.85.68.7
        ARC4-SR11楚科奇海陆架-168.987 573.994 825.617.56.338.710.80.70.45.37.9
        ARC4-SR12楚科奇海陆架-169.001 374.497 732.613.79.534.57.61.40.74.77.1
        AMK78-01俄罗斯极地海149.065 976.595 529.224.615.023.57.60.16.28.7
        AMK78-02俄罗斯极地海160.940 274.904 531.523.49.027.08.40.76.79.7
        AMK78-03俄罗斯极地海160.888 174.914 331.626.77.324.89.66.710.1
        AMK78-04俄罗斯极地海160.942 574.922 830.221.18.029.510.90.35.78.0
        AMK78-05俄罗斯极地海160.531 674.937 732.320.47.531.08.50.36.59.5
        AMK78-06俄罗斯极地海130.499 273.122 728.322.612.424.011.61.16.08.7
        AMK78-07俄罗斯极地海130.345 673.108 728.826.67.022.613.21.70.15.57.5
        AMK78-08俄罗斯极地海130.367 273.113 730.323.311.424.310.76.28.8
        AMK78-09俄罗斯极地海130.279 973.092 529.821.019.218.59.02.20.10.25.98.2
        AMK78-10俄罗斯极地海129.143 075.199 827.523.114.826.97.20.56.910.7
        AMK78-11俄罗斯极地海128.645 575.226 423.720.614.231.89.20.40.15.88.7
        AMK78-12俄罗斯极地海125.424 776.394 639.526.58.918.17.07.611.2
        AMK78-13俄罗斯极地海125.536 076.781 632.121.98.828.08.90.10.26.18.5
        AMK78-14俄罗斯极地海127.792 676.892 939.523.915.017.34.10.10.18.513.0
        AMK78-15俄罗斯极地海127.805 376.892 540.227.710.118.73.20.17.811.4
        AMK78-16俄罗斯极地海120.668 177.311 624.219.07.736.412.60.14.56.7
        AMK78-17俄罗斯极地海104.010 877.949 630.323.73.828.613.65.58.1
        AMK78-18俄罗斯极地海104.234 477.949 628.717.85.931.116.54.25.5
        AMK78-19俄罗斯极地海73.179 373.333 529.020.05.431.713.80.14.56.2
        AMK78-20俄罗斯极地海73.339 973.576 732.220.011.725.610.30.25.78.1
        AMK78-21俄罗斯极地海73.250 073.832 533.723.07.025.910.30.15.67.8
        续表注:“—”表示未检测到该矿物。

        研究区沉积物中石英的相对含量介于15.4%~82.0%,平均为37.5%。其中,白令海东北部、白令海峡、楚科奇海阿拉斯加近岸海域沉积物中石英含量整体较高,自阿拉斯加近岸向远海、白令海北部向南,石英含量呈递减的趋势(图3a)。俄罗斯极地海(东西伯利亚海、拉普捷夫海、喀拉海)一侧,沉积物中石英含量整体偏低。

        图  3  西北冰洋及白令海表层沉积物全岩矿物含量分布

        Figure 3.  Distribution patterns of minerals in surface sediments from the western Arctic Ocean and Bering Sea

        斜长石相对含量介于3.0%~40.9%,均值为19.0%。阿留申岛弧上的ARC4-B02站点斜长石含量最高。白令海陆架斜长石含量整体较高,尤其是在白令海东北部育空河口附近、圣劳伦斯岛周边的沉积物样品,斜长石平均含量高达32.5%(图3b)。楚科奇海阿拉斯加沿岸斜长石含量较低,但在楚科奇海中部,斜长石含量升高,并呈自南向北含量降低的趋势。加拿大海盆斜长石相对含量整体偏低,均小于15%。俄罗斯极地海一侧(22.7%)沉积物中斜长石含量显著高于加拿大海盆的(10.1%)。钾长石相对含量介于0.8%~19.2%,均值为8.6%。阿留申海盆中的钾长石含量高于白令海陆架。拉普捷夫海东侧和新西伯利亚群岛附近,钾长石含量最高可达19.2%(图3c)。

        云母的相对含量介于2.6%~45.9%,均值为23.9%。云母含量在加拿大海盆中最高,均值为32.6%;俄罗斯极地海云母含量次之,均值为26.0%;楚科奇海(21.0%)及白令海(12.9%)云母含量显著偏低,最小为2.6%(图3d)。绿泥石相对含量分布趋势与云母相似(图3e)。绿泥石相对含量呈自楚科奇海陆架中部向加拿大海盆随着纬度增加而增加的趋势。俄罗斯极地海一侧,喀拉海沉积物中绿泥石含量较高,最高为13.8%,均值为11.5%。白云石的相对含量介于0~15.5%,均值为2.3%。

        白云石主要分布于加拿大海盆,其余海域几乎未检测到白云石(图3f)。辉石在沉积物中的相对含量介于0~7.8%,均值为0.9%。阿留申岛弧上沉积物中辉石含量可达7.7%,白令海峡附近辉石含量也较高,介于1.1%~5.1%(图3g)。角闪石的相对含量介于0~1.8%,均值为0.3%。除阿留申岛弧上沉积物中角闪石含量全区最高外,仅在育空河口的少数站点、楚科奇海中北部站位检测到角闪石碎屑(图3h)。

        以82个站点各矿物相的相对含量为变量,进行Q型聚类分析。测量区间采用欧式距离,聚类方法为组间联接。根据Q型聚类分析结果(图4),选取距离8将研究区划分为六个矿物区(分别命名为A~F),以便更直观地呈现成果对比。其中A、B、D又细分为两个亚区(图5),因位于阿留申岛弧上的ARC4-B02站位自成一类,且只有一个站位,因此不进行分区,区域A~F中各矿物的平均含量见表4

        图  4  Q型聚类分析结果

        Figure 4.  The result of Q cluster analysis

        图  5  XRD全岩矿物Q型聚类分区图

        Figure 5.  Distribution map of Q⁃model clusters for XRD bulk minerals

        表 4  Q型聚类分区中矿物平均含量(%)

        区域石英斜长石钾长石云母绿泥石白云石辉石角闪石
        A130.821.910.026.610.00.500.2
        A217.326.316.030.410.2000
        B129.28.77.632.08.19.54.60.3
        B228.313.87.336.510.02.41.50.3
        C43.87.76.525.77.17.81.10.2
        D149.026.79.68.33.30.61.70.9
        D240.224.89.018.65.91.200.2
        E64.418.77.45.21.30.22.50.2
        F76.89.22.96.92.21.70.30.2
        所有区域37.419.08.623.87.52.41.10.3

        A区细分为A1和A2两个亚区,A1亚区位于俄罗斯极地海一侧,包括喀拉海、拉普捷夫海、东西伯利亚海以及楚科奇海陆架的北部的部分区域,以较高云母(26.6%)与绿泥石(10.0%)含量为特征,几乎不含白云石(0.5%)和辉石(0);A2亚区位于阿留申海盆处,其沉积物中斜长石(26.3%)、钾长石(16.0%)、云母(30.4%)、绿泥石(10.2%)含量高,不含白云石和辉石。B区主要位于北冰洋洋盆区,包括马克洛夫海盆与加拿大海盆,根据矿物特征,将B区分为B1和B2两个亚区,B1亚区主要位于楚科奇海台和海盆,以较高的云母(32.0%)、白云石(9.5%)、辉石(4.6%)含量以及较低的斜长石含量(8.7%)为特征;B2亚区位于B1南北两侧,少部分位于拉普捷夫海陆架,以云母(36.5%)、绿泥石(10.0%)含量高为特征。C区位于北风脊,以白云石含量高(7.8%)、石英、云母、绿泥石含量中等、长石类矿物(7.7%)极低为特征。D区位于白令海陆架以及楚科奇海陆架的西侧,D区细分为D1和D2两个亚区,其中D1位于白令海陆架的西侧与楚科奇海陆架的西侧,D2位于白令海陆架东侧。D1亚区石英与斜长石含量均高于D2区域,且D2亚区不含辉石。E区位于圣劳伦斯岛以北、楚科奇海南端海域,除极高的石英含量(64.4%)外,也含有较高的辉石(2.5%)。F位于楚科奇海阿拉斯加近岸海域,以极高的石英含量为特征(76.8%),其他矿物的含量均较低。

      • 俄罗斯极地海沉积物矿物分区多数为A1,在拉普捷夫海陆架上存在B2和C区矿物。李秋玲[47]在东西伯利亚海表层沉积物XRD全岩半定量的结果显示,东西伯利亚海的沉积物中斜长石高达33%,斜长石平均含量为13%,这与本研究中的A1区矿物特征一致。西伯利亚大陆富含云母[48]与绿泥石[49],在河流与沿岸流的作用下进入俄罗斯极地海。

        拉普捷夫海陆架的矿物分区组成反映了多输入或运移机制。除勒拿河与亚纳河[5]带来的西伯利亚地台碎屑颗粒外,周边岛屿也为拉普捷夫海陆架提供了丰富的物质。新西伯利亚群岛周围的沉积物,斜长石与钾长石含量较高,这与新西伯利亚群岛南端出露的白垩纪花岗岩[50]有关,Viscosi-Shirley et al.[51]研究发现拉普捷夫海沉积物在成分上类似于新西伯利亚群岛上的沉积物。新西伯利亚群岛上的冰川、沿岸侵蚀产生的沉积物在冰山、海冰和沿岸流作用下输送至新西伯利亚群岛周边海域。普捷夫海的海冰在穿极流的作用下将沉积物向北运输[2,52],海冰运移过程中被波弗特旋回捕获[6,53],因此加拿大海盆中会出现与拉普捷夫海陆架类似的矿物分区。

      • 位于阿留申岛弧上的ARC4-B02站点检测到极高的斜长石、辉石、角闪石含量以及极低的石英、钾长石、云母、绿泥石含量,这与阿留申岛弧上主要出露钠长石化沉积岩和火成岩复合体有关[54]。而在阿留申海盆内沉积物中的长石类矿物仍很高,且石英含量极低,与阿留申岛弧的沉积物相似,但阿留申海盆内沉积物中不含辉石,而且斜长石含量低于岛弧;钾长石含量明显高于岛弧;此外,阿留申海盆内沉积物中含有较高的绿泥石。白令海沉积物中的斜长石在陆架区含量最高,向西南海盆方向斜长石含量降低。这些特征说明阿留申岛弧不是阿留申盆地沉积物的唯一物源,还含有亚洲大陆[55]、白令海陆架[56]和洋流携入的阿拉斯加半岛南部地区的沉积物[57]

        白令海陆架沉积物矿物分区主要为D1和D2。受海岸侵蚀以及河流的搬运作用,白令海接收了来自阿拉斯加大陆丰富的物质[58]。育空河从阿拉斯加大陆搬运的沉积物以石英和长石颗粒为主[59]。也有少量的角闪石,由于角闪石密度较大,往往只在靠近源区的地方沉积下来,使得育空河口外侧D1区域比西侧的D2区域拥有更高含量的角闪石。Kobayashi et al.[12]在此区域也发现了较高的斜长石与角闪石含量,斜长石+角闪石这一矿物组合表明育空河流域的中性火成岩或变质岩为白令海陆架的重要物质来源[33]

        楚科奇海陆架沉积物矿物分区分别为位于楚科奇海西部的D2、白令海峡附近的E以及楚科奇海东部的F三个区域。E和F区石英含量均超过60%,Dong et al.[10]也在靠近阿拉斯加大陆一侧的楚科奇海陆架发现了较高含量的石英,这与来自阿拉斯加大陆的沉积物中富含石英有关[60]。位于楚科奇海南部和白令海北部的E区,沉积物中斜长石含量比位于楚科奇海东北侧,靠近阿拉斯加沿岸海域F区沉积物中的高,这与E区沉积物主要来自育空河流域,该流域长石含量更高有关。来自育空河的沉积物随太平洋水进入楚科奇海,并主要沉积于楚科奇海南部[27,61],使得楚科奇海西南部沉积物矿物分区与白令海陆架的相似,同为D2区。楚科奇海阿拉斯加沿岸的沉积物可向西搬运,且楚科奇海中部还有来自太平洋入流水和西伯利亚沿岸流输入的沉积物[61],因此,楚科奇海中部沉积物中石英含量低于阿拉斯加沿岸海域。

        北冰洋高纬度海盆区为B1、B2、C三种沉积物矿物分区,该区域以白云石、云母和绿泥石含量高为特征。白云石是加拿大北极群岛与马更些河流域的代表性矿物[4,62],因此B1、B2区沉积物中丰富的白云石碎屑是加拿大北极群岛的冰山以及马更些河输入的,再经波弗特旋回搬运至加拿大海盆,Dong et al.[10]的研究也证明,北冰洋高纬度海盆区的高白云石特征,主要是波弗特旋回造成的。育空河输入的黏土矿物中绿泥石含量最高[59],绿泥石颗粒细微,对水动力作用敏感[63],不易在水动力强的河口区沉积,随着向北的太平洋入流水,可远距离悬浮搬运到北冰洋海盆区。北冰洋海盆区云母含量高也是因为片状矿物易远距离悬浮搬运所致。

        石英和长石是沉积物中最常见的矿物。在岩石风化过程中,石英抗风化能力强,为稳定矿物。而长石抗风化能力弱,为不稳定矿物,但钾长石(Kfs)的抗风化能力稍强于斜长石(Pl)。可利用长石/石英(F/Q)比值指示沉积物风化强度、探寻沉积物来源及环境变化影响[6465]。研究区内沉积物的Kfs/Q、Pl/Q和(Kfs+Pl)/Q在空间上呈相同的变化趋势(图6)。阿留申海盆内的F/Q值最高,阿留申海盆(2.11)—白令海(0.83)—楚科奇海(0.60)—加拿大海盆(0.58),自南向北F/Q值有逐渐减小的趋势,Wang et al.[11]在阿留申海盆的研究也显示,自阿留申岛弧向北,F/Q值有逐渐降低的趋势。俄罗斯极地海一侧,F/Q均值1.07。整体上,位于俄罗斯极地海一侧的长石/石英比值高于靠近美洲大陆一侧的比值。

        图  6  西北冰洋及白令海表层沉积物中长石/石英比值分布

        Figure 6.  Feldspar/quartz ratio of surface sediments from western Arctic Ocean and Bering Sea

        近美洲大陆一侧的F/Q比值较俄罗斯极地海一侧的比值低,说明美洲大陆来源的沉积物经历较强的风化作用,因长石大量风化而迅速减少,导致石英相对富集。F/Q比值可作为北冰洋沉积物物质来源的判断指标。

      • 通过对西北冰洋及白令海表层沉积物进行全岩矿物XRD鉴定与分析,取得以下几点认识。

        (1) 俄罗斯极地海一侧,拉普捷夫海除接受勒拿河与亚纳河带来的西伯利亚地台碎屑外,也接受了新西伯利亚群岛富含长石沉积物,部分沉积物伴随着海冰在穿极流与波弗特旋回作用下运移至加拿大海盆。

        (2) 阿留申海盆—白令海—楚科奇海—美亚海盆区一侧,阿留申海盆的沉积物来自亚洲大陆、白令海陆架、阿拉斯加半岛南部等,其矿物含量和种类与阿留申岛弧上沉积物的差异明显;育空河输入白令海的沉积物在洋流作用下,再次输送至北冰洋,使得楚科奇海南部沉积物矿物特征与白令海陆架的相似;海陆架上的细粒及片状物质如绿泥石和云母,随洋流长距离搬运至加拿大海盆,而加拿大海盆中的白云石,则来自加拿大北极群岛和马更些河。

        (3) 美洲大陆经历了较强的风化作用,相较于西伯利亚大陆,美洲大陆颗粒对北冰洋沉积物的贡献程度更高。

    参考文献 (65)

    目录

      /

      返回文章
      返回