高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含煤岩系中煤层的差异沉积响应与油气勘探

孟祥超 周伯玉 陈扬 马海龙 李亮 王科朋 林道峰 赵文苹

孟祥超, 周伯玉, 陈扬, 马海龙, 李亮, 王科朋, 林道峰, 赵文苹. 含煤岩系中煤层的差异沉积响应与油气勘探———以玛湖斜坡区侏罗系八道湾组为例[J]. 沉积学报, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033
引用本文: 孟祥超, 周伯玉, 陈扬, 马海龙, 李亮, 王科朋, 林道峰, 赵文苹. 含煤岩系中煤层的差异沉积响应与油气勘探———以玛湖斜坡区侏罗系八道湾组为例[J]. 沉积学报, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033
MENG XiangChao, ZHOU BoYu, CHEN Yang, MA HaiLong, LI Liang, WANG KePeng, LIN DaoFeng, ZHAO WenPing. Differential Sedimentary Response of Coal Seams in Coal-bearing Rock Series and Oil and Gas Exploration: A case study of the J1b Formation in the Mahu slope area[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033
Citation: MENG XiangChao, ZHOU BoYu, CHEN Yang, MA HaiLong, LI Liang, WANG KePeng, LIN DaoFeng, ZHAO WenPing. Differential Sedimentary Response of Coal Seams in Coal-bearing Rock Series and Oil and Gas Exploration: A case study of the J1b Formation in the Mahu slope area[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033

含煤岩系中煤层的差异沉积响应与油气勘探———以玛湖斜坡区侏罗系八道湾组为例

doi: 10.14027/j.issn.1000-0550.2022.033
基金项目: 

国家科技重大专项 2017ZX05001-002

中国石油科技部重大专项 2021DJ0402

中国石油科技部重大专项 2021DJ0202

详细信息

Differential Sedimentary Response of Coal Seams in Coal-bearing Rock Series and Oil and Gas Exploration: A case study of the J1b Formation in the Mahu slope area

Funds: 

National Science and Technology Major Project 2017ZX05001-002

Science and Technology Major Project, CNPC 2021DJ0402

Science and Technology Major Project, CNPC 2021DJ0202

  • 摘要: 含煤岩系中不同类型煤层的差异沉积响应,及对邻近砂砾岩成岩成储效应的影响目前研究比较薄弱。基于野外露头、孢粉组合、井—震剖面、岩心相序、测井响应、扫描电镜、电子探针能谱等资料,对研究区稳定厚煤层、局限薄煤层进行了差异沉积响应分析。结果表明,以逆冲断裂I、II为代表的盆缘边界断裂复活及盆地基底的振荡性沉降,为研究区提供了厚层泥炭聚积、宽缓古斜坡背景—广覆式湖侵、阻碍沼泽排水—防止有机质氧化、降低河流梯度—弱化陆源碎屑干扰等四方面有利条件,在近湖盆区首次湖泛面附近形成大面积分布的稳定厚煤层,显微组分指示其成煤沼泽一直保持较佳的滞水还原条件。局限薄煤层分布较零散,具较明显的相控特征,多分布于水动力较弱的扇间/河道间等低能相带,显微组分指示其成煤沼泽存在局部滞水还原条件稍差的半氧化阶段。准同生期—早成岩期,煤系腐殖酸形成早成岩期长石粒内溶孔,溶蚀颗粒成分以富钙斜长石为主。溶蚀产物高岭石胶结物产状以紧贴颗粒的最内部环边为主,纯度高。长石颗粒溶蚀—高岭石充填—压塌缩聚作用形成高岭石完全拟颗粒、高岭石部分拟颗粒,前者纯度高,后者纯度较低。中成岩期,烃源有机酸形成中成岩期长石粒内溶孔,溶蚀组分以钾长石为主,溶蚀残留组分以钠长石为主。溶蚀产物高岭石胶结物产状以颗粒的外层环边或充填粒间孔隙为主,纯度较低。煤系腐殖酸对邻近的砂砾岩储层质量影响以抑制性为主,限定沉积相带、粒度条件下,稳定厚煤层垂向辐射厚度10~30 m,辐射带砂砾岩孔隙度减少2.3%~5.2%,渗透率减小(1.3~2.1)×10-3 μm2;局限薄煤层垂向辐射厚度3~8 m,辐射带砂砾岩孔隙度减少1.2%~3.5%,渗透率减小(0.8~1.9)×10-3 μm2。高刚性颗粒含量是煤系砂砾岩储层原生粒间孔,尤其是准同生期—早成岩期煤系腐殖酸溶孔有效保存的前提条件,高岭石、硅质等溶蚀产物的迁出程度进一步制约着孔隙的有效性。
  • 图  1  玛湖凹陷区域构造(a)及侏罗系八道湾组地层特征(b)

    Figure  1.  Regional structure and stratigraphic characteristics of the J1b, Mahu Sag

    Fig.1

    图  2  玛湖凹陷构造—沉积演化剖面(剖面1,位置见图1)

    Figure  2.  Structure and sedimentary evolution of the Mahu Sag

    Fig.2

    图  3  玛湖地区八道湾组一段古气候—沉积特征综合图

    Figure  3.  Map of paleoclimate and sedimentary characteristics from the J1b1 in the Mahu area

    Fig.3

    图  4  稳定厚煤层—局限薄煤层露头及垂向相序特征

    (a)露头地质分析剖面(准噶尔盆地西北缘吐孜阿克内沟侏罗系露头剖面);(b)岩心地质分析剖面(艾湖501井,第7桶,5级基准面旋回)

    Figure  4.  Outcrop and vertical sequence characteristics of stable thick coal and limited thin coal seam

    Fig.4

    图  5  八道湾组一段近物源区—近湖盆区沉积特征及煤层展布井—震分析剖面(剖面2,剖面位置见图1)

    (a)连井地震分析剖面;(b)连井地质分析剖面

    Figure  5.  Sedimentary characteristics and well⁃seismic analysis profile of a coal seam in J1b1

    Fig.5

    图  6  八道湾组一段稳定厚煤层—局限薄煤层平面展布

    (a)局限薄煤层(J1b11顶薄煤群)平面展布图(煤层最大波峰振幅平面图,参考界面:煤层底界—上煤下砂(泥)正反射系数界面,地震响应为较强波峰(暖色调);(b)稳定厚煤层(J1b12底)平面分布图(煤顶瞬时振幅平面图,参考界面:煤层顶界—上砂下煤负反射系数界面,地震响应为强波谷(暖色调))

    Figure  6.  Plane distribution of stable thick and limited thin coal seams

    Fig.6

    图  7  稳定厚煤层—局限薄煤层沉积模式图(剖面3,位置见图1)

    (a)连井地质剖面模式图;(b)连井地震剖面模式图

    Figure  7.  Depositional model of stable thick and limited thin coal seams

    Fig.7

    图  8  稳定厚煤层(a~c)—局限薄煤层(d~f)显微组分对比

    (a)大孢子体,黄褐色大孢子腔中充满类脂体,透射光×200;艾湖501井,J1b1,稳定厚煤层样品;(b)小孢子体,黄色,有纹饰和无纹饰,透射光×300;艾湖501井,J1b1,稳定厚煤层样品;(c)角质体,黄色,锯齿状,透射光×300;玛602井,J1b1,稳定厚煤层样品;(d)结构镜质体,细胞腔被压成扁形,透射光×200;百65井,J1b1,局限薄煤层样品;(e)团块状镜质体,凝胶化物质成大小不等的团粒结构,透射光×200;玛602井,J1b1,局限薄煤层样品;(f)基质镜质体,橘红色基质镜质体中包含黄色类脂组和黑色惰性组等多种显微组分,透射光×60;百65井,J1b1,局限薄煤层样品

    Figure  8.  Maceral correlation of stable thick and limited thin coal seams

    Fig.8

    图  9  八道湾组一段含煤岩系典型成岩现象及成岩产物元素含量差异

    (a)硅质加大边(Si)和早成岩期长石粒内溶孔(P早溶),MHHW15001井,J1b,2 528.71 m;Si在石英颗粒边缘析出,石英颗粒—硅质加大边之间以尘埃线相分隔;准同生期—早成岩期,煤系腐殖酸沿长石解理面—结构薄弱面对长石颗粒进行内部溶蚀,形成长石粒内溶孔,此时期溶蚀颗粒成分以易溶的富钙斜长石为主(点1a),表面见富含铁镁质风化黏土(点1b),弱压实(颗粒间悬浮接触—点接触);(b)中成岩期长石粒内溶孔(P中溶),早成岩期高岭石胶结物(Ka早胶)及中成岩期高岭石胶结物(Ka中胶),玛601井,J1b,2 605.23 m;中成岩期,烃源岩成熟排出的有机羧酸沿高岭石环边内的微孔隙、长石解理—结构薄弱面、微裂缝等对长石颗粒进行内部溶蚀(P中溶),形成长石粒内溶孔,此时期溶蚀颗粒成分以钾长石为主(点2a),溶蚀残留组分以钠长石(点2b)为主,颗粒多呈悬浮状包裹于高岭石环边中,高岭石环边具多期次性,各期成分不同;准同生期—早成岩期,煤系腐殖酸溶蚀产物高岭石(Ka早胶),产状以紧贴颗粒的最内部环边为主,高岭石纯度高(点3);中成岩期,烃源岩成熟排出的有机羧酸溶蚀产物高岭石(Ka中胶),产状以颗粒的外层环边或充填粒间孔隙为主,高岭石质纯度较低(点4);(c)中成岩期高岭石胶结物(Ka中胶),达9井,J1b,3 531.89 m;(d)高岭石完全拟颗粒(Ka完颗)和高岭石部分拟颗粒(Ka部颗),达探1井,J1b,3 776.52 m;准同生—早成岩期,煤系腐殖酸溶蚀产物高岭石在长石颗粒溶蚀铸模孔内原位充填,形成的高岭石集合体经由后期压塌缩聚作用形成,内部无/罕见长石颗粒残留(Ka完颗),高岭石纯度高(点5);准同生—早成岩期,或中成岩期,溶蚀产物高岭石部分交代长石颗粒,内部多见长石颗粒溶蚀残留,高岭石纯度较低(点6);(e)高钙斜长石元素能谱,对应图a中点1a;(f)风化黏土元素能谱,对应图a中点1b;(g)钾长石元素能谱数据,对应图b中点2a;(h)钠长石元素能谱,对应图b中点2b;(i)高岭石元素能谱,以O、Al、Si元素为主,含量依次降低,对应图b点3;(j)高岭石元素能谱,O、Al、Si元素相对含量出现Si轻微异常,多含杂质钾(K)元素,对应图b点4;(k)高岭石元素能谱,以O、Al、Si元素为主,对应图d点5;(l)高岭石元素能谱,除O、Al、Si元素外,多含杂质钙(Ca)元素,对应图d点6

    Figure  9.  Typical diagenetic phenomena and element content of diagenetic products in coal⁃bearing rock series in J1b

    Fig.9

    图  10  八道湾组骨架颗粒内部溶蚀—压塌(溶塌)过程示意图(扫描电镜)

    (a,b)溶蚀产物—蠕虫状高岭石对原位易溶矿物长石的逐步交代作用,溶蚀—交代作用多沿长石解理面/结构薄弱面进行并逐步溶扩,长石颗粒由初期表面溶蚀演变为内部溶蚀;(c)随溶蚀—交代作用逐步加深,在原位长石颗粒内形成高岭石部分拟颗粒(Ka部颗),拟颗粒边界基本保持长石颗粒轮廓,内部见长石溶蚀残留;(d)溶蚀产物高岭石完全交代原位矿物长石,形成高岭石完全拟颗粒(Ka完颗);后期成岩压塌作用导致高岭石拟颗粒变形较强烈,但拟颗粒内部尚隐约可见母体长石矿物的解理—双晶面等结构特征

    Figure  10.  Dissolution⁃collapse process of skeleton particles in J1b

    Fig.10

    图  11  稳定厚煤层对邻近砂砾岩储层孔隙度、渗透率抑制作用垂向辐射规模

    (a)对孔隙度抑制作用的垂向辐射规模;(b)对渗透率抑制作用的垂向辐射规模;数据来源:据艾湖501井、玛602井等62样点/7井八道湾组一段物性数据;限定条件:相同沉积相带(辫状河三角洲前缘水下分流河道)、大致相同粒度/岩性(含砾粗砂岩—砂质细砾岩)

    Figure  11.  Restraining effect vertical scale for stable thick coal seams on porosity and permeability in J1b

    Fig.11

    表  1  玛湖地区八道湾组不同构造部位煤层测井响应差异

    煤层成因类型测井参数断裂带玛西斜坡区玛中区玛东斜坡区
    局限薄煤层DEN/(g/cm3)1.35~2.251.451.461.43
    均值1.84均值1.45
    GR/API16.85~60.8938.7337.9331.90
    均值45.04均值36.19
    稳定厚煤层DEN/(g/cm3)不发育1.301.261.34
    均值1.30
    GR/API37.2527.2121.54
    均值28.67
    下载: 导出CSV
  • [1] Hamilton D S, Tadros N Z. Utility of coal seams as genetic stratigraphic sequence boundaries in nonmarine basins: An example from the Gunnedah Basin, Australia[J]. AAPG Bulletin, 1994, 78(2): 267-286.
    [2] Frazier D E. Depositional-episodes: Their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin[R]. Austin: The University of Texas at Austin, Bureau of Economic Geology, 1974.
    [3] Diessel C F K. Coal-bearing depositional systems-coal facies and depositional environments: 8-coal formation and sequence stratigraphy[M]. New York: Springer-Verlag, 1992: 462-514.
    [4] 韩德馨,杨起. 中国煤田地质学(下册):中国聚煤规律[M]. 北京:煤炭工业出版社,1980:415.

    Han Dexin, Yang Qi. Coal geology of China (Vol. 2)[M]. Beijing: China Coal Industry Publishing House, 1980: 415.
    [5] 吴因业. 煤层:一种陆相盆地中的成因层序边界[J]. 石油学报,1996,17(4):28-35.

    Wu Yinye. Coal seam: A genetic stratigraphic sequence boundary in nonmarine basins[J]. Acta Petrolei Sinica, 1996, 17(4): 28-35.
    [6] 李增学,魏久传,韩美莲. 海侵事件成煤作用:一种新的聚煤模式[J]. 地球科学进展,2001,16(1):120-124.

    Li Zengxue, Wei Jiuchuan, Han Meilian. Coal formation in transgressive events: A new pattern of coal accumulation[J]. Advance in Earth Sciences, 2001, 16(1): 120-124.
    [7] 李增学,李守春,魏久传. 事件性海侵与煤聚积规律:鲁西晚石炭世富煤单元的形成[J]. 岩相古地理,1995,15(1):1-9.

    Li Zengxue, Li Shouchun, Wei Jiuchuan. Episodic transgressions and coal accumulation: An example from the Late Carboniferous coal-rich units in the western Shandong coalfields[J]. Sedimentary Facies and Palaeogeography, 1995, 15(1): 1-9.
    [8] 何起祥,业冶铮,张明书,等. 受限陆表海的海侵模式[J]. 沉积学报,1991,9(1):1-10.

    He Qixiang, Ye Yezheng, Zhang Mingshu, et al. Transgression model of restricted epicontinental sea[J]. Acta Sedimentologica Sinica, 1991, 9(1): 1-10.
    [9] 邵龙义,窦建伟,张鹏飞. 含煤岩系沉积学和层序地层学研究现状和展望[J]. 煤田地质与勘探,1998,26(1):4-9.

    Shao Longyi, Dou Jianwei, Zhang Pengfei. The status and prospect of sedimentology and sequence stratigraphy research on the coal bearing strata[J]. Coal Geology & Exploration, 1998, 26(1): 4-9.
    [10] 雷振宇,卞德智,杜社宽,等. 准噶尔盆地西北缘扇体形成特征及油气分布规律[J]. 石油学报,2005,26(1):8-12.

    Lei Zhenyu, Bian Dezhi, Du Shekuan, et al. Characteristics of fan forming and oil-gas distribution in west-north margin of Junggar Basin[J]. Acta Petrolei Sinica, 2005, 26(1): 8-12.
    [11] 孟祥超,陈扬,谢天寿,等. 煤系砂岩储层粒度定量评价图版建立及油气富集区预测:以准噶尔盆地玛湖凹陷西斜坡Aih12井区八道湾组为例[J]. 东北石油大学学报,2017,41(6):15-25.

    Meng Xiangchao, Chen Yang, Xie Tianshou, et al. Quantitative evaluation of particle-size in coal-based sandstone reservoirs and the prediction of oil and gas accumulation area: Taking J1b group, Aih12 block in west slope of Mahu Sag, Junggar Basin, for example[J]. Journal of Northeast Petroleum University, 2017, 41(6): 15-25.
    [12] 吴孔友,查明. 多期叠合盆地成藏动力学系统及其控藏作用:以准噶尔盆地为例[M]. 东营:中国石油大学出版社,2009:31-36.

    Wu Kongyou, Zha Ming. The dynamic system and its controlling role in the multistage lamination basin:Taking the Junggar Basin, for example[M]. Dongying: China University of Petroleum Press, 2009: 31-36.
    [13] 孟祥超,齐洪岩,陈扬,等. 低GR风化古土壤—高GR砂砾岩成因与油气勘探:以玛南地区二叠系上乌尔禾组P3 ω为例[J]. 中国矿业大学学报,2021,50(6):1153-1168.

    Meng Xiangchao, Qi Hongyan, Chen Yang, et al. Genesis of low GR weathering paleosols and high GR glutenite and oil & gas exploration: A case study of the Upper Permian Wuerhe Formation in Manan area[J]. Journal of China University of Mining & Technology, 2021, 50(6): 1153-1168.
    [14] 何登发,陈新发,张义杰,等. 准噶尔盆地油气富集规律[J]. 石油学报,2004,25(3):1-10.

    He Dengfa, Chen Xinfa, Zhang Yijie, et al. Enrichment characteristics of oil and gas in Jungar Basin[J]. Acta Petrolei Sinica, 2004, 25(3): 1-10.
    [15] 匡立春,雷德文,唐勇,等. 准噶尔盆地侏罗—白垩系沉积特征和岩性地层油气藏[M]. 北京:石油工业出版社,2013:16-18.

    Kuang Lichun, Lei Dewen, Tang Yong, et al. Sedimentary characteristics and lithologic stratigraphic reservoirs of Jurassic-Cretaceous in Junggar Basin[M]. Beijing: Petroleum Industry Press, 2013: 16-18.
    [16] 王艳梅,邓霜岭,黄元清,等. 含煤层系测井曲线特征及其沉积环境[J]. 物探与化探,2009,33(3):290-293.

    Wang Yanmei, Deng Shuangling, Huang Yuanqing, et al. An analysis of logging curve characteristics and sedimentary environment of some coalfields in Guizhou province[J]. Geophysical & Geochemical Exploration, 2009, 33(3): 290-293.
    [17] 拉赫马尼 R A,弗洛里斯 R M. 煤和含煤地层沉积学[M]. 李濂清,李思田,译. 北京:地质出版社,1988:7-32.

    Rahmaai R A, Flores R M. Sedimentology of coal and coal-bearing sequences[M]. Li Lianqing, Li Sitian, trans. Beijing: Geological Publishing House, 1988: 7-32.
    [18] 李建红,周伦先. 东营凹陷砂砾岩自然伽马测井响应特征研究及应用[J]. 石油天然气学报,2008,30(1):88-91.

    Li Jianhong, Zhou Lunxian. Response features of gamma ray log and its application in glutenite of Dongying Depression[J]. Journal of Oil and Gas Technology, 2008, 30(1): 88-91.
    [19] 李美蓉,宋来弟,于海鹏,等. 酸碱度对长石溶蚀及增孔效应的影响[J]. 中国石油大学学报(自然科学版),2021,45(5):33-41.

    Li Meirong, Song Laidi, Yu Haipeng, et al. Influence of pH value on feldspar dissolution and pore-increasing effect[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(5): 33-41.
    [20] 李波波,李建华,杨康,等. 孔隙压力与水分综合作用的煤岩渗透率演化规律[J]. 中国矿业大学学报,2020,49(1):44-53.

    Li Bobo, Li Jianhua, Yang Kang, et al. Evolution law of coal permeability based on comprehensive effect of pore pressure and water[J]. Journal of China University of Mining & Technology, 2020, 49(1): 44-53.
    [21] 吕凯,闵凡飞,朱金波,等. 煤系微细高岭石颗粒沉降曳力系数的研究[J]. 中国矿业大学学报,2021,50(2):389-395.

    Kai Lü, Min Fanfei, Zhu Jinbo, et al. Study of settling drag coefficient of coal-based fine kaolinite particles[J]. Journal of China University of Mining & Technology, 2021, 50(2): 389-395.
    [22] 程鑫,操应长,远光辉,等. 东营凹陷草桥潜山岩溶储层胶结物特征及其储层成因[J]. 中国石油大学学报(自然科学版),2021,45(1):1-11.

    Cheng Xin, Cao Yingchang, Yuan Guanghui, et al. Characteristics of cements and origin of karsted reservoirs in Caoqiao buried hill in Dongying Sag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1): 1-11.
  • [1] 黄华州, 桑树勋, 毕彩芹, 胡硕, 孙元涛, 周文兵, 张化军.  煤层群煤系多套含气系统特征及其合采效果 . 沉积学报, 2021, 39(3): 645-655. doi: 10.14027/j.issn.1000-0550.2020.106
    [2] 邵龙义, 王学天, 鲁静, 王东东, 侯海海.  再论中国含煤岩系沉积学研究进展及发展趋势 . 沉积学报, 2017, 35(5): 1016-1031. doi: 10.14027/j.cnki.cjxb.2017.05.013
    [3] 吴昕, 吴冲龙, 毛小平, 张继吟.  吉尔嘎郎图凹陷赛汉塔拉组沉积特征与超厚煤层异地成因分析 . 沉积学报, 2016, 34(6): 1155-1164. doi: 10.14027/j.cnki.cjxb.2016.06.013
    [4] 准噶尔盆地南缘中下侏罗统含煤层系层序地层及聚煤控制因素 . 沉积学报, 2014, 32(1): 61-67.
    [5] 王 强.  贵州毕节地区煤层中稀土元素在含煤地层划分与对比中应用探讨 . 沉积学报, 2008, 26(1): 21-27.
    [6] 朱志敏.  阜新盆地白垩系沙海组煤层气系统 . 沉积学报, 2008, 26(3): 426-434.
    [7] 杨明慧.  鄂尔多斯盆地东北缘晚古生代陆表海含煤岩系层序地层研究 . 沉积学报, 2008, 26(6): 1005-1013.
    [8] 吴冲龙.  先锋盆地超厚优质煤层的异地成因模式 . 沉积学报, 2006, 24(1): 1-9.
    [9] 胡 平.  准噶尔盆地东部侏罗纪含煤岩系沉积环境及基准面旋回划分 . 沉积学报, 2006, 24(3): 378-386.
    [10] 何志平, 邵龙义, 康永尚, 刘永福, 罗文林, 齐雪峰.  准噶尔盆地侏罗系八道湾组聚煤作用控制因素分析 . 沉积学报, 2004, 22(3): 449-454.
    [11] 王家豪, 姚光庆, 赵彦超.  浅水辫状河三角洲发育区短期基准面旋回划分及储层宏观特征分析 . 沉积学报, 2004, 22(1): 87-94.
    [12] 张鹏飞.  含煤岩系沉积学研究的几点思考 . 沉积学报, 2003, 21(1): 125-128,136.
    [13] 李增学, 李守春, 魏久传.  鲁西煤田内陆表海含煤层序的小层序类型及煤聚积规律 . 沉积学报, 1996, 14(3): 38-46.
    [14] 王国力, 张启林, 马珂, 马国林, 史仲武.  华亭煤产地含煤岩系成因地层分析及主煤层成因 . 沉积学报, 1995, 13(4): 55-63.
    [15] 黄乃和, 温显端, 黄凤鸣, 王根发, 陶继文.  广西合山煤田的古土壤层与成煤模式 . 沉积学报, 1994, 12(1): 40-46.
    [16] 葛宝勋, 刘祖发, 张汉瑞.  河东煤田中部晚古生代含煤岩系中宇宙尘的首次发现及其特征 . 沉积学报, 1990, 8(1): 98-105.
    [17] 张鹏飞, 邵龙义.  广西合山地区合山组沉积相带和沉积模式 . 沉积学报, 1990, 8(4): 13-21.
    [18] 周慧堂, 王天顺, 孙红兵.  豫西陕渑煤田山西组煤层形成环境和聚煤特征 . 沉积学报, 1989, 7(4): 121-131.
    [19] 贾清君.  集贤煤田东荣、东辉勘探区16号—20号煤层含煤性变化趋势及影响因素 . 沉积学报, 1984, 2(1): 76-84.
    [20] 张鹏飞, 刘焕杰, 卓越, 贾玉如, 陈昌荣, 何楚玉, 殷宗昌.  试论局限台地碳酸盐岩型含煤建造——桂中马滩一带合山组的某些沉积特征 . 沉积学报, 1983, 1(3): 18-28.
  • 加载中
图(11) / 表 (1)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  28
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-10
  • 修回日期:  2022-03-18
  • 录用日期:  2022-04-29
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2023-08-10

目录

    含煤岩系中煤层的差异沉积响应与油气勘探

    doi: 10.14027/j.issn.1000-0550.2022.033
      基金项目:

      国家科技重大专项 2017ZX05001-002

      中国石油科技部重大专项 2021DJ0402

      中国石油科技部重大专项 2021DJ0202

      作者简介:

      孟祥超,男,1974年出生,高级工程师,碎屑岩沉积储层,E-mail: mengxc_hz@petrochina.com.cn

      通讯作者: 周伯玉,女,工程师,碎屑岩油藏评价,E-mail: fczby@petrochina.com.cn
    • 中图分类号: P618.13

    摘要: 含煤岩系中不同类型煤层的差异沉积响应,及对邻近砂砾岩成岩成储效应的影响目前研究比较薄弱。基于野外露头、孢粉组合、井—震剖面、岩心相序、测井响应、扫描电镜、电子探针能谱等资料,对研究区稳定厚煤层、局限薄煤层进行了差异沉积响应分析。结果表明,以逆冲断裂I、II为代表的盆缘边界断裂复活及盆地基底的振荡性沉降,为研究区提供了厚层泥炭聚积、宽缓古斜坡背景—广覆式湖侵、阻碍沼泽排水—防止有机质氧化、降低河流梯度—弱化陆源碎屑干扰等四方面有利条件,在近湖盆区首次湖泛面附近形成大面积分布的稳定厚煤层,显微组分指示其成煤沼泽一直保持较佳的滞水还原条件。局限薄煤层分布较零散,具较明显的相控特征,多分布于水动力较弱的扇间/河道间等低能相带,显微组分指示其成煤沼泽存在局部滞水还原条件稍差的半氧化阶段。准同生期—早成岩期,煤系腐殖酸形成早成岩期长石粒内溶孔,溶蚀颗粒成分以富钙斜长石为主。溶蚀产物高岭石胶结物产状以紧贴颗粒的最内部环边为主,纯度高。长石颗粒溶蚀—高岭石充填—压塌缩聚作用形成高岭石完全拟颗粒、高岭石部分拟颗粒,前者纯度高,后者纯度较低。中成岩期,烃源有机酸形成中成岩期长石粒内溶孔,溶蚀组分以钾长石为主,溶蚀残留组分以钠长石为主。溶蚀产物高岭石胶结物产状以颗粒的外层环边或充填粒间孔隙为主,纯度较低。煤系腐殖酸对邻近的砂砾岩储层质量影响以抑制性为主,限定沉积相带、粒度条件下,稳定厚煤层垂向辐射厚度10~30 m,辐射带砂砾岩孔隙度减少2.3%~5.2%,渗透率减小(1.3~2.1)×10-3 μm2;局限薄煤层垂向辐射厚度3~8 m,辐射带砂砾岩孔隙度减少1.2%~3.5%,渗透率减小(0.8~1.9)×10-3 μm2。高刚性颗粒含量是煤系砂砾岩储层原生粒间孔,尤其是准同生期—早成岩期煤系腐殖酸溶孔有效保存的前提条件,高岭石、硅质等溶蚀产物的迁出程度进一步制约着孔隙的有效性。

    English Abstract

    孟祥超, 周伯玉, 陈扬, 马海龙, 李亮, 王科朋, 林道峰, 赵文苹. 含煤岩系中煤层的差异沉积响应与油气勘探———以玛湖斜坡区侏罗系八道湾组为例[J]. 沉积学报, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033
    引用本文: 孟祥超, 周伯玉, 陈扬, 马海龙, 李亮, 王科朋, 林道峰, 赵文苹. 含煤岩系中煤层的差异沉积响应与油气勘探———以玛湖斜坡区侏罗系八道湾组为例[J]. 沉积学报, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033
    MENG XiangChao, ZHOU BoYu, CHEN Yang, MA HaiLong, LI Liang, WANG KePeng, LIN DaoFeng, ZHAO WenPing. Differential Sedimentary Response of Coal Seams in Coal-bearing Rock Series and Oil and Gas Exploration: A case study of the J1b Formation in the Mahu slope area[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033
    Citation: MENG XiangChao, ZHOU BoYu, CHEN Yang, MA HaiLong, LI Liang, WANG KePeng, LIN DaoFeng, ZHAO WenPing. Differential Sedimentary Response of Coal Seams in Coal-bearing Rock Series and Oil and Gas Exploration: A case study of the J1b Formation in the Mahu slope area[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1212-1226. doi: 10.14027/j.issn.1000-0550.2022.033
      • 早期煤层沉积学源于20世纪初关于北美上石炭统含煤岩系中岩性单元规律性重复原因的探讨,先后经历了“旋回层阶段”和“三角洲迁移模式阶段”[13]。20世纪80年代初期,国内学者开始关注聚煤作用与海水进退之间的关系[4],吴因业[5],李增学等[67],何起祥等[8],邵龙义等[9],雷振宇等[10]诸多学者对含煤岩系层序地层学及其与沉积环境的关系做过系列论述。逐渐形成了“海退成煤”、“海侵过程成煤”、“湖侵事件成煤”三种最具代表性的成煤模式。“海退成煤模式”类似于陆相成煤模式,强调沉积体系中陆源碎屑系统的阶段性废弃而使沉积体系内局部发生泥炭沼泽化继而成煤,所形成的煤层分布相对局限,区域上不具有严格的等时涵义。“海侵过程成煤模式”强调成煤作用随海侵过程逐渐向陆迁移,所形成的煤层同样具穿时性。“海侵事件成煤模式”则强调海侵的事件属性,海侵过程因具“短暂性”或“突发性”而被赋予等时涵义。

        上述成煤模式及煤层等时性的探讨多与大区域或全球规模的海相沉积背景有关。我国西北及中亚地区陆相湖盆的侏罗系八道湾组(J1b)、西山窑组(J2x)多发育含煤岩系[11]沉积,在单一陆相湖盆或湖盆内部的单一凹陷尺度内,无论是近物源区平原相带低能沼泽环境下形成的分布较局限的煤层,还是近湖盆区受控于湖平面升降形成的分布范围相对较大的煤层,地层格架内的同一套煤层在各自的分布范围内均可视为地学时限范围内的等时层。探讨煤系砂砾岩中煤层产状差异及测井响应差异的原因,及不同成因类型的煤层对邻近砂砾岩储层的成储影响差异的原因,更具有勘探指导意义,目前关于这方面的研究罕见文献报道。准噶尔盆地玛湖凹陷下侏罗统八道湾组(J1b)含煤岩系内部夹杂的煤层在厚度、横向分布、测井响应特征、热演化程度等方面均具较大差异。且含煤岩系内的砂砾岩储层质量(储集空间、渗流性能)与该储层与煤层之间的距离有一定的相关性。本文通过剖析八道湾组稳定厚煤层、局限薄煤层两类煤层产状、垂向相序、空间展布等方面的不同,探究两类煤层差异沉积响应的控制因素及分布规律。剖析两类煤层排出煤系腐殖酸强度的差异,及煤系腐殖酸对含煤岩系内砂砾岩储层质量的抑制效应。综合微观产状特征、电子探针能谱元素特征等分析,给出准同生期—早成岩期煤系腐殖酸、中成岩期烃源有机酸溶蚀产物的判别证据。提出含煤岩系砂砾岩优质储层垂向及平面优选建议。为研究区及类似探区含煤岩系砂砾岩储层预测及区带优选提供启示和借鉴。

      • 准噶尔盆地是海西运动后期开始形成与发展的多期次叠合盆地,周缘被古生代褶皱缝合带围绕[1112]图1a)。自石炭纪至今,盆地依次经历了海西晚期、印支期、燕山期和喜山期等构造运动。石炭纪末期,准噶尔南缘的北天山—准噶尔洋开始闭合,并在局部发生陆块碰撞(称天山中期运动)。受其影响,西北缘早期褶皱造山带强烈隆升,并向盆地逆冲,形成叠瓦式前陆冲断推覆构造。二叠纪早期,准噶尔地块受造山带持续作用,受垂直载荷影响,岩石圈发生挠曲变形,西北缘周缘前陆盆地开始形成。自二叠纪始,盆地构造演化依次经历了前陆断陷期(下二叠统(P1 j~P1 f),以靠近逆冲推覆带下盘地层厚、近湖盆区地层薄为典型特征)、断陷—坳陷转换期(中二叠统(P2x~P2w),以近断裂带处地层薄、近湖盆区地层增厚趋势渐强为典型特征)、坳陷初期填平补齐期(上二叠统(P3w)—下三叠统(T1b),以近湖盆区地层厚,近物源区地层薄为典型特征)、坳陷期(中三叠统(T2k)—侏罗系(J)—白垩系(K),以凹陷范围内地层大致等厚为典型特征)(图2)。研究区玛湖斜坡区位于克百断裂—乌夏断裂带下盘(图1a),地层发育较齐全,自下而上发育石炭系、二叠系、三叠系、侏罗系及白垩系,各层系间呈区域性平行不整合或角度不整合接触[1315]

        图  1  玛湖凹陷区域构造(a)及侏罗系八道湾组地层特征(b)

        Figure 1.  Regional structure and stratigraphic characteristics of the J1b, Mahu Sag

        图  2  玛湖凹陷构造—沉积演化剖面(剖面1,位置见图1)

        Figure 2.  Structure and sedimentary evolution of the Mahu Sag

      • 煤层为植物遗体经复杂的生物化学作用、地质作用转变而成的层状固体。受古构造、古地理及古气候条件制约,在整个地史时期,全球范围内发育三个主要成煤期[45]:1)古生代的石炭纪和二叠纪,成煤植物主要是孢子植物,主要煤种为烟煤和无烟煤;2)中生代的侏罗纪和白垩纪,成煤植物主要是裸子植物,主要煤种为褐煤和烟煤;3)新生代的第三纪,成煤植物主要是被子植物,主要煤种为褐煤,其次为泥炭,也有部分年轻烟煤。

        从生物分异度、植物群演化及沉积演化等方面看,以准噶尔盆地西北缘为代表的我国北方侏罗纪总的气候背景和演化规律可划分为四个阶段。1)早侏罗世—中侏罗世早中期,以暖温带—温带潮湿气候为主,但存在一系列的次级变化。早侏罗世早中期,温带气候区范围较大,新疆北部各沉积区均在这一气候带内,发育湖泊、河流、沼泽沉积,煤层发育,反映温带暖湿气候的菱铁矿常见。准噶尔盆地以侏罗系八道湾组(J1b)含煤岩系地层为代表,此时期植被繁盛,显示出温暖潮湿的大气候背景,为重要的聚煤期。早侏罗世晚期,新疆地区经历了短暂的亚热带半干旱气候,煤层不发育,北疆地区以三工河组(J1s)中下部为代表。中侏罗世早中期,气候再次逐渐变得温暖潮湿,以侏罗系西山窑组(J2x)的煤系地层为代表。2)中侏罗世晚期,受早期燕山运动影响,构造运动强烈,炎热带向北扩张,新疆地区基本处于亚热带半干旱—半潮湿气候区,沉积岩中高岭石含量降低,伊利石增加,气候逐渐向干热转变,地层中出现红色碎屑岩条带,植物群整体衰落。3)晚侏罗世,新疆各盆地普遍沉积了一套红色碎屑岩[10],发育石膏层及钙质结核,未见植物化石,仅见少量脊椎动物化石,表明气候干旱炎热,基本已处于亚热带半干旱—干旱气候区[810]。4)侏罗纪末期,受中期燕山运动影响,准噶尔盆地经历了一次强烈隆升、削蚀夷平构造运动。在全盆地填平补齐式准平原化及盆地周缘隆升的古地理背景下,形成大面积分布的白垩系清水河组(K1q)底砾岩沉积。

        侏罗系八道湾组一段(内部自下而上细分为J1b11J1b12J1b13三个砂层组)最底部的J1b13砂层组以那氏芦木孢等真蕨类、双扇蕨类孢子为主,指示湖平面较低背景下的低位体系域富粗粒陆源碎屑沉积,以砂砾岩沉积为主。受控于J1b1段整体湖侵退积沉积背景,至顶部J1b11沉积期,以原始松粉、双束松粉为代表的银杏类、松柏类及楔叶类裸子植物花粉(该类花粉外围或两肋多带有气囊,在风力作用可以搬运较远)逐渐占据优势,指示较高湖平面背景下较远距离搬运沉积,主要为湖侵体系域、高位体系域相对较细粒陆源碎屑沉积,以含砾砂岩、中细砂岩、泥岩为主,夹薄煤层(图3)。

        图  3  玛湖地区八道湾组一段古气候—沉积特征综合图

        Figure 3.  Map of paleoclimate and sedimentary characteristics from the J1b1 in the Mahu area

      • 研究区侏罗系八道湾组含煤岩系中煤层分布普遍,根据煤层的野外露头产状(图4a)及岩心产状(图4b)特征,将侏罗系八道湾组煤层分为稳定厚煤层、局限薄煤层两种类型。稳定厚煤层横向分布范围广,厚度较大(6~12 m,玛湖斜坡区均值9.5 m)。顶板多与一套砾质强陆源阻断沉积呈突变接触。局限薄煤层横向分布不稳定,呈断续—透镜状分布,厚度整体较薄(玛湖斜坡区测井可识别煤层厚度介于0.8~3.5 m,均值为1.3 m,岩心尺度可见5~10 cm极薄煤层),内部多夹杂(粉)砂质夹矸层。顶板层、底板层以水下分流河道间、河口坝、废弃河道、孤立河道等过渡相带沉积为主。与顶板层、底板层多呈相序渐变接触(图4b)。

        图  4  稳定厚煤层—局限薄煤层露头及垂向相序特征

        Figure 4.  Outcrop and vertical sequence characteristics of stable thick coal and limited thin coal seam

      • 目的层侏罗系八道湾组一段含煤岩系沉积(图1b)形成于晚三叠世(T3b)区域性湖侵背景下,属于印支运动末期盆缘边界断裂幕式活动与盆地基底振荡性沉降综合作用的产物。此时期,准噶尔盆地与周围不少较小的盆地连成一片,表现为泛盆沉积特征[16]。区域古地貌整体以宽缓斜坡为主(图2)。八道湾组沉积最早期(J1b13沉积时),在玛湖地区构造推覆最强烈的乌夏断裂带下盘靠近断裂带附近,尚存局部古地貌洼地。在多期(地震剖面上可识别出两期,图5a)填平补齐基础上,J1b13中晚期,自物源区向湖盆区,发育广覆式前积—加积充填过程。此时期陆源碎屑供给充分,煤层整体不发育,仅在局部河道间等低能相带零星分布局限薄煤层。在上述填平补齐—广覆式前积—加积充填作用下,古地貌形态也逐渐演变为区域上统一的宽缓古斜坡。沉积相带类型也由二叠系—三叠系相对窄陡斜坡背景下的扇三角洲沉积演变为侏罗系八道湾组一段宽缓斜坡背景下的辫状河三角洲沉积[16]。稳定厚煤层垂向上主要发育在J1b12早期(图5a,b),平面上主要发育于近湖盆区(图6b)。局限薄煤层垂向及平面分布均较零散,垂向上J1b12中上部—J1b11段相对集中(图5a,b),平面上近物源区相对集中(以J1b11段顶薄煤群为代表,图6a)。

        图  5  八道湾组一段近物源区—近湖盆区沉积特征及煤层展布井—震分析剖面(剖面2,剖面位置见图1)

        Figure 5.  Sedimentary characteristics and well⁃seismic analysis profile of a coal seam in J1b1

        图  6  八道湾组一段稳定厚煤层—局限薄煤层平面展布

        Figure 6.  Plane distribution of stable thick and limited thin coal seams

      • 煤层多由沼泽环境中的厚层泥炭经复杂的生物化学作用、地质作用逐步演化形成。泥炭的堆积和保存需要足够高的水位以覆盖正在腐烂的植物残体并阻止其被氧化,同时水位又不能过高,以确保植物得以持续存活繁衍。因此,煤层厚度取决于可容纳空间增长速率与泥炭堆积速率之间的相对平衡状态,即平衡补偿[23,10]。研究区侏罗系八道湾组沉积处于整体宽缓斜坡古地形背景,稳定煤层能否堆积保存取决于两个条件:1)可容纳空间增长速率(有赖于潜水面或基准面的不断上升)与泥炭堆积速率之间的相对平衡状态,这是形成煤层的地质主因;2)陆源碎屑沉积物的阻断和干扰程度,这是决定煤层能否得以保存和持续沉积的外在保障。受控于上述两个条件的相对平衡,玛湖斜坡区侏罗系八道湾组稳定厚煤层、局限薄煤层的平面及垂向展布具较明显的分带特征。

      • 玛湖斜坡区八道湾组沉积,尤其是目的层八道湾组一段(J1b1)沉积,位于印支运动末期,早燕山运动之前区域构造背景下,仅盆缘的边界断裂活动较强,且继承了印支期断裂的活动属性,以同沉积逆冲推覆为主。在早侏罗世盆地整体坳陷期构造背景及整体温暖潮湿古气候背景下,盆缘边界断裂的振荡性逆冲推覆控制着近物源区的沉积物供给、古地形两大因素,进而影响近湖盆区基准面/湖平面的相对升降及层序地层的叠加样式。研究区盆地边缘发育逆冲断裂I、逆冲断裂II两大边界断裂(图7),从断面断距、断面两侧地层拖曳程度、断裂上下盘地层厚度差异分析知,逆冲断裂II断面两侧地层拖曳明显,以滚动逆冲为主,同沉积效应强,主要控制了J1b13所属的下盘低位体系域LST的盆底扇、斜坡扇、低位进积—加积三角洲楔状体的分布。逆冲断裂I则控制了J1b12J1b11沉积,并整体控制了整个J1b1沉积的层序地层格局。J1b13沉积时,逆冲断裂I上下盘地层厚度差异较小(上盘28 m,下盘44 m,厚度差16 m),但垂向推覆断距较大(115 m),整体以印支运动末期的构造应力调节释放为主,对近湖盆区J1b13段低位体系域LST沉积影响不大。J1b12沉积时,印支运动末期的振荡性构造复活在逆冲断裂I上盘、下盆形成了近两倍(上盘55 m,下盘101 m,厚度差46 m)的厚度差异(图7)。以逆冲断裂I、逆冲断裂II为代表的盆缘边界断裂的复活,及盆地基底的振荡性沉降,为J1b12底部稳定厚煤层的形成提供了四方面有利条件。1)使J1b1陆源碎屑物质向近湖盆区供给能力增强,大量细粒悬浮物质及有机物残体以悬浮或推移的方式向近湖盆区汇聚。2)经历了LST早—中期以盆底扇、斜坡扇、低位进积—加积三角洲楔状体沉积为主的填平补齐作用,LST末期,近物源区和近湖盆区两大区带的古地形高差大幅弱化。在整体宽缓斜坡古地形背景下,湖平面的微小变化会在平面上导致大范围湖水进退响应,即研究区湖侵期TST早期的首次湖泛事件在近湖盆区具有湖平面快速侵进、大范围覆盖的“广覆式”特征。同时,近湖盆区基准面的相对快速上升及可容纳空间的快速增加,为泥炭的快速堆积提供了充足的可容纳空间。3)基准面的相对快速上升阻碍了沼泽排水,有效地防止有机质氧化,进一步促进J1b12底部厚层泥炭的堆积、保存及煤化作用持续快速进行。4)潜水面/基准面的相对快速上升有效降低河流梯度,使携带陆源碎屑的河流收缩到成煤沼泽之外,保证成煤作用不被陆源碎屑阻断。在上述四方面因素的综合影响下,最终在近湖盆区首次湖泛面附近形成厚层、大面积分布的稳定厚煤层。地震反射特征表现为横向较连续的低频中强反射(图7b)。显微组分以常见大孢子体、小孢子体及角质体(注:叶、枝条、细茎的外皮层)等壳质组分[17]为典型特征。大、小孢子体化石及角质体化石保存条件较完整,指示其成煤沼泽一直保持较佳的滞水还原[17]条件(图8a~c)。

        图  7  稳定厚煤层—局限薄煤层沉积模式图(剖面3,位置见图1)

        Figure 7.  Depositional model of stable thick and limited thin coal seams

        图  8  稳定厚煤层(a~c)—局限薄煤层(d~f)显微组分对比

        Figure 8.  Maceral correlation of stable thick and limited thin coal seams

      • 近物源区(图7a,b,黄1井—百75井一带),以冲积扇—扇三角洲—辫状河三角洲内前缘沉积为主,陆源碎屑供给足,水动力较强,植被难以生长,煤层一般不发育。沉积物中残留的少量有机质主要来自于冲刷上游及周围堤岸的植被。同时由于水体搅动使氧气混入,这些局部残留的有机质也难以得到有效保存,岩心中可见河道砂体沉积中有机质仅仅以碳屑或植物茎秆化石的形式零星分布,局部薄—较厚、横向分布不稳定的局限薄煤层主要发育于最大湖泛面附近的TST中晚期—HST早中期(得益于该时期较快的可容纳空间增加速率与该区较快的泥炭堆积速率之间的相对平衡。近湖盆区,局限薄煤层以零散薄层沉积为主,在J1b1、J1b3中均有分布,层序格架上主要响应于三级层序低位体系域LST、湖侵体系域TST中期、高位体系域HST中期。概括而言,局限薄煤层分布较零散,具较明显的相控特征,多分布于水动力较弱的扇间/河道间等低能相带。显微组分以各类镜质体(注:植物碎片,树干/植根的细胞壁等)[17]组分为主(图8d~f),罕见壳质组分,指示其植物母体来源以较高大的木本植物为主,基质镜质体中见丝状、粒状的黑色惰性组分(注:氧化—部分氧化的植物物质[17],图8f),指示其成煤沼泽存在局部滞水还原条件稍差的半氧化阶段。

      • 煤系腐殖酸主要由煤层母质中的植物遗骸等有机质经过微生物的分解和转化,以及一系列的物理化学过程形成的一类高分子有机酸。在区域成煤环境及成煤母质背景大致相同条件下,单位体积的煤层原始沉积母质中的灰分(粉砂等陆源无机组分)含量越高,煤系腐殖酸的排出强度越小[18]。常用煤层的DEN(密度)值来定性表征煤层原始沉积母质中灰分含量的差异,煤层中灰分含量每增加1%,煤层的密度值增加0.01%。GR(自然伽马)值同样可以指示煤质的纯度(GR越低,煤质纯度越高)[1819]。研究区侏罗系八道湾组局限薄煤层的DEN均值皆高于稳定厚煤层(表1);局限薄煤层的GR均值同样高于稳定厚煤层。说明较之于局限薄煤层,稳定厚煤层的灰分含量更低,煤质更纯,在压实减孔最强烈的准同生—早成岩阶段煤系腐殖酸排出强度更强。平面上,断裂带/近物源区局限薄煤层的DEN值、GR值普遍高于斜坡区/近湖盆区。说明较之于近物源区,近湖盆区煤层的灰分含量更低,煤质更纯,准同生—早成岩阶段煤系腐殖酸排出强度也相对更强。

        表 1  玛湖地区八道湾组不同构造部位煤层测井响应差异

        煤层成因类型测井参数断裂带玛西斜坡区玛中区玛东斜坡区
        局限薄煤层DEN/(g/cm3)1.35~2.251.451.461.43
        均值1.84均值1.45
        GR/API16.85~60.8938.7337.9331.90
        均值45.04均值36.19
        稳定厚煤层DEN/(g/cm3)不发育1.301.261.34
        均值1.30
        GR/API37.2527.2121.54
        均值28.67

        煤系腐殖酸对含煤岩系砂砾岩储层质量(储集空间、渗流性能)的影响有建设性的一面,主要发生在准同生期(沉积期—早成岩浅埋期之间的过渡阶段,沉积物刚刚沉积,尚无上覆载荷,压实作用极弱—无):1)煤系腐殖酸对颗粒表面、粒间的泥钙质组分的充分溶解净化作用,导致煤系砂砾岩粒间的陆源泥质杂基含量普遍较低,以充填粒间孔隙、粒内孔隙或颗粒环边产状赋存的高岭石多为富长石质颗粒组分的溶蚀产物;2)煤系腐殖酸溶蚀骨架颗粒形成粒内溶孔甚至颗粒铸模孔。但这种建设性成孔作用主要发生在大规模压实减孔成岩阶段之前,随着后续压实程度渐增,该类孔隙难以得到有效保留。

        整体而言,煤系腐殖酸对邻近的砂砾岩储层质量的影响以抑制性为主[2022],主要体现在两方面。1)准同生—早成岩早期,对富长石质骨架颗粒(长石颗粒,及岩屑颗粒中的长石组分)的选择性溶蚀(溶塌)作用,导致八道湾组含煤岩系沉积整体抗压能力降低。2)早成岩中晚期,长石质组分溶蚀析出的高岭石、硅质(多以石英颗粒自生加大边形式产出)等自生矿物,尤其是高岭石,多以交代溶蚀颗粒的形式近原位充填于颗粒粒内溶孔(铸模孔)中,或充填于原生粒间孔隙、喉道、微裂缝中,阻塞孔喉,对储集空间、渗流性能的抑制作用较强。

        由于含煤岩系中煤系腐殖酸对邻近砂砾岩储层质量的抑制作用主要发生在准同生—早成岩期,经历了后期复杂的成岩作用改造,单纯的微观薄片手段难以有效识别和界定。本次研究通过微观产状—电子探针元素能谱综合对比分析,尝试对准同生期—早成岩期煤系腐殖酸溶蚀形成的长石粒内溶孔、高岭石胶结物及中成岩期烃源有机酸溶蚀形成的长石粒内溶孔、高岭石胶结物进行有效区分(图9)。并进一步对准同生期—早成岩期,煤系腐殖酸溶蚀骨架长石颗粒—高岭石充填长石粒内溶孔形成的高岭石完全拟颗粒、高岭石部分拟颗粒进行了产状—成分综合界定(图9,10),为含煤岩系准同生—早成岩期的骨架颗粒溶塌作用提供佐证。

        图  9  八道湾组一段含煤岩系典型成岩现象及成岩产物元素含量差异

        Figure 9.  Typical diagenetic phenomena and element content of diagenetic products in coal⁃bearing rock series in J1b

        图  10  八道湾组骨架颗粒内部溶蚀—压塌(溶塌)过程示意图(扫描电镜)

        Figure 10.  Dissolution⁃collapse process of skeleton particles in J1b

      • 含煤岩系中煤系腐殖酸对邻近砂砾岩储层质量的影响整体以抑制性为主。垂向上,较之于局限薄煤层,稳定厚煤层的灰分含量更低,煤系腐殖酸的排出强度较大,对邻近砂砾岩储层质量抑制效应的垂向辐射深度更大。进一步统计得出,垂向上,限定大致相同沉积相带(辫状河三角洲前缘水下分流河道)、相同粒度/岩性(含砾粗砂岩—砂质细砾岩)条件下,玛湖地区侏罗系八道湾组两类煤层对邻近砂砾岩储层质量抑制效应的垂向辐射规模如下:稳定厚煤层垂向辐射厚度10~30 m,辐射带砂砾岩孔隙度减少2.3%~5.2%,渗透率减少(1.3~2.1)×10-3 μm2图11,以稳定厚煤层为例);局限薄煤层垂向辐射厚度3~8 m,辐射带砂砾岩孔隙度减少1.2%~3.5%,渗透率减小(0.8~1.9)×10-3 μm2;两套煤层夹持的层位,优质储层不发育或厚度很薄。相对规模的优质储层主要位于距离煤层,尤其是稳定厚煤层较远的部位。平面上,较之于近湖盆区,近物源区稳定厚煤层不发育,局限薄煤层的发育规模及煤层演化程度较低,煤系腐殖酸对砂砾岩储层质量的抑制性作用较弱,优质储层相对发育。

        图  11  稳定厚煤层对邻近砂砾岩储层孔隙度、渗透率抑制作用垂向辐射规模

        Figure 11.  Restraining effect vertical scale for stable thick coal seams on porosity and permeability in J1b

      • (1) 玛湖斜坡区侏罗系八道湾组含煤岩系中煤层分布较普遍,可分为稳定厚煤层、局限薄煤层两种成因类型。稳定厚煤层展布受控于以逆冲断裂I、II为代表的盆缘边界断裂复活及盆地基底的振荡性沉降,主要分布于近湖盆区首次湖泛面附近,横向分布范围广,厚度较大。顶板多与一套砾质强陆源阻断沉积呈突变接触。局限薄煤层横向分布不稳定,具较明显的相控特征,多分布于水动力较弱的扇间/河道间等低能相带。厚度整体较薄,内部多夹杂粉砂质、砂质夹矸层。与顶板层、底板层多呈相序渐变接触。

        (2) 准同生期—早成岩期,煤系腐殖酸形成早成岩期长石粒内溶孔,溶蚀颗粒成分以富钙斜长石为主。溶蚀产物高岭石胶结物产状以紧贴颗粒的最内部环边为主,纯度高。长石颗粒溶蚀—高岭石充填—压塌缩聚作用形成高岭石完全拟颗粒、高岭石部分拟颗粒。前者纯度高,后者纯度较低,含杂质钙(Ca)元素。中成岩期,烃源有机酸形成中成岩期长石粒内溶孔,溶蚀颗粒成分以钾长石为主,溶蚀残留组分以钠长石为主。溶蚀产物高岭石胶结物产状以颗粒的外层环边或充填粒间孔隙为主,纯度较低,含杂质钾(K)元素。

        (3) 煤系腐殖酸对煤系砂砾岩储集渗流性能的建设性作用主要发生在准同生早期:煤系腐殖酸对颗粒表面、粒间的泥钙质组分的充分溶解净化作用;煤系腐殖酸溶蚀骨架颗粒形成粒内溶孔甚至颗粒铸模孔。该类孔隙主要形成于大规模压实减孔阶段之前,难以得到有效保留。煤系腐殖酸对煤系砂砾岩储集渗流性能的影响整体以抑制性为主。限定沉积相带、粒度/岩性条件下,稳定厚煤层垂向辐射厚度10~30 m,辐射带砂砾岩孔隙度减少2.3%~5.2%,渗透率减小(1.3~2.1)×10-3 μm2;局限薄煤层垂向辐射厚度3~8 m,辐射带砂砾岩孔隙度减少1.2%~3.5%,渗透率减小(0.8~1.9)×10-3 μm2

        (4) 高刚性颗粒含量是煤系砂砾岩储层原生粒间孔,尤其是准同生期—早成岩期煤系腐殖酸溶孔有效保存的前提条件,高岭石、硅质等溶蚀产物的迁出程度进一步制约着孔隙的有效性。优质储层区带优选应重点关注物源区母岩类型为中酸性母岩提供物源的扇体,且沉积分异程度较高、成分成熟度较高的扇三角洲外前缘相带。水动力强、渗流条件优、高岭石/硅质等溶蚀产物迁移较彻底的水下分流河道、河口坝等沉积微相砂体是优质储层集中发育区。

    参考文献 (22)

    目录

      /

      返回文章
      返回