高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅质碎屑—碳酸盐混合沉积:进展与分类新启示

穆财能 周荟佳 陈安清 侯明才

穆财能, 周荟佳, 陈安清, 侯明才. 硅质碎屑—碳酸盐混合沉积:进展与分类新启示[J]. 沉积学报, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131
引用本文: 穆财能, 周荟佳, 陈安清, 侯明才. 硅质碎屑—碳酸盐混合沉积:进展与分类新启示[J]. 沉积学报, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131
MU CaiNeng, ZHOU HuiJia, CHEN AnQing, HOU MingCai. Mixed Siliciclastic-Carbonate: Progress and New Revelations in Classification[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131
Citation: MU CaiNeng, ZHOU HuiJia, CHEN AnQing, HOU MingCai. Mixed Siliciclastic-Carbonate: Progress and New Revelations in Classification[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131

硅质碎屑—碳酸盐混合沉积:进展与分类新启示

doi: 10.14027/j.issn.1000-0550.2024.131
基金项目: 

四川省科技计划创新群体项目 2023NSFSC1986

详细信息
    作者简介:

    穆财能,男,1996年出生,博士研究生,混合沉积储层沉积学,E-mail: cainengmu@qq.com

    通讯作者:

    侯明才,男,教授,E-mail: houmc@cdut.edu.cn

Mixed Siliciclastic-Carbonate: Progress and New Revelations in Classification

  • 摘要: 意义 碎屑—碳酸盐组分的混合沉积研究能指示古气候、古环境、物源供给、海/湖平面升降,更因与矿产、油气资源息息相关而越来越受到重视。【 进展 】混合沉积主要可分为成分混合(狭义)与结构混合(广义)。混积岩作为混合沉积产物,以往的分类方案主要有四分法、三分法、两分法,但受限于黏土组分是否应参与混积岩的划分一直存在争议。本研究提供一种混积岩分类新方案,尝试解决组分参与划分问题,可为混合沉积研究提供一种新的思路。 结论 在以碎屑组分与碳酸盐组分两端元划分的基础上,通过颗粒的定量统计,并以此判断沉积期的水动力条件。与传统分类方案相比,既保留了碳酸盐组分、碎屑颗粒、灰泥、黏土四个端元,又兼顾了视觉呈现效果与便捷操作可行性。此外,重新厘定混合沉积作用,具体划分为:间断(事件)混合、相混合、原地(生物)混合与沉淀混合四种类型。并将溯源混合、成岩混合、岩溶混合、裂缝混合等不能反映原始沉积环境的四种作用归为假混合作用。 展望 碳酸盐岩与碎屑岩作为沉积学的两大分支,一直被作为独立的学科体系进行研究。对混合沉积的研究还有望帮助理解碳酸盐—碎屑组分之间的矿物来源、相互作用方式与沉积过程,完善碎屑岩与碳酸盐岩学科体系。
  • 图  1  混合沉积类型与特征

    Figure  1.  Types and characteristics of mixed sediments

    图  2  混合沉积发展历程

    Figure  2.  Development history of mixed sedimentation

    图  3  混积岩分类方案

    (a) quaternary method, siliciclastic sand⁃mud⁃micrite⁃carbonate allochems [19]; (b) tripartite method, clay⁃clastic⁃carbonate particles [3]; (c) tripartite method, clay⁃clastic⁃carbonate particles [20]; (d) tripartite method, clay⁃clastic⁃carbonate particles [21]; (e) tripartite method, clay and micrite⁃clastic⁃carbonate particles [66]; (f) trichotomy method, exogenous detrital⁃chemogenic carbonate⁃biogenic carbonate particles [23]; (g) trichotomy method, clay⁃quartz⁃calcite [22]; (h) dichotomy method, clastic⁃carbonate [24]

    Figure  3.  Classification scheme of hybrid sedimentary rock

    Fig.3

    图  4  混积岩分类投点图

    (I) clastic rock with carbonates; (Ⅱ) carbonate clastic rocks; (Ⅲ) clastic carbonate rocks; (Ⅳ) carbonate rock with clastics

    Figure  4.  Classification of hybrid sedimentary rock

    Fig.4

    图  5  典型混积岩薄片照片

    (a) bioclastic sandstone, well LD25⁃1⁃1sa, 3 360.0 m, plane⁃polarized light (PPL); (b) sandy dolomite, well LD25⁃1⁃1, 3 314.5 m, cross polarized light (XPL); (c) arenaceous dolomite, well LD25⁃1⁃3, 3 163.5 m, PPL; (d) dolomite with silt, well LD19⁃1⁃1d, 3 006.0 m, XPL

    Figure  5.  Photos of thin sections of typical hybrid sedimentary rock

    Fig.5

    图  6  混合沉积作用模式图

    (a) discontinuous mixing diagram: clastic rocks were transported to carbonate rocks by events [2]; (b) schematic diagram of phase mixing: clastic rock and carbonate rock facies transition into each other [2]; (c) autochthonous mixing: when organisms die, they are buried almost in situ on clastic rocks [2]; (d) precipitation mixing: when detrital particles are deposited, the quasi⁃syngenetic cement precipitates rapidly [74]

    Figure  6.  Model of mixed sedimentation

    Fig.6

    图  7  假混合形成模式示意图

    (a) source mixing: carbonate rocks was eroded and transported to clastic rocks[2]; (b) diagenetic mixing: later carbonate cements fill intergranular pores and cemented clastic grains; (c) karst mixing: karstification occurs in carbonate rocks, and later detrital grains fill karst caves[20]; (d) fracture mix: fractures developed in clastic rocks and later filled with carbonate veins[20]

    Figure  7.  Model of false mixing

    Fig.7

    图  8  混合沉积控制因素相互关系示意图

    Figure  8.  Relationship between the controlling factors of mixed deposition

    表  1  混积岩各组分含量统计

    Table  1.   Component content in mixed sedimentary rocks

    样品碎屑颗粒黏土杂基碳酸盐颗粒灰泥总量xy命名
    A891731009690含生屑砂岩
    B23711591003430砂质云岩
    C615439100607含砂云岩
    D314083100317含泥云岩
    下载: 导出CSV

    表  2  混合沉积作用类型及接触方式

    Table  2.   Types and contact modes of mixed sedimentation

    成因类型事件成因沉积相渐变成因生物成因准同生期碳酸盐沉淀成因假混合作用
    风暴重力流
    接触方式突变渐变渐变突变渐变突变
    Mount[2]间断混合相混合原地混合蚀源混合
    张雄华[20]事件突变混合相边缘混合原地沉积混合侵蚀再沉积岩溶穿插再沉积
    王国忠等[37]复合式相变式随机式
    董桂玉等[24]突变式混合复合式混合Ⅱ渐变式相混合复合式混合Ⅰ
    杨永剑等[83]突变Ⅰ、Ⅱ型渐变型复合型
    张世铭等[25]突变Ⅰ、Ⅱ型渐变式混合沉积原地混合沉积
    徐伟等[17]滑塌再混合组构型、互层型藻黏结混合
    本文间断混合(事件混合)相混合原地混合(生物混合)沉淀混合蚀源混合、成岩混合岩溶混合、裂缝混合
    下载: 导出CSV

    表  3  海相混合沉积发育特征

    Table  3.   Development characteristics of marine mixed sediments

    序号地区地层混合沉积相带主要类型岩性研究内容混合沉积作用控制因素文献
    1塔里木盆地上石炭统卡拉乌依组滨岸—浅海陆棚成分、层系混合碎屑岩—碳酸盐岩混合沉积模式相混合海平面升降韩睿等[85]
    2四川盆地中泥盆统金宝石组碎屑滨岸—陆棚层系、成分混合碎屑岩—碳酸盐岩混合沉积特征相混合、原地混合海平面升降、波浪风浪李凤杰等[86]
    3四川盆地下寒武统龙王庙组潮汐、颗粒滩层系、成分混合碎屑岩—碳酸盐岩混合沉积特征相混合、事件混合海平面升降、风暴事件宋金民等[87]
    4四川盆地嘉陵江组开阔台地蒸发岩层系混合碎屑岩—碳酸盐岩—蒸发岩层序与测井新技术相混合海平面、气候变化、物源Zhao et al.[52]
    5渤海湾盆地寒武系潮坪、开阔台地、局限台地层系、成分混合碎屑岩—碳酸盐岩混合沉积特征相混合构造、海平面、气候、物源、水动力条件董桂玉等[60]
    6Southern ItalyLower Pleistocene潮汐层系混合生物碎屑—碎屑岩沉积过程、层序原地混合海平面、水动力Longhitano et al.[10]
    7South-western USAMiocene潮汐层系混合碎屑岩—碳酸盐岩沉积过程、古地理重建相混合构造、物源供给Gardner et al. [88]
    8Betic continental-margin, SpainUpper cretaceous潮汐—台地层系混合碎屑岩—碳酸盐岩层序地层相混合构造、海平面Martin-chivelet[40]
    9The Florida Gulf coastNowdays潮汐三角洲层系混合生物碎屑—碎屑岩层序地层事件混合、相混合波浪水动力Davis et al.[44]
    10Albemarle Basin, southeastern USAPaleogene大陆斜坡层系混合碎屑岩—碳酸盐岩层序地层相混合构造、海平面、气候变化、物源Coffey et al.[41]
    11Papua, Papua New GuineaNeogene孤立台地—大陆斜坡层系混合碎屑岩—碳酸盐岩沉积过程演化事件混合、相混合构造、海水、碳酸盐生产和硅质沉积物供应Tcherepanov et al.[46]
    12Zagros Foreland, NE IraqUpper Cretaceous Kometan Formation内、中、外缓坡—盆地成分混合碎屑岩—碳酸盐岩测井地化露头钻井新技术相混合海平面Hussein et al.[89]
    13Southwestern Spitsbergen, Arctic NorwayLower Permian Treskelodden Formation冲积扇、三角洲、潮坝、碳酸盐斜坡层系混合碎屑岩—碳酸盐岩盆地动力学、层序、微相划分相混合构造、海平面、气候、波浪和风暴过程Dahlin et al.[90]
    14Valencia,SE SpainUpper Cretaceous外—中陆架成分混合碎屑岩—碳酸盐岩识别四套有孔虫组合并划分微相相混合海平面、波浪Robles-Salcedo et al. [91]
    15São Francisco BasinEdiacaran Bambuí Group三角洲—浅海层系混合碎屑岩—碳酸盐岩层序识别相混合构造、气候变化Reis et al. [9]
    16United Arab EmiratesHolocene Ghayathi Formation风成砂成分混合碎屑岩—碳酸盐岩风成岩相混合海平面变化、气候Arboit et al.[11]
    下载: 导出CSV

    表  4  陆相混合沉积发育特征

    Table  4.   Development characteristics of terrestrial mixed sediments

    序号地区地层混合沉积相带主要类型岩性研究方向混合沉积作用控制因素参考文献
    1松辽盆地九佛堂组扇三角洲—滨浅湖层系混合碎屑岩—碳酸盐岩—凝灰岩层序识别与划分间断混合、相混合构造、物源供给、气候和碳酸盐生产、水动力条件Li et al.[15]
    2渤海湾盆地沙河街组湖泊混合相成分混合碎屑岩—碳酸盐岩沉积模式相混合构造、气候、湖平面董桂玉等[28]
    3东营凹陷沙河街组混积砂滩、混积砂坝、半深湖成分、层系混合碎屑岩—碳酸盐岩混合沉积特征相混合构造、碎屑物质供给、湖平面张金亮等[97]
    4苏北盆地阜宁组三角洲—滩坝成分混合碎屑岩—碳酸盐岩混合沉积储层特征相混合/Li et al.[98]
    5川中龙岗地区下侏罗大安寨段滨浅湖:浅湖砂坝、介壳滩成分、层系混合碎屑岩—碳酸盐岩—泥质混合沉积特征与储层间断混合、原地混合、相混合风暴作用、水动力条件、优势相丁一等[51]
    6四川盆地侏罗系大安寨段滨浅湖相成分混合碎屑岩—碳酸盐岩混积岩储层特征与成因相混合间断混合湖平面波动、地形、事件黄蕾等[99]
    7柴达木盆地古近系下干柴沟组半深湖、浅湖滩坝、滨浅湖成分、层系混合碎屑岩—碳酸盐岩沉积特征控制因素相混合,原地混合物源输入、气候张世铭等[25]
    8柴达木盆地新近系三角洲—滩坝成分、层系混合碎屑岩—碳酸盐岩沉积特征相混合水动力条件徐伟等[17]
    9柴达木盆地渐新统干柴沟组滨浅湖成分混合碎屑岩—碳酸盐岩混合沉积特征与储层相混合/冯进来等[100]
    10准噶尔盆地中二叠湖相成分、层系混合白云质粉砂岩—泥质白云岩成岩作用与储层特征相混合气候、湖平面波动、物源、岩性组合Liu et al.[5]
    下载: 导出CSV
  • [1] 张锦泉,叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报,1989,16(2):87-92.

    Zhang Jinquan, Ye Hongzhuan. A study on carbonate and siliciclastic mixed sediments[J]. Journal of Chengdu College of Geology, 1989, 16(2): 87-92.
    [2] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435.
    [3] 杨朝青,沙庆安. 云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J]. 沉积学报,1990,8(2):59-66.

    Yang Chaoqing, Sha Qing'an. Sedimentary environment of the Middle Devonian Qujing Formation, Qujing, Yunnan province: A kind of mixing sedimentation of terrigenous clastics and carbonate[J]. Acta Sedimentologica Sinica, 1990, 8(2): 59-66.
    [4] 郭福生,严兆彬,杜杨松. 混合沉积、混积岩和混积层系的讨论[J]. 地学前缘,2003,10(3):68.

    Guo Fusheng, Yan Zhaobin, Du Yangsong. Discussion of mixed deposition, mixed rocks and strata mixing[J]. Earth Science Frontiers, 2003, 10(3): 68.
    [5] Liu Y M, Yang W Z, Hou J G, et al. Lithological and diagenetic variation of mixed depositional units in the Middle Permian saline lacustrine deposition, Junggar Basin, NW China[J]. Unconventional Resources, 2024, 4: 100064.
    [6] Mancini E A, Tew B H. Recognition of maximum flooding events in mixed siliciclastic-carbonate systems: Key to global chronostratigraphic correlation[J]. Geology, 1997, 25(4): 351-354.
    [7] Moscardelli L, Ochoa J, Hunt I, et al. Mixed siliciclastic-carbonate systems and their impact for the development of deep-water turbidites in continental margins: A case study from the Late Jurassic to Early Cretaceous Shelburne subbasin in offshore Nova Scotia[J]. AAPG Bulletin, 2019, 103(10): 2487-2520.
    [8] Li F J, Chen Z A, Ogg J G, et al. Orbital forcing of late Early Devonian storm events on a mixed carbonate-siliciclastic shelf, Longmenshan area, Sichuan province, China[J]. GSA Bulletin, 2022, 134(11/12): 2891-2908.
    [9] Reis H L S, Suss J F. Mixed carbonate–siliciclastic sedimentation in forebulge grabens: An example from the Ediacaran Bambuí Group, São Francisco Basin, Brazil[J]. Sedimentary Geology, 2016, 339: 83-103.
    [10] Longhitano S G, Rossi V M, Chiarella D, et al. Anatomy of a mixed bioclastic–siliciclastic regressive tidal sand ridge: Facies‐based case study from the Lower Pleistocene Siderno Strait, southern Italy[J]. Sedimentology, 2021, 68(6): 2293-2333.
    [11] Arboit F, Steuber T, Mohamad K, et al. Lost in the wind: An integrated approach for the recognition of mixed clastic-carbonate continental aeolianites[J]. Sedimentology, 2022, 69(5): 2203-2227.
    [12] 陈世悦,张顺,刘惠民,等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报,2017,19(2):271-284.

    Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of fine-grained sediments in lacustrine deep water[J]. Journal of Palaeogeography, 2017, 19(2): 271-284.
    [13] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.

    Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.
    [14] Chen S Y, Zhang S, Wang Y S, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks Dongying Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2016, 43(2): 218-229.
    [15] Li Y N, Xue J Q, Wang S, et al. Mixed siliciclastic-carbonate-tuffaceous sedimentation in a rift lacustrine basin: A case study of the Lower Cretaceous Jiufotang Formation in the Luxi Sag, Songliao Basin[J]. Marine and Petroleum Geology, 2024, 164: 106851.
    [16] Cross N E, Singh S K, Al-Enezi A, et al. Mixed carbonate-clastic reservoir characterization of the mid-Cretaceous Mauddud Formation (Albian), north Kuwait:Implications for field development[J]. AAPG Bulletin, 2022, 106(2): 289-319.
    [17] 徐伟,陈开远,曹正林,等. 咸化湖盆混积岩成因机理研究[J]. 岩石学报,2014,30(6):1804-1816.

    Xu Wei, Chen Kaiyuan, Cao Zhenglin, et al. Original mechanism of mixed sediments in the saline lacustrine basin[J]. Acta Petrologica Sinica, 2014, 30(6): 1804-1816.
    [18] 黄健玲,傅强,邱旭明,等. 咸化断陷湖盆混积岩特征及沉积模式:以金湖凹陷阜二段为例[J]. 岩性油气藏,2020,32(2):54-66.

    Huang Jianling, Fu Qiang, Qiu Xuming, et al. Characteristics and sedimentary models of diamictite in saline faulted lacustrine basin: A case study of Fu 2 member in Jinhu Sag, Subei Basin[J]. Lithologic Reservoirs, 2020, 32(2): 54-66.
    [19] Mount J. Mixed siliciclastic and carbonate sediments: A proposed first-order textural and compositional classification[J]. Sedimentology, 1985, 32(3): 435-442.
    [20] 张雄华. 混积岩的分类和成因[J]. 地质科技情报,2000,19(4):31-34.

    Zhang Xionghua. Classification and origin of mixosedimentite[J]. Geological Science and Technology Information, 2000, 19(4): 31-34.
    [21] 王杰琼,刘波,罗平,等. 塔里木盆地西北缘震旦系混积岩类型及成因[J]. 成都理工大学学报(自然科学版),2014,41(3):339-346.

    Wang Jieqiong, Liu Bo, Luo Ping, et al. Classification and genesis of Sinian mixosedimentite from northwest margin of Tarim Basin, China[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2014, 41(3): 339-346.
    [22] Karakaya S, Ogiesoba O C, Olariu C, et al. Generating 3D litho-logy probability volumes using poststack inversion, probabilistic neural networks, and Bayesian classification: A case study from the mixed carbonate and siliciclastic deposits of the Cisco Group of the Eastern Shelf of the Permian Basin, north-central Texas[J]. Geophysics, 2024, 89(2): B131-B146.
    [23] 解习农,叶茂松,徐长贵,等. 渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理[J]. 地球科学,2018,43(10):3526-3539.

    Xie Xinong, Ye Maosong, Xu Changgui, et al. High quality reservoirs characteristics and forming mechanisms of mixed siliciclastic-carbonate sediments in the Bozhong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-3539.
    [24] 董桂玉,陈洪德,何幼斌,等. 陆源碎屑与碳酸盐混合沉积研究中的几点思考[J]. 地球科学进展,2007,22(9):931-939.

    Dong Guiyu, Chen Hongde, He Youbin, et al. Some problems on the study of the mixed siliciclastic- carbonate sediments[J]. Advances in Earth Science, 2007, 22(9): 931-939.
    [25] 张世铭,张小军,王建功,等. 咸化湖盆混合沉积特征及控制因素分析:以柴达木盆地西部地区古近系下干柴沟组为例[J]. 中国矿业大学学报,2022,51(1):160-173.

    Zhang Shiming, Zhang Xiaojun, Wang Jiangong, et al. Characteristics and their controlling factors of mixed sediments in saline lakes: A case study of Lower Ganchaigou Formation in the western Qaidam Basin[J]. Journal of China University of Mining Technology, 2022, 51(1): 160-173.
    [26] Brito A S, Nogueira A C R, Dos Santos R F, et al. High‐frequency palaeoenvironmental changes in the mixed siliciclastic‐carbonate sedimentary system from a Lower Permian restricted basin (West Gondwana, southern Brazil)[J]. Sedimentology, 2024, 71(5): 1515-1557.
    [27] 王越,陈世悦,张关龙,等. 咸化湖盆混积岩分类与混积相带沉积相特征:以准噶尔盆地南缘芦草沟组与吐哈盆地西北缘塔尔朗组为例[J]. 石油学报,2017,38(9):1021-1035,1065.

    Wang Yue, Chen Shiyue, Zhang Guanlong, et al. Classifications of mixosedimentite and sedimentary facies characteristics of mixed sedimentary facies belt in saline lacustrine basin: Taking examples as the Lucaogou Formation in the south of Junggar Basin and the Taerlang Formation in the northwest of Tuha Basin[J]. Acta Petrolei Sinica, 2017, 38(9): 1021-1035, 1065.
    [28] 董桂玉,何幼斌,陈洪德,等. 惠民凹陷沙一中湖相碳酸盐与陆源碎屑混合沉积:以山东商河地区为例[J]. 沉积学报,2007,25(3):343-350.

    Dong Guiyu, He Youbin, Chen Hongde, et al. Clastics of the middle submember of member 1 of Shahejie Formation in Huimin Sag: Taking Shanghe area in Shandong pro-vince for an example[J]. Acta Sedimentologica Sinica, 2007, 25(3): 343-350.
    [29] 谭先锋,王萍,王佳,等. 早始新世极热气候时期咸化湖盆混合沉积作用:以渤海湾盆地东营凹陷孔店组为例[J]. 石油与天然气地质,2018,39(2):340-354.

    Tan Xianfeng, Wang Ping, Wang Jia, et al. Mixed sedimentation in saline lacustrine basins during initial Eocene thermal maximum period: A case study on Kongdian Formation in Dongying Sag, Bohai Bay Basin[J]. Oil Gas Geology, 2018, 39(2): 340-354.
    [30] 程俊阳,何贤科,段冬平,等. 渤海湾盆地某油田混积岩名称厘定及储层特征[J]. 中国地质调查,2023,10(5):27-33.

    Cheng Junyang, He Xianke, Duan Dongping, et al. Name determination and reservoir characteristics of diamictite in a certain oilfield of Bohai Bay Basin[J]. Geological Survey of China, 2023, 10(5): 27-33.
    [31] Wei W, Azmy K, Zhu X M. Impact of diagenesis on reservoir quality of the lacustrine mixed carbonate-siliciclastic-volcaniclastic rocks in China[J]. Journal of Asian Earth Sciences, 2022, 233: 105265.
    [32] Brueckner W D. Cyclic calcareous sedimentation as an index of climatic variations in the past[J]. Journal of Sedimentary Research, 1953, 23(4): 235-237.
    [33] Carozzi A. Some remarks on cyclic calcareous sedimentation as an index of climatic variations[J]. Journal of Sedimentary Research, 1955, 25(1): 78-79.
    [34] Maxwell W G H, Swinchatt J P. Great barrier reef: Regional variation in a terrigenous-carbonate province[J]. GSA Bulletin, 1970, 81(3): 691-724.
    [35] Button A, Vos R G. Subtidal and intertidal clastic and carbonate sedimentation in a macrotidal environment: An example from the Lower Proterozoic of South Africa[J]. Sedimentary Geology, 1977, 18(1/2/3): 175-200.
    [36] 刘宝珺,余光明,王成善,等. 珠穆朗玛峰地区侏罗纪沉积环境[J]. 沉积学报,1983,1(2):1-16.

    Liu Baojun, Yu Guangming, Wang Chengshan, et al. Jurassic sedimentary environment in the Qomolangma region[J]. Acta Sedimentologica Sinica, 1983, 1(2): 1-16.
    [37] 王国忠,吕炳全,全松青. 现代碳酸 盐和陆源碎屑的混合沉积作用:涠洲岛珊瑚岸礁实例[J]. 石油与天然气地质,1987,8(1):15-25.

    Wang Guozhong, Bingquan Lü, Quan Songqing. Mixed sedimentation of recent carbonates and terrigenous clastics: Example of the coral reef of the Weizhou Island[J]. Oil Gas Geology, 1987, 8(1): 15-25.
    [38] Aqrawi A A M. Carbonate-siliciclastic sediments of the Upper Cretaceous (Khasib, Tanuma and Sa'di Formations) of the Mesopotamian Basin[J]. Marine and Petroleum Geology, 1996, 13(7): 781-790.
    [39] Lehrmann D J, Wei J Y, Enos P. Controls on facies architecture of a large Triassic carbonate platform: The Great Bank of Guizhou, Nanpanjiang Basin, South China[J]. Journal of Sedimentary Research, 1998, 68(2): 311-326.
    [40] Martin-Chivelet J. Sequence stratigraphy of mixed carbonate-siliciclastic platforms developed in a tectonically active setting, Upper Cretaceous, Betic Continental Margin (Spain)[J]. Journal of Sedimentary Research, 1995, 65(2b): 235-254.
    [41] Coffey B P, Fred Read J. Mixed carbonate–siliciclastic sequence stratigraphy of a Paleogene transition zone continental shelf, southeastern USA[J]. Sedimentary Geology, 2004, 166(1/2): 21-57.
    [42] Miller R P, Heller P L. Depositional framework and controls on mixed carbonate-siliciclastic gravity flows: Pennsylvanian-Permian shelf to basin transect, south-western Great Basin, USA[J]. Sedimentology, 1994, 41(1): 1-20.
    [43] Dorsey R J, Kidwell S M. Mixed carbonate-siliciclastic sedimentation on a tectonically active margin: Example from the Pliocene of Baja California Sur, Mexico[J]. Geology, 1999, 27(10): 935-938.
    [44] Davis R A, Cuffe C K, Kowalski K A, et al. Stratigraphic models for microtidal tidal deltas; examples from the Florida Gulf Coast[J]. Marine Geology, 2003, 200(1/2/3/4): 49-60.
    [45] Parcell W C, Williams M K. Mixed sediment deposition in a retro-arc foreland basin: Lower Ellis Group (M. Jurassic), Wyoming and Montana, U.S.A.[J]. Sedimentary Geology, 2005, 177(3/4): 175-194.
    [46] Tcherepanov E N, Droxler A W, Lapointe P, et al. Neogene evolution of the mixed carbonate-siliciclastic system in the Gulf of Papua, Papua New Guinea[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): F01S21.
    [47] Palermo D, Aigner T, Geluk M, et al. Reservoir potential of a lacustrine mixed carbonate / siliciclastic gas reservoir: The Lower Triassic Rogenstein in the Netherlands[J]. Journal of Petroleum Geology, 2008, 31(1): 61-96.
    [48] 郑荣才,周刚,董霞,等. 龙门山甘溪组谢家湾段混积相和混积层序地层学特征[J]. 沉积学报,2010,28(1):33-41.

    Zheng Rongcai, Zhou Gang, Dong Xia, et al. The characteristics of hybrid facies and hybrid sequence of Xiejiawan member of Ganxi Formation in the Longmenshan area[J]. Acta Sedimentologica Sinica, 2010, 28(1): 33-41.
    [49] 冯进来,胡凯,曹剑,等. 陆源碎屑与碳酸盐混积岩及其油气地质意义[J]. 高校地质学报,2011,17(2):297-307.

    Feng Jinlai, Hu Kai, Cao Jian, et al. A review on mixed rocks of terrigenous clastics and carbonates and their petroleum-gas geological significance[J]. Geological Journal of China Universities, 2011, 17(2): 297-307.
    [50] 赵会民. 辽河西部凹陷雷家地区古近系沙四段混合沉积特征研究[J]. 沉积学报,2012,30(2):283-290.

    Zhao Huimin. Characteristics of mixed sedimentation in the Meber 4 of Shahejie Formation of Paleogene at Leijia area of western Sag of Liaohe oilfield[J]. Acta Sedimentologica Sinica, 2012, 30(2): 283-290.
    [51] 丁一,李智武,冯逢,等. 川中龙岗地区下侏罗统自流井组大安寨段湖相混合沉积及其致密油勘探意义[J]. 地质论评,2013,59(2):389-400.

    Ding Yi, Li Zhiwu, Feng Feng, et al. Mixing of lacustrine siliciclastic-carbonate sediments and its significance for tight oil exploration in the Daanzhai member, Ziliujing Formation, Lower Jurassic, in Longgang area, central Sichuan Basin[J]. Geological Review, 2013, 59(2): 389-400.
    [52] Zhao W Z, Hu S Y, Xu Z H, et al. Lithology mapping of a mixed siliciclastic-carbonate-evaporite system using 3D seismic and well data: Lower Triassic Jialingjiang Formation, Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2018, 93: 422-436.
    [53] Wang S P, Cui L T, Zhang L, et al. Quantitative identification and prediction of mixed lithology, Bohai Sea, China[J]. Energy Geoscience, 2024, 5(3): 100284.
    [54] Duan Y J, Xie J, Li B C, et al. Lithology identification and reservoir characteristics of the mixed siliciclastic-carbonate rocks of the lower third member of the Shahejie Formation in the south of the Laizhouwan Sag, Bohai Bay Basin, China[J]. Carbonates and Evaporites, 2020, 35(2): 55.
    [55] Rafati Y, Hsu T J, Calantoni J, et al. Entrainment and transport of well‐sorted and mixed sediment under wave motion[J]. Journal of Geophysical Research: Oceans, 2022, 127(8): e2022JC018686.
    [56] Rieux A, Weill P, Mouazé D, et al. Influence of sediment composition on morphology and internal structure of mixed siliciclastic–bioclastic coastal barriers: Contribution of flume experiments[J]. Sedimentology, 2023, 70(5): 1580-1600.
    [57] Nagle J, Piper D J W, Marfisi E, et al. Jurassic deep-water reservoirs at a transfer-transform offset: Modeling the mixed carbonate-siliciclastic Shelburne subbasin, southeastern Canadian margin[J]. AAPG Bulletin, 2024, 108(1): 41-73.
    [58] Lin Y C, Whitehouse P L, Hibbert F D, et al. Relative sea level response to mixed carbonate-siliciclastic sediment loading along the Great Barrier Reef margin[J]. Earth and Planetary Science Letters, 2023, 607: 118066.
    [59] 沙庆安. 混合沉积和混积岩的讨论[J]. 古地理学报,2001,3(3):63-66.

    Sha Qing'an. Discussion on mixing deposit and Hunji rock[J]. Journal of Palaeogeography, 2001, 3(3): 63-66.
    [60] 董桂玉,陈洪德,李君文,等. 环渤海湾盆地寒武系混合沉积研究[J]. 地质学报,2009,83(6):800-811.

    Dong Guiyu, Chen Hongde, Li Junwen, et al. The Cambrian mixed sedimentation around Bohai Sea Bay Basin[J]. Acta Geologica Sinica, 2009, 83(6): 800-811.
    [61] D'Agostini D P, Bastos A C, Dos Reis A T. The modern mixed carbonate-siliciclastic Abrolhos shelf: Implications for a mixed depositional model[J]. Journal of Sedimentary Research, 2015, 85(2): 124-139.
    [62] Chiarella D, Longhitano S G, Tropeano M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments[J]. Marine and Petroleum Geology, 2017, 88: 617-627.
    [63] Li Y, Huang W H, Jiu B. Factors that controlled deposition of lacustrine, mixed siliciclastic-carbonate sediments in the Upper fourth member of the Eocene Shahejie Formation in the Zhanhua Sag, East China[J]. Journal of Paleolimnology, 2021, 66(1): 55-70.
    [64] 宋章强,陈延芳,杜晓峰,等. 渤海海域A构造区沙二段混合沉积特征及储层研究[J]. 海洋石油,2013,33(4):13-18.

    Song Zhangqiang, Chen Yanfang, Du Xiaofeng, et al. Study on sedimentary characteristics and reservoir of Second member of Shahejie Formation, a structural area, Bohai Sea[J]. Offshore Oil, 2013, 33(4): 13-18.
    [65] 张藜,王德英,张新涛,等. 渤海海域秦皇岛29-2东构造优质混积储层主控因素[J]. 沉积学报,2019,37(1):200-211.

    Zhang Li, Wang Deying, Zhang Xintao, et al. The controlling factors of the high-quality mixed reservoirs in QHD29-2E structure, Bohai Sea[J]. Acta Sedimentologica Sinica, 2019, 37(1): 200-211.
    [66] Lü Z X, Zhang S L, Yin C, et al. Features and genesis of Paleogene high-quality reservoirs in lacustrine mixed siliciclastic-carbonate sediments, central Bohai Sea, China[J]. Petroleum Science, 2017, 14(1): 50-60.
    [67] 徐长贵,杜学斌,杜晓峰,等. 陆相断陷湖盆混合沉积与优质储层:以渤海海域为例[M]. 北京:科学出版社,2020:20-26.

    Xu Changgui, Du Xuebin, Du Xiaofeng, et al. Mixed sediments and high-quality reservoirs in continental faulted lake basins: A case study of the Bohai Sea[M]. Beijing: Science Press, 2020: 20-26.
    [68] 叶茂松,解习农,徐长贵,等. 混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例[J]. 地质论评,2018,64(5):1118-1131.

    Ye Maosong, Xie Xinong, Xu Changgui, et al. Discussion for classification–designation system of mixed siliciclastic–carbonate sediments and the implication for their reservoir prediction: A case study of mixed sediments from Bohai Sea area[J]. Geological Review, 2018, 64(5): 1118-1131.
    [69] 叶茂松,解习农,杜学斌,等. “组分混合”沉积的储层非均质性及形成机理:以渤海海域古近系沙河街组一、二段为例[J]. 沉积学报,2025,43(2):635-652.

    Ye Maosong, Xie Xinong, Du Xuebin, et al. Characteristics and formation mechanism of heterogeneity in “compositional mixing” reservoirs: An example from the first-second member of the Palaeogene Shahejie Formation, Bohai Sea[J]. Acta Sedimentologica Sinica, 2025, 43(2): 635-652.
    [70] Zhang W Q, Song C B, Shi X P, et al. Formation mechanism of high-quality Palaeogene “compositional mixing” reservoirs in lacustrine rift basins: A case from the offshore Bohai Bay Basin, China[J]. Marine and Petroleum Geology, 2024, 167: 106956.
    [71] 侯明才,李凤杰,陈安清,等. 岩相古地理基础和工作方法[M]. 2版. 北京:地质出版社,2024:14-40.

    Hou Mingcai, Li Fengjie, Chen Anqing, et al. Basis and working method of lithofacies paleogeography[M]. 2ed. Beijing: Geological Publishing House, 2024: 14-40.
    [72] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:9-39.

    Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 9-39.
    [73] 李祥辉. 层序地层中的混合沉积作用及其控制因素[J]. 高校地质学报,2008,14(3):395-404.

    Li Xianghui. Mixing of siliciclastic-carbonate sediments within systems tracts of depositional sequences and its controlling factors[J]. Geological Journal of China Universities, 2008, 14(3): 395-404.
    [74] Mu C N, Huang X B, Da L Y, et al. A new type of dolomicrite envelope formed in Oligocene lacustrine sediments and its significance for preserving porosity, Bohai Bay Basin, North China[J]. Sedimentary Geology, 2024, 472: 106745.
    [75] Friedman G M. Early diagenesis and lithification in carbonate sediments[J]. Journal of Sedimentary Research, 1964, 34(4): 777-813.
    [76] Friedman G M, Gebelein C D, Sanders J E. Micritic envelopes of carbonate grains are not exclusively of photosynthetic algal origin[J]. Sedimentology, 1971, 16(1/2): 89-96.
    [77] 钟大康,朱筱敏,李树静,等. 早期碳酸盐胶结作用对砂岩孔隙演化的影响:以塔里木盆地满加尔凹陷志留系砂岩为例[J]. 沉积学报,2007,25(6):885-890.

    Zhong Dakang, Zhu Xiaomin, Li Shujing, et al. Influence of early carbonate cementation on the evolution of sandstones: A case study from Silurian sandstones of Manjiaer Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2007, 25(6): 885-890.
    [78] 禚喜准,王琪,李娟,等. 早期碳酸盐胶结作用对恩平凹陷珠江组砂岩孔隙演化模式的影响[J]. 天然气工业,2013,33(4):26-30.

    Zhuo Xizhun, Wang Qi, Li Juan, et al. Influence of early carbonate cementation on porosity evolution of sandstones in the Zhujiang Formation, Enping Sag, Pearl River Mouth Basin[J]. Natural Gas Industry, 2013, 33(4): 26-30.
    [79] Janssen M, Caracciolo L, Bonnell L M, et al. Climatic, depositional and environmental controls on early carbonate cementation in fluvial and shallow marine sandstones[J]. Marine and Petroleum Geology, 2023, 156: 106433.
    [80] Cao B F, Luo X R, Wang X, et al. Calcite‐cemented concretions in non‐marine sandstones: An integrated study of outcrop sedimentology, petrography and clumped isotopes[J]. Sedimentology, 2023, 70(4): 1039-1074.
    [81] Munnecke A, Wright V P, Nohl T. The origins and transformation of carbonate mud during early marine burial diagenesis and the fate of aragonite: A stratigraphic sedimentological perspective[J]. Earth-Science Reviews, 2023, 239: 104366.
    [82] 叶茂松. 环渤中坳陷古近系沙河街组一二段混积岩特征及优质储层形成机理[D]. 武汉:中国地质大学,2019.

    Ye Maosong. Characteristics of siliciclastic-carbonate sediments and forming mechanism of high-quality reservoirs in the member 1~2 of the Shahejie Formation, circum-Bozhong Depression, Bohai Bay Basin[D]. Wuhan: China University of Geosciences, 2019.
    [83] 杨永剑,刘家铎,田景春,等. 塔里木盆地上奥陶统桑塔木组混合沉积特征及控制因素[J]. 地质论评,2011,57(2):185-192.

    Yang Yongjian, Liu Jiaduo, Tian Jingchun, et al. Mixed sedimentary characteristics and controlling factors of Upper Ordovician Sangtamu Formation in Tarim Basin[J]. Geological Review, 2011, 57(2): 185-192.
    [84] Rodrigues S, Hernández-Molina F J, Hillenbrand C D, et al. Recognizing key sedimentary facies and their distribution in mixed turbidite–contourite depositional systems: The case of the Pacific margin of the Antarctic Peninsula[J]. Sedimentology, 2022, 69(4): 1953-1991.
    [85] 韩睿,张尚锋,罗顺社,等. 碎屑岩与碳酸盐岩混合沉积模式:以新疆塔西南地区上石炭统卡拉乌依组为例[J]. 断块油气田,2023,30(2):269-276.

    Han Rui, Zhang Shangfeng, Luo Shunshe, et al. Mixed sedimentary model of clastic rocks and carbonate rocks: A case study of Karawuyi Formation of Upper Carboniferous in southwest Tarim, Xinjiang[J]. Fault-Block Oil Gas Field, 2023, 30(2): 269-276.
    [86] 李凤杰,王佳,马小康,等. 四川龙门山地区中泥盆统金宝石组混合沉积特征[J]. 古地理学报,2023,25(2):294-307.

    Li Fengjie, Wang Jia, Ma Xiaokang, et al. Mixed sedimentation of the Middle Devonian Jinbaoshi Formation in Longmen Mountain area, Sichuan province[J]. Journal of Palaeogeography, 2023, 25(2): 294-307.
    [87] 宋金民,张亚雄,尹柯惟,等. 四川盆地中部地区下寒武统龙王庙组混积特征及其地质意义[J]. 石油与天然气地质,2021,42(3):627-638,701.

    Song Jinmin, Zhang Yaxiong, Yin Kewei, et al. Characteristics and geological significance of mixed sediments in the lower Cambrian Longwangmiao Formation, central Sichuan Basin[J]. Oil Gas Geology, 2021, 42(3): 627-638, 701.
    [88] Gardner K, Dorsey R J. Mixed carbonate–siliciclastic sedimentation at the margin of a late Miocene tidal strait, lower Colorado River Valley, south‐western USA[J]. Sedimentology, 2021, 68(5): 1893-1922.
    [89] Hussein H S, Bábek O, Mansurbeg H, et al. Outcrop-to-subsurface correlation and sequence stratigraphy of a mixed carbonate-siliciclastic ramp using element geochemistry and well logging; Upper Cretaceous Kometan Formation, Zagros Foreland, NE Iraq[J]. Sedimentary Geology, 2024, 459: 106547.
    [90] Dahlin A, Blinkenberg K H, Braathen A, et al. Late syn‐rift to early post‐rift basin fill dynamics of a mixed siliciclastic‐carbonate succession banked to a basement high, Hornsund, southwestern Spitsbergen, Arctic Norway[J]. Basin research, 2024, 36(4):e12880.
    [91] Robles-Salcedo R, Vicedo V. Palaeoenvironments of an Upper Cretaceous mixed carbonate-siliciclastic shelf of the external Prebetic domain (Valencia, SE Spain) [J]. Facies, 2023, 69(3): 13.
    [92] 刘占国,张永庶,宋光永,等. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制[J]. 石油勘探与开发,2021,48(1):68-80.

    Liu Zhanguo, Zhang Yongshu, Song Guangyong, et al. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 68-80.
    [93] Xu W, Li Z Y, Li H Y, et al. The relationship between source supply and mixed deposition of siliciclastic and carbonate: First to Second member of the Shahejie Formation, Paleogene, Bohai Sea area, China[J]. Interpretation, 2021, 9(2): SC45-SC52.
    [94] Du X B, Ye M S, Xie X N, et al. Why is it easy to form high-quality reservoirs in a mixed siliciclastic-carbonate system? Evidence from diagenetic characteristics[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110339.
    [95] 杜晓峰,徐长贵,朱红涛,等. 陆相断陷盆地陆源碎屑与碳酸盐混合沉积研究进展[J]. 地球科学,2020,45(10):3509-3526.

    Du Xiaofeng, Xu Changgui, Zhu Hongtao, et al. Research advances of mixed siliciclastic and carbonate sediments in continental rift basins[J]. Earth Science, 2020, 45(10): 3509-3526.
    [96] 宋章强,杜晓峰,徐伟,等. 渤海古近系混合沉积发育特征与沉积模式[J]. 地球科学,2020,45(10):3663-3676.

    Song Zhangqiang, Du Xiaofeng, Xu Wei, et al. Sedimentary features and development pattern of mixed deposition of Paleogene system in Bohai Sea area[J]. Earth Science, 2020, 45(10): 3663-3676.
    [97] 张金亮,司学强. 断陷湖盆碳酸盐与陆源碎屑混合沉积:以东营凹陷金家地区古近系沙河街组第四段上亚段为例[J]. 地质论评,2007,53(4):448-453.

    Zhang Jinliang, Si Xueqiang. Mixed siliciclastic–carbonate sediment in rift lacustrine basin: A case on the upper part of the Fourth member of the Eogene Shahejie Formation in Jinjia area, Dongying Depression[J]. Geological Review, 53(4): 448-453.
    [98] Li W, Zhu X M, Liu Q D. Reservoir characteristics of lacustrine mixed siliciclastic-carbonate sedimentary rocks: A case study of the Paleogene Funing Second member in the Subei Basin, China[J]. Interpretation, 2023, 11(3): T457-T473.
    [99] 黄蕾,颜瑞晶,周凯,等. 普光地区侏罗系大安寨段湖相混积岩储层特征及成因[J]. 断块油气田, 2024,31(4):620-628.

    Huang Lei, Yan Ruijing, Zhou Kai, et al. Characteristics and genesis of lacustrine mixed rock reservoirs in Jurassic Da'anzhai member, Puguang area[J]. Fault-Block Oil and Gas Field, 2024, 31(4): 620-628.
    [100] 冯进来,曹剑,胡凯,等. 柴达木盆地中深层混积岩储层形成机制[J]. 岩石学报,2011,27(8):2461-2472.

    Feng Jinlai, Cao Jian, Hu Kai, et al. Forming mechanism of Middle-deep mixed rock reservoir in the Qaidam Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2461-2472.
    [101] Tucker M E. Mixed clastic–carbonate cycles and sequences: Quaternary of Egypt and Carboniferous of England[J]. Geologia Croatica, 2003, 56(1): 19-37.
    [102] Catuneanu O, Galloway W E, Kendall C G S C, et al. Sequence stratigraphy: Methodology and nomenclature[J]. Newsletters on Stratigraphy, 2011, 44(3): 173-245.
    [103] 周刚,田兴旺,文龙,等. 四川盆地西部泥盆纪:石炭纪古坳陷存在的新证据及其油气地质意义[J]. 天然气工业,2023,43(8):1-11.

    Zhou Gang, Tian Xingwang, Wen Long, et al. New evidence of Devonian-Carboniferous paleo-depression in the western Sichuan Basin and its implications for oil and gas geology[J]. Natural Gas Industry, 2023, 43(8): 1-11.
    [104] 徐伟,杜晓峰,黄晓波,等. 混合沉积研究进展与关键问题[J]. 沉积学报,2019,37(2):225-238.

    Xu Wei, Du Xiaofeng, Huang Xiaobo, et al. Research advances and critical issues of "mixed siliciclastic and carbonate sediments"[J]. Acta Sedimentologica Sinica, 2019, 37(2): 225-238.
    [105] 江茂生,沙庆安. 碳酸盐与陆源碎屑混合沉积体系研究进展[J]. 地球科学进展,1995,10(6):551-554.

    Jiang Maosheng, Sha Qing'an. Research advances in the mixed siliciclastic-carbonate sedimentary systems[J]. Advence in Earth Sciences, 1995, 10(6): 551-554.
    [106] Vail P R, Mitchum Jr R M. Global cycles of relative changes of sea level from seismic stratigraphy[M]//Watkins J S, Montadert L, Dickerson P M. Geological and geophysical investigations of continental margins. Tulsa: American Association of Petroleum Geologists, 1979, 26: 469-472.
    [107] Kendall C G S C, Schlager W. Carbonates and relative changes in sea level[J]. Marine Geology, 1981, 44(1/2): 181-212.
    [108] 李泉泉,鲍志东,肖毓祥,等. 混合沉积研究进展与展望[J]. 沉积学报,2021,39(1):153-167.

    Li Quanquan, Bao Zhidong, Xiao Yuxiang, et al. Research advances and prospect of mixed deposition[J]. Acta Sedimentologica Sinica, 2021, 39(1): 153-167.
    [109] 刘惠民,杨怀宇,张鹏飞,等. 古湖泊水介质条件对混积岩相组合沉积的控制作用:以渤海湾盆地东营凹陷古近系沙河街组三段为例[J]. 石油与天然气地质,2022,43(2):297-306.

    Liu Huiming, Yang Huaiyu, Zhang Pengfei, et al. Control effect of paleolacustrine water conditions on mixed lithofacies assemblages: A case study of the Palaeogene Es3, Dongying Sag, Bohai Bay Basin[J]. Oil Gas Geology, 2022, 43(2): 297-306.
    [110] 宋国奇,王延章,石小虎,等. 东营沙四段古盐度对碳酸盐岩沉积的控制作用[J]. 西南石油大学学报(自然科学版),2013,35(2):8-14.

    Song Guoqi, Wang Yanzhang, Shi Xiaohu, et al. Palaeosalinity and its controlling on the development of beach and bar in lake facies[J]. Journal of Southwest Petroleum University (Science Technology Edition), 2013, 35(2): 8-14.
    [111] Zhou Z Q, Steiner N, Fivash G S, et al. Temporal dynamics of heatwaves are key drivers of sediment mixing by bioturbators[J]. Limnology and Oceanography, 2023, 68(5): 1105-1116.
    [112] Carvajal C, Steel R, Petter A. Sediment supply: The main driver of shelf-margin growth[J]. Earth-Science Reviews, 2009, 96(4): 221-248.
    [113] 王国忠. 南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用[J]. 古地理学报,2001,3(2):47-54.

    Wang Guozhong. Mixed sedimentation of recent reefoid carbonates and terrigenous clastics in the north continental shelf of the South China Sea[J]. Journal of Palaeogeography, 2001, 3(2): 47-54.
  • [1] 白莹, 马占荣, 黄正良, 闫伟, 高建荣, 赵振宇.  鄂尔多斯盆地西缘奥陶系乌拉力克组混积岩岩相类型及沉积模式 . 沉积学报, 2025, 43(4): 1213-1232. doi: 10.14027/j.issn.1000-0550.2024.120
    [2] 曲希玉.  含体腔孔生物碎屑混积岩初始孔隙度恢复方法—以环渤中地区沙一二段混积岩储层为例 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.005
    [3] 王鑫锐, 孙雨, 刘如昊, 李钊.  陆相湖盆细粒沉积岩特征及形成机理研究进展 . 沉积学报, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
    [4] 陈万利, 吴时国, 黄晓霞, 刘刚, 韩孝辉.  西沙群岛晚第四纪碳酸盐岩淡水成岩作用 . 沉积学报, 2020, 38(6): 1296-1312. doi: 10.14027/j.issn.1000-0550.2020.006
    [5] 李泯星, 屈海洲, 程曦, 杨迅, 杨东凡, 张本健, 张云峰, 李晓.  火山作用对碳酸盐岩沉积及成岩的影响 . 沉积学报, 2020, 38(4): 810-825. doi: 10.14027/j.issn.1000-0550.2019.098
    [6] 姜在兴, 王雯雯, 王俊辉, 李庆, 张元福.  风动力场对沉积体系的作用 . 沉积学报, 2017, 35(5): 863-876. doi: 10.14027/j.cnki.cjxb.2017.05.001
    [7] 郭沫贞, 徐洋, 寿建峰, 刘占国, 韩守华.  准噶尔盆地西北缘二叠系碎屑岩次生孔隙发育控制因素 . 沉积学报, 2017, 35(2): 330-342. doi: 10.14027/j.cnki.cjxb.2017.02.011
    [8] 谭梦琪, 刘自亮, 沈芳, 谢润成, 刘成川, 邓昆, 徐浩.  四川盆地回龙地区下侏罗统自流井组大安寨段混积岩特征及模式 . 沉积学报, 2016, 34(3): 571-581. doi: 10.14027/j.cnki.cjxb.2016.03.015
    [9] 李婷婷, 朱如凯, 白斌, 王崇孝, 李铁峰.  混积岩储层特征——以酒泉盆地青西凹陷下白垩统混积岩为例 . 沉积学报, 2015, 33(2): 376-384. doi: 10.14027/j.cnki.cjxb.2015.02.017
    [10] 范明.  不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用 . 沉积学报, 2007, 25(6): 825-830.
    [11] 陈景山.  塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布 . 沉积学报, 2007, 25(6): 858-868.
    [12] 李斌, 孟自芳, 李相博, 卢红选, 郑民.  靖安油田上三叠统长6储层成岩作用研究 . 沉积学报, 2005, 23(4): 574-583.
    [13] 郭福生.  浙江江山藕塘底组陆源碎屑与碳酸盐混合沉积特征及其构造意义 . 沉积学报, 2004, 22(1): 136-141.
    [14] 邓长瑜, 张秀莲, 陈建文, 王贤.  黔东南地区寒武系碳酸盐岩成岩作用分析 . 沉积学报, 2004, 22(4): 588-596.
    [15] 岳伏生, 马龙, 李天顺.  查干凹陷下白垩统碎屑岩储层成岩演化与油气成藏 . 沉积学报, 2002, 20(4): 644-649.
    [16] 赖健清, 易诗军, 杨楚雄, 丁传谱.  广东凡口地区泥盆系碳酸盐岩化学成岩作用 . 沉积学报, 1997, 15(4): 143-147.
    [17] 史基安, 王琪.  影响碎屑岩天然气储层物性的主要控制因素 . 沉积学报, 1995, 13(2): 128-139.
    [18] 叶德胜.  塔里木盆地北部寒武──奥陶系碳酸盐岩的深部溶蚀作用 . 沉积学报, 1994, 12(1): 66-71.
    [19] 李文厚.  华北地台南缘高山河群碎屑岩潮坪沉积 . 沉积学报, 1991, 9(3): 98-105.
    [20] 史基安, 马宝林, 师育新.  新疆巴楚-柯坪地区上石炭统碳酸盐岩的沉积环境与成岩作用 . 沉积学报, 1990, 8(4): 59-67.
  • 加载中
图(8) / 表 (4)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  26
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-15
  • 修回日期:  2024-12-05
  • 录用日期:  2025-01-15
  • 网络出版日期:  2025-01-15
  • 刊出日期:  2025-10-15

目录

    硅质碎屑—碳酸盐混合沉积:进展与分类新启示

    doi: 10.14027/j.issn.1000-0550.2024.131
      基金项目:

      四川省科技计划创新群体项目 2023NSFSC1986

      作者简介:

      穆财能,男,1996年出生,博士研究生,混合沉积储层沉积学,E-mail: cainengmu@qq.com

      通讯作者: 侯明才,男,教授,E-mail: houmc@cdut.edu.cn

    摘要: 意义 碎屑—碳酸盐组分的混合沉积研究能指示古气候、古环境、物源供给、海/湖平面升降,更因与矿产、油气资源息息相关而越来越受到重视。【 进展 】混合沉积主要可分为成分混合(狭义)与结构混合(广义)。混积岩作为混合沉积产物,以往的分类方案主要有四分法、三分法、两分法,但受限于黏土组分是否应参与混积岩的划分一直存在争议。本研究提供一种混积岩分类新方案,尝试解决组分参与划分问题,可为混合沉积研究提供一种新的思路。 结论 在以碎屑组分与碳酸盐组分两端元划分的基础上,通过颗粒的定量统计,并以此判断沉积期的水动力条件。与传统分类方案相比,既保留了碳酸盐组分、碎屑颗粒、灰泥、黏土四个端元,又兼顾了视觉呈现效果与便捷操作可行性。此外,重新厘定混合沉积作用,具体划分为:间断(事件)混合、相混合、原地(生物)混合与沉淀混合四种类型。并将溯源混合、成岩混合、岩溶混合、裂缝混合等不能反映原始沉积环境的四种作用归为假混合作用。 展望 碳酸盐岩与碎屑岩作为沉积学的两大分支,一直被作为独立的学科体系进行研究。对混合沉积的研究还有望帮助理解碳酸盐—碎屑组分之间的矿物来源、相互作用方式与沉积过程,完善碎屑岩与碳酸盐岩学科体系。

    English Abstract

    穆财能, 周荟佳, 陈安清, 侯明才. 硅质碎屑—碳酸盐混合沉积:进展与分类新启示[J]. 沉积学报, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131
    引用本文: 穆财能, 周荟佳, 陈安清, 侯明才. 硅质碎屑—碳酸盐混合沉积:进展与分类新启示[J]. 沉积学报, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131
    MU CaiNeng, ZHOU HuiJia, CHEN AnQing, HOU MingCai. Mixed Siliciclastic-Carbonate: Progress and New Revelations in Classification[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131
    Citation: MU CaiNeng, ZHOU HuiJia, CHEN AnQing, HOU MingCai. Mixed Siliciclastic-Carbonate: Progress and New Revelations in Classification[J]. Acta Sedimentologica Sinica, 2025, 43(5): 1857-1873. doi: 10.14027/j.issn.1000-0550.2024.131
      • 混合沉积是碎屑岩与碳酸盐岩成分混合或呈互层结构产出的一种独特现象[12],前人将其划分为混积岩[3]与混合层系[4]。因其特殊的形成条件,混合沉积不仅能反映古气候、古环境、物源供给、海/湖平面升降等因素,更与矿产资源[1]、油气勘探中的优质储层有着密切关系[5],受到众多学者关注。前人对混合沉积做了大量研究,主要集中在:洪水、重力流、风暴等事件作用形成的混合沉积[68];受控于周期性相对海平面变化的层序地层的识别与刻画[910];混合沉积特征、微相识别与沉积充填过程[1011];湖相深水混合细粒沉积物与非均质性研究[1214];混合沉积与优质储层主控因素研究[1516];咸水湖盆环境混合沉积特征及沉积模式研究等[1718]。关于混合沉积与混积岩的分类方案前人同样做了诸多研究,如:以砂岩—黏土—灰泥—碳酸盐颗粒的四分法[19]、黏土—陆屑—碳酸盐颗粒的三分法[3,2023]、碎屑岩—碳酸盐为主的二分法[11,2426]。以往诸多方案对混积岩进行了很好的分类,但就黏土与灰泥的归属、混积岩中各组分含量等问题仍未有定论。本文就此提出一套混积岩分类新方案,希望能补充完善混积岩分类研究,为后续混合沉积研究提供一种新的思路。

      • 混合沉积可分为两类:第一类为成分混合:同一岩石中,碳酸盐组分与陆源碎屑组分的混合,此类岩石被命名为“混积岩”(狭义)[3]。混积岩概念最早可追溯到Mount于1984年提出的“混合沉积物(mixed sediments)[2]”,后王越等[27]对混积岩概念进行补充,认为“陆源碎屑与内源非后期成岩作用形成的碳酸盐组分在同一岩层内混积形成的岩石”(图1)。董桂玉等[28]提出零星混合,但其主要是混合程度上的区分,因而仍属成分混合范畴。

        图  1  混合沉积类型与特征

        Figure 1.  Types and characteristics of mixed sediments

        第二类为结构混合,即碳酸盐岩与陆源碎屑岩以高频率互层或夹层形式产出,或称之为混合层系[4],其与混积岩一起构成广义上的混合沉积(图1)。具体可分为四类:碳酸盐岩—碎屑岩、碳酸盐岩—混积岩、碎屑岩—混积岩、混积岩—混积岩[24]

        此外,部分研究认为混合沉积应囊括除碎屑岩/碳酸盐岩之外的其余岩性,如硫酸盐[29]、火山碎屑岩[3031]、凝灰岩[15]等,但远不如碳酸盐与陆源碎屑混合作用的广泛,故文中所述混合沉积为陆源碎屑与碳酸盐的混合。

      • 依据混合沉积发展的研究侧重,可将混合沉积发展历程分为五个阶段。(1)现象发现阶段(1953—1983年):最早关注到碳酸盐与陆源碎屑的混合沉积可以追溯到20世纪50年代[3233]。70年代后先后被国外学者发现[3435],80年代开始,中国学者陆续开始关注混合沉积[3637]。(2)基础理论提出阶段(1984—1990年):Mount[2,19]提出的混合沉积模式及分类方案引起众多强烈反响,国内开始系统开展对混合沉积的研究[1]并提出“混积岩”概念[3]。(3)海相研究阶段(1991—2007年):以海相混合沉积环境的研究为主导,主要研究内容以海相混合沉积特征[3839]、层序识别与划分[4041]、主控因素[6,4243]与沉积模式[4446]等为主。(4)陆相/油气研究阶段(2008—2017年)。自Palermo et al.[47]认识到混合沉积在油气勘探中的作用,陆相混合沉积得到了迅速发展[4851]。(5)实验模拟阶段(2018年至今):现今已在叠后反演等岩性识别技术[22,5254]、泥沙运输及水槽实验[5556]及各类模拟实验方面取得显著的成果和进展[5758]图2)。

        图  2  混合沉积发展历程

        Figure 2.  Development history of mixed sedimentation

      • 混积岩是混合沉积的产物,其分类不仅反映了混积岩形成的沉积环境、主要控制因素,而且对复杂岩性和混合沉积物的储层质量研究具有重要意义[5]。因而建立一套简单、适用性广、能反映形成环境的分类方案对混合沉积的研究显得尤为重要。

      • 最早对混积岩进行分类的研究可以追溯到Mount[19]基于砂、异化粒、灰泥、泥质物四处端元在空间上建立的混积岩分类体系(图3a)。此分类在空间上呈现为三角体的形状,无论哪个端元皆可与其他三个端元接触,开启了混合沉积分类的研究。但也因四端元分类在空间三维投点的局限,视觉呈现效果上不能直观反映混合沉积特征,操作难度大。

        图  3  混积岩分类方案

        Figure 3.  Classification scheme of hybrid sedimentary rock

        此后,国内外众多研究基于黏土、陆源碎屑和碳酸盐岩三端元进行混积岩的分类。杨朝青等[3]基于黏土—陆屑—碳酸盐颗粒三端元划分混积岩(图3b);在此基础上,张雄华[20]调整各端元含量比值范围重新确定混积岩,并得到众多学者认可[6465]图3c);王杰琼等[21]分类中强调了外源与内源区别并重新圈定混积岩各端元范围(图3d);Lü et al.[66]将灰泥同黏土合并于一个端元进行划分(图3e);解习农等[23,6768]基于渤海湾盆地的研究,认为黏土属于外源碎屑,采用了外源碎屑—化学成因碳酸盐—生物成因碳酸盐三端元划分,建立了渤中凹陷混合沉积分类模式(图3f),并对其中组分混合做了相关研究论述[6970]

        同样是三端元划分方案,部分研究基于各自研究区岩性特征为划分依据,采用其他碎屑或岩性为端元,对混合沉积进行分类。例如:王国忠等[37]以涠洲岛珊瑚岸礁开展工作并基于介壳碎屑、珊瑚碎屑、岩屑三个单元进行分析;Wei et al.[31]依据火山岩—碎屑—碳酸盐三端元对含火山物质混积岩进行划分;Karakaya et al.[22]采用黏土—石英—方解石三端元进行分类(图3g)。

        二分法主要考虑到简便及适用性,弱化了黏土作用,以碎屑岩及碳酸盐两个主要端元进行分类[11,26]。董桂玉等[24]根据碳酸盐及陆源碎屑含量比重,将混积岩划分为四类:含陆源碎屑—碳酸盐岩、陆源碎屑质—碳酸盐岩、含碳酸盐—陆源碎屑岩及碳酸盐质—陆源碎屑岩(图3h)。

      • 碎屑颗粒与碳酸盐组分是混积岩中最重要的两个端元,在以往所有分类中皆有体现。但对于灰泥组分,有研究将其单独作为一个端元,或归为化学成因碳酸盐岩作为一个端元。而黏土矿物是划入陆源碎屑体系进行分类或单独归为一个端元仍未达成统一意见。Mount[19]基于砂、异化粒、灰泥、泥质物四端元分类法的提出解决了黏土与灰泥的归属问题,但因其三角体的空间形态不易呈现,且操作分类复杂,未被广泛使用。三端元划分方案虽说操作简单,但就黏土与灰泥的归属、混积岩中各组分含量等问题仍未有定论。

        为此,本文提出了一种新的混积岩分类方案。统计碎屑组分与碳酸盐组分含量(公式1),求得碎屑组分占总含量的比值(公式2),计算碎屑与碳酸盐颗粒含量占总组分的比值(公式3),将以上两组数据作为横纵坐标,在图版中投图(图4)。

        Tmixed=Tds+Tcm=(Td+Ts)+(Tc+Tm (1)
        纵坐标y=Tds/Tmixed (2)
        横坐标x=(Td+Tc)/Tmixed (3)

        式中:Tmixed混积岩矿物组分;Tds碎屑组分;Tcm碳酸盐组分;Td碎屑颗粒;Ts黏土杂基;Tc碳酸盐颗粒;Tm灰泥。

        图  4  混积岩分类投点图

        Figure 4.  Classification of hybrid sedimentary rock

        纵坐标y值指示碎屑组分矿物占总矿物的比重:y值越接近1,说明岩石越接近碎屑岩;反之,y值越接近0,说明岩石越接近碳酸盐岩,其指示混积程度不同,仍属混积岩。横坐标x值指示沉积期水动力条件:x值越大,说明颗粒占比越大,沉积期水动力条件越强,黏土灰泥矿物淘洗越干净;反之,x值越小,颗粒占比越小,则说明水动力越弱。

        以渤海湾盆地环渤中凹陷周缘古近系沙河街组的四件混积岩样品为例(图5),统计四件样品的碎屑颗粒、黏土杂基、碳酸盐颗粒、灰泥等组分含量(表1),计算x值与y值进行投图(图4),可以很直观地观察到每个样品的主要成分及含量,有助于理解其形成环境。

        图  5  典型混积岩薄片照片

        Figure 5.  Photos of thin sections of typical hybrid sedimentary rock

        表 1  混积岩各组分含量统计

        Table 1.  Component content in mixed sedimentary rocks

        样品碎屑颗粒黏土杂基碳酸盐颗粒灰泥总量xy命名
        A891731009690含生屑砂岩
        B23711591003430砂质云岩
        C615439100607含砂云岩
        D314083100317含泥云岩

        该分类方案的主要优点有:(1)将混积岩中最重要的碎屑颗粒、碳酸盐颗粒、黏土杂基、灰泥四种组分皆考虑进分类中。(2)计算过程简单易懂,结果清晰明了,图件呈现效果良好。(3)以颗粒占比为判断水动力条件的指标,能有效地对混积岩沉积环境判别提供参考。

        使用该分类方案需要注意:(1)黏土杂基指与碎屑矿物一同沉积的杂基与黏土矿物,不包括后期受成岩作用影响生成的黏土矿物。(2)发生明显搬运的碳酸盐颗粒属于碎屑组分中的岩屑,而不应归为碳酸盐组分。

      • 沉积作用大致可以分为碎屑岩中的机械搬运沉积作用与碳酸盐岩中的内生沉淀作用[7172],混合沉积作用是两者的综合。指在同一沉积环境下硅质碎屑与碳酸盐在结构上相互掺杂或旋回性互层、交叉形成混合沉积物/沉积岩的过程[48,73]。假混合作用:虽然岩石内部组分与混积岩的组分类似或一致,但并非沉积期形成的,而是经过后期成岩作用改造形成[59]

      • Mount [2]在总结有关混合沉积的研究成果后,提出四种混合沉积形成过程类型:间断混合、相混合、原地混合和蚀源混合,得到了众多学者的认可。除以上混合沉积作用外,文章认为砂岩中的沉积期—准同生期碳酸盐胶结物沉淀时还未脱离沉积水体,不属于后期成岩作用,理应归于混合沉积。如:砂岩中准同生期形成的泥晶包壳[7476]与碳酸盐胶结物[7778],其受控于气候和沉积环境[79],在沉积期与碎屑颗粒一同快速沉淀而成,可能代表一种新的混合沉积作用。

        综合前人观点,总结混合沉积的4种模式示意图:(1)间断混合:由风暴、重力流等事件成因引起的混合沉积(图6a)。如受天文旋回控制、风暴作用影响下发育的混合沉积[8];(2)相混合:指不同类型沉积物在相边界发生的混合现象(图6b),如典型的灰泥互层瘤状灰岩现象[8081];(3)原地混合:在陆源碎屑基底之上原地生长的钙质生物死亡后形成的混合现象(图6c)[2,62];(4)沉淀混合:即碎屑颗粒还未固结成岩,在特殊水体背景下碳酸盐胶结物能快速胶结,与碎屑颗粒一同沉积,碎屑颗粒以未接触—点接触为主,以被碳酸盐胶结物包裹为特征(图6d)。

        图  6  混合沉积作用模式图

        Figure 6.  Model of mixed sedimentation

      • 沙庆安[59]对混合沉积的模式进行思考,认为需要明确陆源碎屑与碳酸盐岩的运动迁移方式,并提出成岩作用与经过后期改造的混合沉积属于假混合概念。混合沉积的研究关注点更应该是混合沉积的过程,而不是结果。只有通过沉积过程才能了解当时的沉积背景和沉积环境。一味地追求碎屑岩与碳酸盐岩混合的结果,而忽略了沉积过程,可能与前人定义混合沉积的初衷相违背。

        在混合沉积4种模式外,文章总结了4种假混合模式。(1)蚀源混合:由邻近隆起的碳酸盐物源区经风化、侵蚀搬运到碎屑沉积物区堆积,从而形成不同组分颗粒的混合沉积(图7a)。Chiarella et al.[62]研究认为碎屑岩和碳酸盐岩在物源区混合后经过搬运重新沉积的不能代表一种混合成因类型,虽然成分上和混积岩类似,但是成因机理类似机械搬运成因的碎屑岩体系[82]。因而Mount[2]提出的母源成因的混合沉积物中,碳酸盐组分的成因更符合碎屑岩体系的异地搬运机制,而非原地碳酸盐成分沉积。(2)成岩混合:在后期成岩中生成的碳酸盐胶结物(图7b)。(3)岩溶混合[20]:碎屑岩沉积或垮塌在早期形成的碳酸盐岩溶洞中(图7c);(4)裂缝混合[20]:碎屑岩受到外力作用产生裂缝,后期沉淀碳酸盐岩脉体(图7d)。混合沉积是指碎屑岩与碳酸盐岩在较小的时间尺度上一同沉积,而岩溶混合和裂缝混合不能代表两者在同一时间沉积,属于先后沉积关系,将其归于“混杂岩”或许更为贴切。但由于“混杂岩”“混合岩”一词已被使用于板块构造中,故本文暂定将其定义为“假混合”。

        图  7  假混合形成模式示意图

        Figure 7.  Model of false mixing

        此外,就混合沉积的接触方式,董桂玉等[24]划分为渐变型接触,突变型接触,复合I型及复合Ⅱ型。该划分方案得到了普遍认可,并以此为基础开展工作,例如:杨永剑等[83]依据碎屑颗粒或碳酸盐颗粒为主将突变型划分为突变I型、突变Ⅱ型;张世铭等[25]以是否在剖面上区分明显,并有一定规模将突变型划分为突变I型、突变Ⅱ型(表2)。

        表 2  混合沉积作用类型及接触方式

        Table 2.  Types and contact modes of mixed sedimentation

        成因类型事件成因沉积相渐变成因生物成因准同生期碳酸盐沉淀成因假混合作用
        风暴重力流
        接触方式突变渐变渐变突变渐变突变
        Mount[2]间断混合相混合原地混合蚀源混合
        张雄华[20]事件突变混合相边缘混合原地沉积混合侵蚀再沉积岩溶穿插再沉积
        王国忠等[37]复合式相变式随机式
        董桂玉等[24]突变式混合复合式混合Ⅱ渐变式相混合复合式混合Ⅰ
        杨永剑等[83]突变Ⅰ、Ⅱ型渐变型复合型
        张世铭等[25]突变Ⅰ、Ⅱ型渐变式混合沉积原地混合沉积
        徐伟等[17]滑塌再混合组构型、互层型藻黏结混合
        本文间断混合(事件混合)相混合原地混合(生物混合)沉淀混合蚀源混合、成岩混合岩溶混合、裂缝混合
      • 混合沉积的沉积环境研究已有广泛的基础,如海相、海陆过渡相、陆相的混合沉积发育情况研究[1]。目前针对海相混合沉积的研究主要集中在高精度层序识别,沉积过程演化等方向;陆相混合沉积研究主要集中在国内的各大含油气盆地。

      • 前人对海相混合沉积进行了大量研究,认为其主要发育在滨岸、潟湖、潮坪、碳酸盐台地、滩或原地生长的生物丘等沉积环境中。海相混合沉积在全球广泛发育,例如:刘宝珺等[36]对珠穆朗玛峰侏罗系的研究发现了混合沉积并认为沉积环境以无障壁岛海岸环境和有障壁岛的潮汐环境为主;Aqrawi[38]对Mesopotamian盆地潮间带开展混合沉积模式研究;Martin-Chivelet[40]在西班牙对海相潮汐混合沉积开展层序地层研究;Longhitano et al.[10]对南印度的砂脊与潮坪生屑—碎屑混合沉积进行精细的层序地层学研究[10];Davis et al.[44]在佛罗里达州开展现今滨岸潮汐环境混合沉积模式的研究;Coffey et al.[41]对美国Albemarle盆地的浅海陆棚混合沉积的控制因素开展研究;Tcherepanov et al.[46]将巴布亚海湾的碳酸盐岩台地和大陆斜坡混合沉积演化划分四个阶段。

        此外,半远洋的垂向加积混合、沉积物重力流和等深流等底流也能引发混合沉积[1,84],Moscardelli et al.[7]建立了新斯科舍碎屑物源穿越碳酸盐到达深水浊积扇的两种模式。海相沉积的风成岩中也发现了碎屑岩与碳酸盐的混合沉积记录[11]。相关研究见表3

        表 3  海相混合沉积发育特征

        Table 3.  Development characteristics of marine mixed sediments

        序号地区地层混合沉积相带主要类型岩性研究内容混合沉积作用控制因素文献
        1塔里木盆地上石炭统卡拉乌依组滨岸—浅海陆棚成分、层系混合碎屑岩—碳酸盐岩混合沉积模式相混合海平面升降韩睿等[85]
        2四川盆地中泥盆统金宝石组碎屑滨岸—陆棚层系、成分混合碎屑岩—碳酸盐岩混合沉积特征相混合、原地混合海平面升降、波浪风浪李凤杰等[86]
        3四川盆地下寒武统龙王庙组潮汐、颗粒滩层系、成分混合碎屑岩—碳酸盐岩混合沉积特征相混合、事件混合海平面升降、风暴事件宋金民等[87]
        4四川盆地嘉陵江组开阔台地蒸发岩层系混合碎屑岩—碳酸盐岩—蒸发岩层序与测井新技术相混合海平面、气候变化、物源Zhao et al.[52]
        5渤海湾盆地寒武系潮坪、开阔台地、局限台地层系、成分混合碎屑岩—碳酸盐岩混合沉积特征相混合构造、海平面、气候、物源、水动力条件董桂玉等[60]
        6Southern ItalyLower Pleistocene潮汐层系混合生物碎屑—碎屑岩沉积过程、层序原地混合海平面、水动力Longhitano et al.[10]
        7South-western USAMiocene潮汐层系混合碎屑岩—碳酸盐岩沉积过程、古地理重建相混合构造、物源供给Gardner et al. [88]
        8Betic continental-margin, SpainUpper cretaceous潮汐—台地层系混合碎屑岩—碳酸盐岩层序地层相混合构造、海平面Martin-chivelet[40]
        9The Florida Gulf coastNowdays潮汐三角洲层系混合生物碎屑—碎屑岩层序地层事件混合、相混合波浪水动力Davis et al.[44]
        10Albemarle Basin, southeastern USAPaleogene大陆斜坡层系混合碎屑岩—碳酸盐岩层序地层相混合构造、海平面、气候变化、物源Coffey et al.[41]
        11Papua, Papua New GuineaNeogene孤立台地—大陆斜坡层系混合碎屑岩—碳酸盐岩沉积过程演化事件混合、相混合构造、海水、碳酸盐生产和硅质沉积物供应Tcherepanov et al.[46]
        12Zagros Foreland, NE IraqUpper Cretaceous Kometan Formation内、中、外缓坡—盆地成分混合碎屑岩—碳酸盐岩测井地化露头钻井新技术相混合海平面Hussein et al.[89]
        13Southwestern Spitsbergen, Arctic NorwayLower Permian Treskelodden Formation冲积扇、三角洲、潮坝、碳酸盐斜坡层系混合碎屑岩—碳酸盐岩盆地动力学、层序、微相划分相混合构造、海平面、气候、波浪和风暴过程Dahlin et al.[90]
        14Valencia,SE SpainUpper Cretaceous外—中陆架成分混合碎屑岩—碳酸盐岩识别四套有孔虫组合并划分微相相混合海平面、波浪Robles-Salcedo et al. [91]
        15São Francisco BasinEdiacaran Bambuí Group三角洲—浅海层系混合碎屑岩—碳酸盐岩层序识别相混合构造、气候变化Reis et al. [9]
        16United Arab EmiratesHolocene Ghayathi Formation风成砂成分混合碎屑岩—碳酸盐岩风成岩相混合海平面变化、气候Arboit et al.[11]
      • 国外陆相混合沉积研究较少,主要集中在国内准噶尔盆地[5]、柴达木盆地[25,92]、松辽盆地[15]、渤海湾盆地[63,70,9394]等湖盆环境。例如,针对渤海海域的混合沉积,前人创建了陆相断陷盆地混合沉积三相七亚相的划分方案[9596]。具体陆相混合沉积研究见表4。除上述湖相沉积外,河口湾、三角洲及扇三角洲等海陆过渡相,因其有充足的物源也可形成混合沉积[1]

        表 4  陆相混合沉积发育特征

        Table 4.  Development characteristics of terrestrial mixed sediments

        序号地区地层混合沉积相带主要类型岩性研究方向混合沉积作用控制因素参考文献
        1松辽盆地九佛堂组扇三角洲—滨浅湖层系混合碎屑岩—碳酸盐岩—凝灰岩层序识别与划分间断混合、相混合构造、物源供给、气候和碳酸盐生产、水动力条件Li et al.[15]
        2渤海湾盆地沙河街组湖泊混合相成分混合碎屑岩—碳酸盐岩沉积模式相混合构造、气候、湖平面董桂玉等[28]
        3东营凹陷沙河街组混积砂滩、混积砂坝、半深湖成分、层系混合碎屑岩—碳酸盐岩混合沉积特征相混合构造、碎屑物质供给、湖平面张金亮等[97]
        4苏北盆地阜宁组三角洲—滩坝成分混合碎屑岩—碳酸盐岩混合沉积储层特征相混合/Li et al.[98]
        5川中龙岗地区下侏罗大安寨段滨浅湖:浅湖砂坝、介壳滩成分、层系混合碎屑岩—碳酸盐岩—泥质混合沉积特征与储层间断混合、原地混合、相混合风暴作用、水动力条件、优势相丁一等[51]
        6四川盆地侏罗系大安寨段滨浅湖相成分混合碎屑岩—碳酸盐岩混积岩储层特征与成因相混合间断混合湖平面波动、地形、事件黄蕾等[99]
        7柴达木盆地古近系下干柴沟组半深湖、浅湖滩坝、滨浅湖成分、层系混合碎屑岩—碳酸盐岩沉积特征控制因素相混合,原地混合物源输入、气候张世铭等[25]
        8柴达木盆地新近系三角洲—滩坝成分、层系混合碎屑岩—碳酸盐岩沉积特征相混合水动力条件徐伟等[17]
        9柴达木盆地渐新统干柴沟组滨浅湖成分混合碎屑岩—碳酸盐岩混合沉积特征与储层相混合/冯进来等[100]
        10准噶尔盆地中二叠湖相成分、层系混合白云质粉砂岩—泥质白云岩成岩作用与储层特征相混合气候、湖平面波动、物源、岩性组合Liu et al.[5]
      • 混合沉积主要的控制因素包括构造背景、海/湖平面变化、物质来源、事件作用、古气候、古水深、水动力条件等[101102]

        (1) 构造活动和事件对混合沉积的控制主要体现在以下方面:①构造控制沉积盆地格局造成沉积过程差异[88,103];②通过重力流[84]、洪水[6]、风暴等事件作用[8]形成间断混合沉积;③将原地的混合沉积物通过事件搬运到深水区[43];④稳定构造背景下,有利于湖相生物发育以及碳酸盐矿物的化学沉淀[95]

        (2) 海/湖平面变化是混合沉积的主要控制因素[16,102]。海/湖平面的升降从控制陆源物质的供应和碳酸盐岩发育程度两方面影响着混合沉积作用的进行及强度[104105]。目前众多研究皆认为频繁的海平面升降影响沉积物充填过程形成了混合沉积[10]。低海/湖平面时期,碎屑物源增加,碳酸盐含量减少[106],如巴西Abrolhos陆架末次冰期背景下海平面及沉积物供给影响混合沉积特征与形成过程[61];高海/湖平面时期,碎屑物源减少,碳酸盐含量增加[39,107]

        (3) 气候和水体性质是生物和碳酸盐矿物形成的关键因素[95]。气候因素影响着碳酸盐岩的生产、硅质碎屑沉积物的供应和沉积物的分布[108],干旱时期碎屑物源供给间断,湿润时期物源供给充足[101],在气候季风系统的作用下产生的沿岸流、风暴流等会产生大规模范围的间断混合[108]。沉积水体环境控制混积岩的矿物组成、岩石类型、沉积构造和有机质含量等特征[109],水体盐度增大,产生的营养物质可促进生物发育,水体咸化形成大量离子可为碳酸盐矿物的饱和沉淀提供物质基础[110],火山活动能提供生物生长的营养物质[31],热浪等会影响生物的生存活动[111]

        (4) 稳定的碎屑物源供给是混合沉积的重要保证。Carvajal et al.[112]强调了物源供给对于沉积充填过程的重要性,碎屑物质的供给量直接影响了混合沉积的组分特征和规模[104]。陆源输入过多通过影响光照、进食等方式影响生物生长,抑制碳酸盐沉淀[86,101],在强物源输入后碳酸盐含量通常显著减少[6]。因而有利的混合沉积环境以稳定条件为主,碎屑沉积速率低,沉积时间相对较长,适宜碳酸盐生产[6]

        (5) 水动力条件是搬运陆源碎屑与碳酸盐颗粒的直接驱动力。例如:潮汐、沿岸流、回流、波浪、牵引流及重力流等皆是碎屑搬运的主要营力,是控制混合沉积的至关重要的因素[104,113]。此外,古地貌可通过影响陆源碎屑含量和水动力条件来控制混合沉积[25],如碎屑物源供给充足后的隆起是碳酸盐发育的主要位置[63],隆起区正向构造单元水动力条件相对较强,受波浪、湖流作用反复侵蚀影响,利于碳酸盐矿物与粒屑颗粒的形成,是混合沉积发育的有利古地貌类型[10]

      • 海相混合沉积与陆相混合沉积的影响因素接近,但各有侧重。海相沉积环境的主控因素以受海平面升降、构造运动及气候变化为主,因远离物源区,受物源供给影响较小(图9)。陆相混合沉积环境主要受控于物源供给,气候、湖平面升降、水动力条件与构造运动亦有影响。

        影响四种混合沉积作用的因素也各不相同(图8)。(1)间断(事件)混合主要受控于构造运动,在构造运动的影响下,海啸、地震、火山、洪水等发生,将碎屑颗粒搬运至碳酸盐岩沉积区。(2)相混合沉积作用受三者共同影响:构造运动影响海/湖平面升降,进一步影响气候及水体环境。(3)原地混合受控于物源供给与水动力条件。稳定且适量的物源供给,可在不影响碳酸盐岩生产的同时提供碎屑颗粒来源,适宜的水动力条件促使生物死亡后就近堆积,避免发生远距离搬运。(4)沉淀混合主要受控于气候与水体环境,蒸发环境及碱性水体环境下更易产生白云石、方解石等碱性矿物,在轻微动荡的水动力环境下,可形成碳酸盐包壳类构造包裹碎屑颗粒[74]

        图  8  混合沉积控制因素相互关系示意图

        Figure 8.  Relationship between the controlling factors of mixed deposition

        混合沉积发育的主要表现是碎屑岩与碳酸盐岩的产出形式。归根到底是通过影响碎屑颗粒的物源供给或碳酸盐组分的生产沉淀来影响混合沉积中陆源碎屑与碳酸盐组分的占比。越来越多的研究结果证实在碎屑颗粒的输入背景下,碳酸盐组分仍能发育。关于混合沉积的研究,有助于我们理解和完善碎屑岩与碳酸盐岩学科体系,值得所有沉积同仁重视。

      • (1) 提出一种保留碳酸盐、碎屑颗粒、灰泥、黏土四端元的混积岩分类方案,兼顾了视觉呈现效果与可行性,还可判断沉积期水动力强弱。

        (2) 重新厘定事件混合、相混合、生物混合与沉淀混合四种混合沉积作用,并将成岩混合、溯源混合、岩溶混合、裂缝混合等不能反映沉积环境的四种作用归为假混合作用。

        (3) 混合沉积不仅与矿产能源息息相关,更能反演推断古沉积环境,有助于理解碳酸盐与碎屑组分之间的矿物来源、作用方式与沉积过程,具备良好的生产及科研意义。

    参考文献 (113)

    目录

      /

      返回文章
      返回