[1] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发,2017,44(1):1-11.

Jia Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
[2] 邹才能,杨智,董大忠,等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学,2022,47(5):1517-1533.

Zou Caineng, Yang Zhi, Dong Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1517-1533.
[3] 邹才能,邱振. 中国非常规油气沉积学新进展:"非常规油气沉积学"专辑前言[J]. 沉积学报,2021,39(1):1-9.

Zou Caineng, Qiu Zhen. Preface: New advances in unconventional petroleum sedimentology in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 1-9.
[4] 孙龙德,邹才能,贾爱林,等. 中国致密油气发展特征与方向[J]. 石油勘探与开发,2019,46(6):1015-1026.

Sun Longde, Zou Caineng, Jia Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.
[5] 康玉柱. 中国非常规油气勘探重大进展和资源潜力[J]. 石油科技论坛,2018,37(4):1-7.

Kang Yuzhu. Significant exploration progress and resource potential of unconventional oil and gas in China[J]. Petroleum Science and Technology Forum, 2018, 37(4): 1-7.
[6] Hadding A. IV. Eine röntgenographische methode kristalline und kryptokristalline Substanzen zu identifizieren[J]. Zeitschrift für Kristallographie - Crystalline Materials, 1923, 58(1): 108-112.
[7] Rinne F. III. Röntgenographische untersuchungen an einigen feinzerteilten Mineralien, Kunstprodukten und dichten Gesteinen[J]. Zeitschrift für Kristallographie - Crystalline Materials, 1924, 60(1/2/3/4/5/6): 55-69.
[8] Kerr P F. Formation and occurrence of clay minerals[J]. Clays and Clay Minerals, 1952, 1(1): 19-32.
[9] Grim R E. Clay mineralogy: The clay mineral composition of soils and clays is providing an understanding of their properties[J]. Science, 1962, 135(3507): 890-898.
[10] Worden R H, Morad S. Clay mineral cements in sandstones[M]. Main Street: International Association of Sedimentologists, 2003.
[11] 徐同台,王行信,张有瑜,等. 中国含油气盆地粘土矿物[M]. 北京:石油工业出版社,2003.

Xu Tongtai, Wang Xingxin, Zhang Youyu, et al. Clay minerals in petroliferous basins of China[M]. Beijing: Petroleum Industry Press, 2003.
[12] 陈朝兵,赵振宇,付玲,等. 鄂尔多斯盆地华庆地区延长组6段深水致密砂岩填隙物特征及对储层发育的影响[J]. 石油与天然气地质,2021,42(5):1098-1111.

Chen Zhaobing, Zhao Zhenyu, Fu Ling, et al. Interstitial matter and its impact on reservoir development in Chang 6 deepwater tight sandstone in Huaqing area, Ordos Basin[J]. Oil & Gas Geology, 2021, 42(5): 1098-1111.
[13] 娄敏,杨香华,姚光庆,等. 自生黏土矿物与甜点储层的关系:以涠西南凹陷和文昌A凹陷为例[J]. 中国地质调查,2021,8(1):13-23.

Lou Min, Yang Xianghua, Yao Guangqing, et al. Relationship between authigenic clay mineral and dessert reservoir: A case study in Weixinan Sag and Wenchang A Sag[J]. Geological Survey of China, 2021, 8(1): 13-23.
[14] 李阳,李树同,牟炜卫,等. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学,2017,28(7):1043-1053.

Li Yang, Li Shutong, Mou Weiwei, et al. Influences of clay minerals on physical properties of Chang 6 tight sandstone reservoir in Jiyuan area, Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1043-1053.
[15] 任大忠,周兆华,梁睿翔,等. 致密砂岩气藏黏土矿物特征及其对储层性质的影响:以鄂尔多斯盆地苏里格气田为例[J]. 岩性油气藏,2019,31(4):42-53.

Ren Dazhong, Zhou Zhaohua, Liang Ruixiang, et al. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir: A case from Sulige gas field, Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(4): 42-53.
[16] Neasham J W. The morphology of dispersed clay in sandstone reservoirs and its effect on sandstone shaliness, pore space and fluid flow properties[C]//Proceedings of the SPE annual fall technical conference and exhibition. Denver: SPE, 1977: SPE-6858-MS.
[17] 程晓玲.粘土矿物成岩作用对油气储集性和产能的影响:以苏北盆地台兴油田阜三段储层为例[J]. 石油实验地质,2003,25(2):164-168.

Cheng Xiaoling. Influence of the diagenesis of clay minerals on reservoirs and productivity: A case study on the Fu-3 reservoirs of Taixing oilfield, the North Jiangsu Basin[J]. Petroleum Geology & Experiment, 2003, 25(2): 164-168.
[18] 孟万斌,吕正祥,冯明石,等. 致密砂岩自生伊利石的成因及其对相对优质储层发育的影响:以川西地区须四段储层为例[J]. 石油学报,2011,32(5):783-790.

Meng Wanbin, Zhengxiang Lü, Feng Mingshi, et al. The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs: A case study on sandstones in the 4th member of Xujiahe Formation, western Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(5): 783-790.
[19] 陈鑫,钟建华,袁静,等. 渤南洼陷深层碎屑岩储集层中的黏土矿物特征及油气意义[J]. 石油学报,2009,30(2):201-207.

Chen Xin, Zhong Jianhua, Yuan Jing, et al. Characteristics of clay mineral and its hydrocarbon significance in Paleogene clastic reservoir of Bonan Sag[J]. Acta Petrolei Sinica, 2009, 30(2): 201-207.
[20] 远光辉,操应长,葸克来,等. 东营凹陷北带古近系碎屑岩储层长石溶蚀作用及其物性响应[J]. 石油学报,2013,34(5):853-866.

Yuan Guanghui, Cao Yingchang, Xi Kelai, et al. Feldspar dissolution and its impact on physical properties of Paleogene clastic reservoirs in the northern slope zone of the Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(5): 853-866.
[21] Emery D, Myers K J, Young R. Ancient subaerial exposure and freshwater leaching in sandstones[J]. Geology, 1990, 18(12): 1178-1181.
[22] 丁晓琪,韩玫梅,张哨楠,等. 大气淡水在碎屑岩次生孔隙中的作用[J]. 地质论评,2014,60(1):145-158.

Ding Xiaoqi, Han Meimei, Zhang Shaonan, et al. Roles of meteoric water on secondary porosity of siliciclastic reservoirs[J]. Geological Review, 2014, 60(1): 145-158.
[23] Hao F, Zhang X F, Wang C W, et al. The fate of CO2 derived from Thermochemical Sulfate Reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 141: 154-177.
[24] 解习农,成建梅,孟元林. 沉积盆地流体活动及其成岩响应[J]. 沉积学报,2009,27(5):863-871.

Xie Xinong, Cheng Jianmei, Meng Yuanlin. Basin fluid flow and associated diagenetic processes[J]. Acta Sedimentologica Sinica, 2009, 27(5): 863-871.
[25] 操应长,远光辉,杨海军,等. 含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展[J]. 石油学报,2022,43(1):112-140.

Cao Yingchang, Yuan Guanghui, Yang Haijun, et al. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins[J]. Acta Petrolei Sinica, 2022, 43(1): 112-140.
[26] 张永旺,蒋善斌,李峰. 东营凹陷沙河街组砂岩储层砂泥岩界面对长石溶蚀的影响[J]. 地质学报,2021,95(3):883-894.

Zhang Yongwang, Jiang Shanbin, Li Feng. Influence of sandstone-shale contacts on feldspar diagenesis in the sandstone reservoir of the Shahejie Formation in the Dongying Depression, Bohai Bay Basin[J]. Acta Geologica Sinica, 2021, 95(3): 883-894.
[27] 葸克来,李克,操应长,等. 鄂尔多斯盆地延长组长73亚段砂—泥协同成岩作用[J]. 中国石油大学学报(自然科学版),2021,45(6):1-11.

Xi Kelai, Li Ke, Cao Yingchang, et al. Synergistic diagenesis of sandstone and mudstone in Chang 73 sub-member of Triassic Yanchang Formation in Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(6): 1-11.
[28] Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian continental shelf[J]. AAPG Bulletin, 1993, 77(7): 1260-1286.
[29] Baker J C, Havord P J, Martin K R, et al. Diagenesis and petrophysics of the Early Permian moogooloo sandstone, southern Carnarvon Basin, western Australia[J]. AAPG Bulletin, 2000, 84(2): 250-265.
[30] 黄思静,谢连文,张萌,等. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版),2004,31(3):273-281.

Huang Sijing, Xie Lianwen, Zhang Meng, et al. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(3): 273-281.
[31] 吕正祥,卿淳. 川西新场气田上沙溪庙组储层渗透性的地质影响因素[J]. 沉积与特提斯地质,2001,21(2):57-63.

Zhengxiang Lü, Chun Qing. Geological factors affecting reservoir permeability of the Upper Shaximiao Formation in the Xinchang gas field, western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2001, 21(2): 57-63.
[32] 孙治雷,黄思静,张玉修,等. 四川盆地须家河组砂岩储层中自生绿泥石的来源与成岩演化[J]. 沉积学报,2008,26(3):459-468.

Sun Zhilei, Huang Sijing, Zhang Yuxiu, et al. Origin and diagenesis of authigenic chlorite within the sandstone reservoirs of Xujiahe Formation, Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2008, 26(3): 459-468.
[33] 陈国松,孟元林,郇金来,等. 自生绿泥石对储集层质量影响的定量评价:以北部湾盆地涠西南凹陷涠洲组三段为例[J]. 古地理学报,2021,23(3):639-650.

Chen Guosong, Meng Yuanlin, Huan Jinlai, et al. Quantitative evaluation of impact of authigenic chlorite on reservoir quality: A case study of the member 3 of Weizhou Formation in Weixinan Sag, Beibu Gulf Basin[J]. Journal of Palaeogeography, 2021, 23(3): 639-650.
[34] 袁晓蔷,姚光庆,杨香华,等. 自生粘土矿物对文昌A凹陷深部储层的制约[J]. 地球科学,2019,44(3):909-918.

Yuan Xiaoqiang, Yao Guangqing, Yang Xianghua, et al. Constraints of authigenic clay minerals on deep reservoirs in Wenchang A Sag[J]. Earth Science, 2019, 44(3): 909-918.
[35] Hurst A, Nadeau P H. Clay microporosity in reservoir sandstones: An application of quantitative electron microscopy in petrophysical evaluation[J]. AAPG Bulletin, 1995, 79(4): 563-573.
[36] 尹相东,蒋恕,吴鹏,等. 致密砂岩酸性和碱性成岩环境特征及对储层物性的控制:以鄂尔多斯盆地临兴和神府地区为例[J]. 地质科技通报,2021,40(1):142-151.

Yin Xiangdong, Jiang Shu, Wu Peng, et al. Features of the acid and alkaline diagenetic environment of tight sandstones and the control of the reservoir physical properties: A case study of the Linxing and Shenfu district, eastern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 142-151.
[37] 陈忠,沈明道,赵敬松,等.粘土矿物含量分析中的几个问题[J]. 沉积学报,1998,16(1):137-139.

Chen Zhong, Shen Mingdao, Zhao Jingsong, et al. Problems on quantitative analysis of clay minerals[J]. Acta Sedimentologica Sinica, 1998, 16(1): 137-139.
[38] 马世忠,王海鹏,孙雨,等. 松辽盆地扶新隆起带北部扶余油层超低渗储层粘土矿物特征及其对敏感性的影响[J]. 地质论评,2014,60(5):1085-1092.

Ma Shizhong, Wang Haipeng, Sun Yu, et al. Clay mineral characteristics and its effect on sensitivity of Fuyu ultra-low permeability reservoirs in northern of Fuxin uplift[J]. Geological Review, 2014, 60(5): 1085-1092.
[39] 伏万军. 粘土矿物成因及对砂岩储集性能的影响[J]. 古地理学报,2000,2(3):59-68.

Fu Wanjun. Influence of clay minerals onsandstone reservoir properties[J]. Journal of Palaeogeography, 2000, 2(3): 59-68.
[40] 陈亚军,于家义,宋小勇,等. 三塘湖盆地马朗凹陷牛圈湖—牛东构造带上石炭统火山岩黏土矿物特征及其对储层物性的影响[J]. 石油学报,2021,42(8):1053-1071.

Chen Yajun, Yu Jiayi, Song Xiaoyong, et al. Characteristics of clay mineral in the Upper Carboniferous volcanic rocks of Niujuanhu-Niudong structural belt in the Malang Sag, Santanghu Basin and their effects on reservoir physical properties[J]. Acta Petrolei Sinica, 2021, 42(8): 1053-1071.
[41] 曹江骏,陈朝兵,罗静兰,等. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响:以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏,2020,32(6):36-49.

Cao Jiangjun, Chen Chaobing, Luo Jinglan, et al. Impact of authigenic clay minerals on micro-heterogeneity of deep water tight sandstone reservoirs: A case study of Triassic Chang 6 oil reservoir in Heshui area, southwestern Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(6): 36-49.
[42] 李明瑞,张清,段宏臻,等. 苏里格气田上古生界主要含气层系粘土矿物分布及其主控因素[J]. 石油与天然气地质,2012,33(5):743-750.

Li Mingrui, Zhang Qing, Duan Hongzhen, et al. Clay mineral distribution and its controlling factors in the Upper Paleozoic gas reservoirs of Sulige gas field[J]. Oil & Gas Geology, 2012, 33(5): 743-750.
[43] 罗蛰潭,崔秉荃,黄思静,等.粘土矿物对碎屑岩储层评价的控制理论探讨及应用实例[J]. 成都地质学院学报,1991,18(3):1-12.

Luo Zhetan, Cui Bingquan, Huang Sijing, et al. The theoretical approach and the case application of the control of reservoir evaluation for the clastic reservoir by means of clay minerals[J]. Journal of Chengdu College of Geology, 1991, 18(3): 1-12.
[44] de Ros L F, Anjos S M C, Morad S. Authigenesis of amphibole and its relationship to the diagenetic evolution of Lower Cretaceous sandstones of the Potiguar Rift Basin, northeastern Brazil[J]. Sedimentary Geology, 1994, 88(3/4): 253-266.
[45] 袁鹤然,乜贞,刘俊英,等. 广西百色盆地古近系沉积特征及其古气候意义[J]. 地质学报,2007,81(12):1692-1697.

Yuan Heran, Nie Zhen, Liu Junying, et al. Paleogene sedimentary characteristics and their paleoclimatic implications in the Baise Basin, Guangxi[J]. Acta Geologica Sinica, 2007, 81(12): 1692-1697.
[46] 冯文立. 鄂尔多斯盆地东北部太原组储层砂岩中粘土矿物特征及成因[D]. 成都:成都理工大学,2009.

Feng Wenli. Characteristics and origin of clay minerals in the sandstone of Taiyuan Formation, northeastern Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2009.
[47] 宋丽红,朱如凯,朱德升,等. 粘土矿物对广安须家河组致密砂岩物性影响[J]. 西南石油大学学报(自然科学版),2011,33(2):73-78.

Song Lihong, Zhu Rukai, Zhu Desheng, et al. Influences of clay minerals on physical properties of tight sandstones of Xujiahe Formation in Guang'an area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(2): 73-78.
[48] 邵淑骁,曾溅辉,张善文,等. 东营凹陷沙河街组砂岩储层高岭石类型、特征及其成因[J]. 沉积学报,2015,33(6):1204-1216.

Shao Shuxiao, Zeng Jianhui, Zhang Shanwen, et al. Types, characteristics and origin of kaolinite in sandstone reservoir of Shahejie Formation, Dongying Sag[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1204-1216.
[49] 郭慧,王延斌,倪小明,等. 高岭石与水、CO2作用后硅元素、铝元素溶出动力学研究[J]. 中国矿业大学学报,2016,45(3):591-596.

Guo Hui, Wang Yanbin, Ni Xiaoming, et al. Digestion kinetics analysis of silicon and aluminum during kaolinite-water-CO2 interaction[J]. Journal of China University of Mining & Technology, 2016, 45(3): 591-596.
[50] 郭颖,杨波,韩自军,等. 深层碎屑岩自生矿物成因机理及其对储层物性的影响:以渤海歧南断阶带侏罗系为例[J]. 吉林大学学报(地球科学版),2021,51(4):973-990.

Guo Ying, Yang Bo, Han Zijun, et al. Genesis mechanism of authigenic minerals in deep clastic rocks and its influence on reservoir physical property: An example from the Jurassic in Qinan fault step belt, Bohai Sea, China[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(4): 973-990.
[51] Salman B, Franks S G. Preservation of shallow plagioclase dissolution porosity during burial: Implications for porosity prediction and aluminum mass balance[J]. AAPG Bulletin, 1993, 77(9): 1488-1501.
[52] 单祥,郭华军,邹志文,等. 碱性环境成岩作用及其对储集层质量的影响:以准噶尔盆地西北缘中—下二叠统碎屑岩储集层为例[J]. 新疆石油地质,2018,39(1):55-62.

Shan Xiang, Guo Huajun, Zou Zhiwen, et al. Diagenesis in alkaline environment and its influences on reservoir quality: A case study of Middle-Lower Permian clastic reservoirs in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 55-62.
[53] 冯东,李相方,李靖,等. 黏土矿物吸附水蒸气特征及对孔隙分布的影响[J]. 中国石油大学学报(自然科学版),2018,42(2):110-118.

Feng Dong, Li Xiangfang, Li Jing, et al. Water adsorption isotherm and its effect on pore size distribution of clay minerals[J]. Journal of China University of Petroleum, 2018, 42(2): 110-118.
[54] Kim J, Dong H L, Seabaugh J, et al. Role of microbes in the smectite-to-illite reaction[J]. Science, 2004, 303(5659): 830-832.
[55] Huggett J M, Cuadros J. Low-temperature illitization of smectite in the Late Eocene and Early Oligocene of the Isle of Wight (Hampshire Basin), U.K.[J]. American Mineralogist, 2005, 90(7): 1192-1202.
[56] 李文华,房晓红,李彬,等. 蒙脱石吸附CH4和CO2的分子模拟[J]. 东北石油大学学报,2014,38(3):25-30.

Li Wenhua, Fang Xiaohong, Li Bin, et al. Molecular simulation of the sorption of methane and carbon dioxide in the montmorillonite[J]. Journal of Northeast Petroleum University, 2014, 38(3): 25-30.
[57] Ferrage E, Lanson B, Sakharov B A, et al. Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties[J]. American Mineralogist, 2005, 90(8/9): 1358-1374.
[58] Passey Q R, Bohacs K M, Esch W L, et al. From Oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs[C]//Proceedings of the international oil and gas conference and exhibition in China. Beijing: SPE, 2010: 1-29.
[59] Johnston C T. Probing the nanoscale architecture of clay minerals[J]. Clay Minerals, 2010, 45(3): 245-279.
[60] 田建锋,高永利,张蓬勃,等. 鄂尔多斯盆地三叠系延长组伊利石包膜成因及其地质意义[J]. 岩性油气藏,2022,34(2):54-65.

Tian Jianfeng, Gao Yongli, Zhang Pengbo, et al. Genesis and geological implication of illite coatings of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2022, 34(2): 54-65.
[61] 黄思静,孙伟,黄培培,等. 鄂尔多斯盆地东部太原组碎屑岩中自生伊利石形成机制及其对储层形成的影响[J]. 矿物岩石,2009,29(4):25-32.

Huang Sijing, Sun Wei, Huang Peipei, et al. The origin of authigenic illite and its effects on reservoir quality: A case study from Taiyuan sandstone, eastern Ordos Basin[J]. Journal of Mineralogy and Petrology, 2009, 29(4): 25-32.
[62] 王滢,唐洪明,杨海博,等. 富含伊利石的低渗透砂岩酸化微观实验:以川中某气田须家河组为例[J]. 油气地质与采收率,2010,17(1):105-107.

Wang Ying, Tang Hongming, Yang Haibo, et al. A microcosmic experimental study on acidulation of low permeability sandstone filled with goeschwitzites: A case of Xujiahe Formation, certain gasfield, central Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(1): 105-107.
[63] 曲希玉,刘珍,高媛,等. 绿泥石包壳对碎屑岩储层物性的影响及其形成环境:以鄂尔多斯盆地大牛地气田上古生界为例[J]. 沉积学报,2015,33(4):786-794.

Qu Xiyu, Liu Zhen, Gao Yuan, et al. The influence and formation environment of chlorite coatings in the clastic rock[J]. Acta Sedimentologica Sinica, 2015, 33(4): 786-794.
[64] 杨威,魏国齐,赵杏媛,等. 碎屑岩储层中自生绿泥石衬边能抑制石英次生加大吗?:以四川盆地须家河组砂岩储层为例[J]. 石油学报,2013,34(增刊1):128-135.

Yang Wei, Wei Guoqi, Zhao Xingyuan, et al. Can authigenic pore-lining chlorite restrain quartz overgrowth in clastic reservoir? A case study of sandstone reservoir in Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(Suppl.1): 128-135.
[65] 晏奇,雷海艳,鲜本忠,等. 母岩性质对砾岩储层中自生绿泥石发育的影响及油气储层意义:以准噶尔盆地玛湖凹陷玛北地区下乌尔禾组为例[J]. 沉积学报,2020,38(2):367-378.

Yan Qi, Lei Haiyan, Xian Benzhong, et al. Influence of source rock properties on the development of authigenic chlorite in conglomerate reservoirs and its significance for oil and gas reservoirs: A case study from the Lower Urhe Formation in the Mahu Depression, Junggar Basin[J]. Acta Sedimentologica Sinica, 2020, 38(2): 367-378.
[66] Hillier S, Fallick A E, Matter A. Origin of pore-lining chlorite in the aeolian Rotliegend of northern Germany[J]. Clay Minerals, 1996, 31(2): 153-171.
[67] 黄鑫,段冬平,刘彬彬,等. 西湖凹陷花港组绿泥石成因及其对储层物性的影响[J]. 吉林大学学报(地球科学版),2021,51(3):669-679.

Huang Xin, Duan Dongping, Liu Binbin, et al. Origin mechanism of chlorite and its impact on reservoir properties in Huagang Formation, Xihu Depression[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 669-679.
[68] Grigsby J D. Origin and growth mechanism of authigenic chlorite in sandstones of the Lower Vicksburg Formation, South Texas[J]. Journal of Sedimentary Research, 2001, 71(1): 27-36.
[69] McIlroy D, Worden R H, Needham S J. Faeces, clay minerals and reservoir potential[J]. Journal of the Geological Society, 2003, 160(3): 489-493.
[70] Needham S J, Worden R H, McIlroy D. Experimental production of clay rims by macrobiotic sediment ingestion and excretion processes[J]. Journal of Sedimentary Research, 2005, 75(6): 1028-1037.
[71] Buurman P, Jongmans A G, Pipujol M D. Clay illuviation and mechanical clay infiltration: Is there a difference?[J]. Quaternary International, 1998, 51-52: 66-69.
[72] Molenaar N, Vaznytė J, Šliaupa S. Aridisols in the southern Permian basin of Lithuania: A key to understanding clay cement distribution[J]. International Journal of Earth Sciences, 2019, 108(7): 2391-2406.
[73] 王行信. 松辽盆地白垩系砂岩储层的粘土矿物特征及其对油层产能的影响[J]. 石油勘探与开发,1991,18(1):48-55.

Wang Xingxin. Characteristics of clay minerals and their effects on production capacity of the Cretaceous sandstone reservoirs in Songliao Basin[J]. Petroleum Exploration and Development, 1991, 18(1): 48-55.
[74] Stoessell R K. Kaolinite Formation in clastic reservoirs: Carbon dioxide factor[J]. AAPG Bulletin, 1981, 65(5): 998-999.
[75] 臧春艳,王渝,齐玉民,等. 地质流体对砂岩储层黏土矿物的影响:以渤海海域古近系为例[J]. 世界地质,2015,34(3):766-773.

Zang Chunyan, Wang Yu, Qi Yumin, et al. Influences of geological fluids on clay minerals in sandstone reservoirs: A case study of Paleogene in Bohai Sea[J]. Global Geology, 2015, 34(3): 766-773.
[76] Hellmann R. The albite-water system: Part I. The kinetics of dissolution as a function of pH at 100, 200 and 300°C[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 595-611.
[77] 郭壘,李程善,范立勇,等. 鄂尔多斯盆地盒8段致密砂岩储层溶蚀模拟实验[J]. 天然气地球科学,2020,31(9):1250-1260.

Guo Lei, Li Chengshan, Fan Liyong, et al. Experimental study on dissolution simulation of tight sandstone reservoir in the He 8 member of Ordos Basin, China[J]. Natural Gas Geoscience, 2020, 31(9): 1250-1260.
[78] 李忠,刘嘉庆. 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J]. 沉积学报,2009,27(5):837-848.

Li Zhong, Liu Jiaqing. Key problems and research trend of diagenetic geodynamic mechanism and spatio-temporal distribution in sedimentary basins[J]. Acta Sedimentologica Sinica, 2009, 27(5): 837-848.
[79] 孟祥超,斯春松,王小军,等. MB斜坡区T1 b组自生黏土矿物分布特征及油气勘探意义[J]. 东北石油大学学报,2014,38(1):17-24.

Meng Xiangchao, Si Chunsong, Wang Xiaojun, et al. Distribution of authigene clay minerals and its oil-gas exploration significance in T1 b group, MB slope[J]. Journal of Northeast Petroleum University, 2014, 38(1): 17-24.
[80] 张哨楠,丁晓琪,万友利,等. 致密碎屑岩中粘土矿物的形成机理与分布规律[J]. 西南石油大学学报(自然科学版),2012,34(3):174-182.

Zhang Shaonan, Ding Xiaoqi, Wan Youli, et al. Formation mechanism and distribution of clay minerals of deeply tight siliciclastic reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(3): 174-182.
[81] 张永旺,曾溅辉,曲正阳,等. 东营凹陷砂岩储层自生高岭石发育特征与成因机制[J]. 石油与天然气地质,2015,36(1):73-79.

Zhang Yongwang, Zeng Jianhui, Qu Zhengyang, et al. Development characteristics and genetic mechanism of authigenic kaolinite in sandstone reservoirs of the Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2015, 36(1): 73-79.
[82] 靳平平,欧成华,马中高,等. 蒙脱石与相关黏土矿物的演变规律及其对页岩气开发的影响[J]. 石油物探,2018,57(3):344-355.

Jin Pingping, Chenghua Ou, Ma Zhonggao, et al. Evolution of montmorillonite and its related clay minerals and their effects on shale gas development[J]. Geophysical Prospecting for Petroleum, 2018, 57(3): 344-355.
[83] Lee M, Aronson J L, Savin S M. K/Ar dating of time of gas emplacement in Rotliegendes sandstone, Netherlands[J]. AAPG Bulletin, 1985, 69(9): 1381-1385.
[84] 黄可可,黄思静,吕杰,等. 鄂尔多斯盆地东北部太原组砂岩中伊利石的特征及成岩演化[J]. 吉林大学学报(地球科学版),2012,42(增刊2):43-52.

Huang Keke, Huang Sijing, Jie Lü, et al. Nature and diagenetic evolution of illite in the sandstone reservoirs of Taiyuan Formation, northeast Ordos Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(Suppl.2): 43-52.
[85] 魏新善,傅强,淡卫东,等. 鄂尔多斯盆地延长组成岩流体滞留效应与致密砂岩储层成因[J]. 石油学报,2018,39(8):858-868.

Wei Xinshan, Fu Qiang, Dan Weidong, et al. Diagenesis fluid stagnation effect and genesis of tight sandstone reservoir in Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 858-868.
[86] 王芳,冯胜斌,何涛,等. 鄂尔多斯盆地西南部延长组长7致密砂岩伊利石成因初探[J]. 西安石油大学学报(自然科学版),2012,27(4):19-22,29.

Wang Fang, Feng Shengbin, He Tao, et al. Study on origin of illite in Chang 7 tight sandstone of Yanchang Formation in the southwest of Ordos Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2012, 27(4): 19-22, 29.
[87] 杨友运,刘喜强,孙睿. 深埋砂岩储层长石溶孔率定量计算的新方法及应用:以鄂尔多斯盆地陇东地区长81储层为例[J]. 石油实验地质,2016,38(3):395-401.

Yang Youyun, Liu Xiqiang, Sun Rui. A new method for the calculation of secondary porosity originating from the dissolution of feldspars in deeply buried formations and its application: A case study of the Chang 81 formation in Longdong area, Ordos Basin[J]. Petroleum Geology & Experiment, 2016, 38(3): 395-401.
[88] 杨申谷,邹华耀. 不同压力体系下的黏土矿物演化特征[J]. 大庆石油学院学报,2004,28(3):14-16.

Yang Shengu, Zou Huayao. Evolution of clay minerals under different pressure systems[J]. Journal of Daqing Petroleum Institute, 2004, 28(3): 14-16.
[89] 张霞,林春明,陈召佑. 鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征[J]. 地质学报,2011,85(10):1659-1671.

Zhang Xia, Lin Chunming, Chen Zhaoyou. Characteristics of chlorite minerals from Upper Triassic Yanchang Formation in the Zhenjing area, Ordos Basin[J]. Acta Geologica Sinica, 2011, 85(10): 1659-1671.
[90] Ryan P C, Reynolds R C. The origin and diagenesis of grain-coating serpentine-chlorite in Tuscaloosa Formation sandstones, U.S. Gulf Coast[J]. American Mineralogist, 1996, 81(1/2): 213-225.
[91] Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328.
[92] 杨烁,王威,张莉,等. 元坝—通南巴地区须家河组绿泥石膜胶结相砂岩发育控制因素与分布规律[J]. 地球科学,2020,45(2):479-488.

Yang Shuo, Wang Wei, Zhang Li, et al. Control factors and distribution of chlorite-cemented facies in the Xujiahe sandstone, Yuanba and Tongnanba area[J]. Earth Science, 2020, 45(2): 479-488.
[93] Sruoga P, Rubinstein N, Hinterwimmer G. Porosity and permeability in volcanic rocks: A case study on the Serie Tobífera, South Patagonia, Argentina[J]. Journal of Volcanology and Geothermal Research, 2004, 132(1): 31-43.
[94] 姚泾利,王琪,张瑞,等. 鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义[J]. 沉积学报,2011,29(1):72-79.

Yao Jingli, Wang Qi, Zhang Rui, et al. Forming mechanism and their environmental implications of chlorite-coatings in Chang 6 sandstone (Upper Triassic) of Hua-Qing area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(1): 72-79.
[95] 朱筱敏. 沉积岩石学[M]. 5版. 北京:石油工业出版社,2020.

Zhu Xiaomin. Sedimentary petrology [M]. 5th ed. Beijing: Petroleum Industry Press, 2020.
[96] 赵小会,文彩霞,石晓英,等. 鄂尔多斯盆地东部上古生界黏土矿物主控因素分析及研究意义[J]. 地质学报,2016,90(3):534-540.

Zhao Xiaohui, Wen Caixia, Shi Xiaoying, et al. Controlling factors of Upper Paleozoic clay minerals in the eastern Ordos Basin and its study significances[J]. Acta Geologica Sinica, 2016, 90(3): 534-540.
[97] 刘志飞,赵玉龙,李建如,等. 南海西部越南岸外晚第四纪黏土矿物记录:物源分析与东亚季风演化[J]. 中国科学(D辑):地球科学,2007,37(9):1176-1184.

Liu Zhifei, Zhao Yulong, Li Jianru, et al. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian monsoon evolution[J]. Science China (Seri. D): Earth Sciences, 2007, 37(9): 1176-1184.
[98] 胡文瑄,姚素平,陆现彩,等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质,2019,40(5):947-956,1047.

Hu Wenxuan, Yao Suping, Lu Xiancai, et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40(5): 947-956, 1047.
[99] Pittman E D, Larese R E, Heald M T. Clay coats: Occurrence and relevance to preservation of porosity in sandstones[M]. Tulsa: SEPM Special Publication, 1992: 241-225.
[100] Charlaftis D. Assessing sandstone reservoir quality: Identifying the reality[D]. Durham: Durham University, 2021.
[101] Stroker T M, Harris N B, Elliott W C, et al. Diagenesis of a tight gas sand reservoir: Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado[J]. Marine and Petroleum Geology, 2013, 40: 48-68.
[102] Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737.
[103] Powers M C. Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration[J]. AAPG Bulletin, 1967, 51(7): 1240-1254.
[104] Burst J F. Diagenesis of gulf coast clayey sediments and its possible relation to petroleum migration[J]. AAPG Bulletin, 1969, 53(1): 73-93.
[105] Perry E A, Hower J. Late-stage dehydration in deeply buried pelitic sediments[J]. AAPG Bulletin, 1972, 56(10): 2013-2021.
[106] 王行信. 松辽盆地粘土矿物脱水曲线特征及其在找油中的意义[J]. 石油勘探与开发,1985,12(2):11-16.

Wang Xingxin. Characteristics of the dehydrating curve of clay minerals in the Songliao Basin and its significance in oil exploration[J]. Petroleum Exploration and Development, 1985, 12(2): 11-16.
[107] Solum J G, van der Pluijm B A, Peacor D R. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah[J]. Journal of Structural Geology, 2005, 27(9): 1563-1576.
[108] Haines S H, van der Pluijm B A. Dating the detachment fault system of the Ruby Mountains, Nevada: Significance for the kinematics of low-angle normal faults[J]. Tectonics, 2010, 29(4): TC4028.
[109] Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 49(1): 55-70.
[110] Inoue A, Utada M, Wakita K. Smectite-to-illite conversion in natural hydrothermal systems[J]. Applied Clay Science, 1992, 7(1/2/3): 131-145.
[111] Ahn J H, Peacor D R. Transmission and analytical electron microscopy of the smectite-to-illite transition[J]. Clays and Clay Minerals, 1986, 34(2): 165-179.
[112] 解习农,李思田,董伟良,等. 热流体活动示踪标志及其地质意义:以莺歌海盆地为例[J]. 地球科学:中国地质大学学报,1999,24(2):75-80.

Xie Xinong, Li Sitian, Dong Weiliang, et al. Trace marker of hot fluid flow and their geological implications: A case study of Yinggehai Basin[J]. Earth Science: Journal of China University of Geosciences, 1999, 24(2): 75-80.
[113] McKinley J M, Worden R H, Ruffell A H. Smectite in sandstones: A review of the controls on occurrence and behaviour during diagenesis[M]//Worden R H, Morad S. Clay mineral cements in sandstones. Malden: Blackwell Publishing Ltd., 2003: 109-128.
[114] Franks S G, Zwingmann H. Origin and timing of late diagenetic illite in the Permian-Carboniferous Unayzah sandstone reservoirs of Saudi Arabia[J]. AAPG Bulletin, 2010, 94(8): 1133-1159.
[115] 罗静兰,李弛,雷川,等. 碎屑岩储集层成岩作用研究进展与热点问题讨论[J]. 古地理学报,2020,22(6):1021-1040.

Luo Jinglan, Li Chi, Lei Chuan, et al. Discussion on research advances and hot issues in diagenesis of clastic-rock reservoirs[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(6): 1021-1040.
[116] 陈忠,熊孝云,赵敬松,等. 粘土矿物碱耗协同效应研究[J]. 岩石学报,2000,16(3):459-464.

Chen Zhong, Xiong Xiaoyun, Zhao Jingsong, et al. Investigation on alkali consumption co-effect between clay minerals[J]. Acta Petrologica Sinica, 2000, 16(3): 459-464.
[117] 刘珍,曲希玉,王伟庆,等. 比表面积氮气吸附法在蒙脱石碱性溶蚀表征中的应用[J]. 岩矿测试,2016,35(6):603-611.

Liu Zhen, Qu Xiyu, Wang Weiqing, et al. Application of specific surface area nitrogen adsorption method to characterize the alkaline dissolution of montmorillonite[J]. Rock and Mineral Analysis, 2016, 35(6): 603-611.
[118] 阎荣辉,唐洪明,李皋,等. 蒙脱石与酸化体系反应实验研究[J]. 天然气地球科学,2007,18(4):626-628.

Yan Ronghui, Tang Hongming, Li Gao, et al. Experimental study on montmorillonite reaction in acidization system[J]. Natural Gas Geoscience, 2007, 18(4): 626-628.
[119] 徐冰青,唐洪明,张烈辉. 蒙脱石与土酸、氟硼酸反应实验研究[J]. 石油与天然气化工,2007,36(4):328-330,334.

Xu Bingqing, Tang Hongming, Zhang Liehui. Experiment study on reaction of smectite with mud acid and fluorboric acid[J]. Chemical Engineering of Oil & Gas, 2007, 36(4): 328-330, 334.
[120] 张善文. 成岩过程中的“耗水作用”及其石油地质意义[J]. 沉积学报,2007,25(5):701-707.

Zhang Shanwen. “Water consumption” in diagenetic stage and its petroleum geological significance[J]. Acta Sedimentologica Sinica, 2007, 25(5): 701-707.
[121] Almon W R, Davies D K. Regional diagenetic trends in the Lower Cretaceous muddy sandstone, Powder River Basin[M]//Scholle P A, Schluger P R. Aspects of diagenesis. Tulsa: SEPM Special Publication, 1979.
[122] 黄可可,黄思静,佟宏鹏,等. 长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J]. 地质通报,2009,28(4):474-482.

Huang Keke, Huang Sijing, Tong Hongpeng, et al. Thermodynamic calculation of feldspar dissolution and its significance on research of clastic reservoir[J]. Geological Bulletin of China, 2009, 28(4): 474-482.
[123] 于炳松,林畅松. 油气储层埋藏成岩过程中的地球化学热力学[J]. 沉积学报,2009,27(5):896-903.

Yu Bingsong, Lin Changsong. Geochemical thermodynamics of diagenesis in reservoirs for oil and gas[J]. Acta Sedimentologica Sinica, 2009, 27(5): 896-903.
[124] Berger G, Lacharpagne J C, Velde B, et al. Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences[J]. Applied Geochemistry, 1997, 12(1): 23-35.
[125] 刘四兵,沈忠民,刘昊年,等. 川西坳陷中段上三叠统须家河组水岩相互作用机制[J]. 石油学报,2013,34(1):47-58.

Liu Sibing, Shen Zhongmin, Liu Haonian, et al. Mechanism of water-rock interaction of the Upper Triassic Xujiahe Formation in the middle part of western Sichuan Depression[J]. Acta Petrolei Sinica, 2013, 34(1): 47-58.
[126] Thyne G, Boudreau B P, Ramm M, et al. Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation, North Sea[J]. AAPG Bulletin, 2001, 85(4): 621-635.
[127] Chuhan F A, Bjørlykke K, Lowrey C. The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbanken and north Viking Graben, offshore Norway[J]. Marine and Petroleum Geology, 2000, 17(6): 673-689.
[128] 林承焰,王文广,董春梅,等. 流体—岩石相互作用定量模拟技术新进展[J]. 地球科学与环境学报,2017,39(4):491-515.

Lin Chengyan, Wang Wenguang, Dong Chunmei, et al. New progress in the quantitative simulation technology of fluid-rock interaction[J]. Journal of Earth Sciences and Environment, 2017, 39(4): 491-515.
[129] 朱占平. 火山碎屑岩中粘土矿物的成岩作用特征:以海拉尔盆地贝尔凹陷为例[D]. 长春:吉林大学,2005.

Zhu Zhanping. Diagenetic characteristics of clay minerals in volcaniclastic rock: A case study on Beier Depression in Hailar Basin[D]. Changchun: Jilin University, 2005.
[130] 周晓峰,赵丽霞,焦淑静,等. 鄂尔多斯盆地致密砂岩储层伊利石膜特征[J]. 西安石油大学学报(自然科学版),2016,31(6):1-8,103.

Zhou Xiaofeng, Zhao Lixia, Jiao Shujing, et al. Features of illite films in tight sandstone reservoir of Ordos Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2016, 31(6): 1-8, 103.
[131] 周晓峰,唐海忠,魏军,等. 雅布赖盆地新河组砂岩颗粒包膜特征[J]. 东北石油大学学报,2020,44(3):26-35.

Zhou Xiaofeng, Tang Haizhong, Wei Jun, et al. Characteristics of grain coats in sandstones from Xinhe Formation, Yabrai Basin[J]. Journal of Northeast Petroleum University, 2020, 44(3): 26-35.
[132] Inoue A, Kohyama N, Kitagawa R, et al. Chemical and morphological evidence for the conversion of smectite to illite[J]. Clays and Clay Minerals, 1987, 35(2): 111-120.
[133] Güven N. Mica structure and fibrous growth of illite[J]. Clays and Clay Minerals, 2001, 49(3): 189-196.
[134] Hogg A J C, Hamilton P J, Macintyre R M. Mapping diagenetic fluid flow within a reservoir: K Ar dating in the Alwyn area (UK North Sea)[J]. Marine and Petroleum Geology, 1993, 10(3): 279-294.
[135] 王龙樟,戴橦谟,彭平安. 自生伊利石40Ar/39Ar法定年技术及气藏成藏期的确定[J]. 地球科学:中国地质大学学报,2005,30(1):78-82.

Wang Longzhang, Dai Tongmo, Peng Ping’an. 40Ar/39Ar dating of diagenetic illites and its application in timing gas emplacement in gas reservoirs[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(1): 78-82.
[136] 邱华宁,吴河勇,冯子辉,等. 油气成藏40Ar-39Ar定年难题与可行性分析[J]. 地球化学,2009,38(4):405-411.

Qiu Huaning, Wu Heyong, Feng Zihui, et al. The puzzledom and feasibility in determining emplacement ages of oil/gas reservoirs by 40Ar-39Ar techniques[J]. Geochimica, 2009, 38(4): 405-411.
[137] Jahren J S. Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway[J]. Clay Minerals, 1991, 26(2): 169-178.
[138] Worden R H, Griffiths J, Wooldridge L J, et al. Chlorite in sandstones[J]. Earth-Science Reviews, 2020, 204: 103105.
[139] Gould K, Pe-Piper G, Piper D J W. Relationship of diagenetic chlorite rims to depositional facies in Lower Cretaceous reservoir sandstones of the Scotian Basin[J]. Sedimentology, 2010, 57(2): 587-610.
[140] Boyle E A, Edmond J M, Sholkovitz E R. The mechanism of iron removal in estuaries[J]. Geochimica et Cosmochimica Acta, 1977, 41(9): 1313-1324.
[141] Liu X W, Millero F J. The solubility of iron in seawater[J]. Marine Chemistry, 2002, 77(1): 43-54.
[142] Matlack K S, Houseknecht D W, Applin K R. Emplacement of clay into sand by infiltration[J]. Journal of Sedimentary Research, 1989, 59(1): 77-87.
[143] Herringshaw L G, McIlroy D. Bioinfiltration: Irrigation-driven transport of clay particles through bioturbated sediments[J]. Journal of Sedimentary Research, 2013, 83(6): 443-450.
[144] Charlaftis D, Jones S J, Dobson K J, et al. Experimental study of chlorite authigenesis and influence on porosity maintenance in sandstones[J]. Journal of Sedimentary Research, 2021, 91(2): 197-212.
[145] 周晓峰,王建国,兰朝利,等. 鄂尔多斯盆地延长组绿泥石膜的形成机制[J]. 中国石油大学学报(自然科学版),2016,40(4):20-28.

Zhou Xiaofeng, Wang Jianguo, Lan Chaoli, et al. Forming mechanisms of chlorite films in Yanchang Formation, Ordos Basin[J]. Journal of China University of Petroleum, 2016, 40(4): 20-28.
[146] Hansen H N, Løvstad K, Lageat G, et al. Chlorite coating patterns and reservoir quality in deep marine depositional systems - Example from the Cretaceous Agat Formation, northern North Sea, Norway[J]. Basin Research, 2021, 33(5): 2725-2744.
[147] Griffiths J, Worden R H, Wooldridge L J, et al. Detrital clay coats, clay minerals, and pyrite: A modern shallow-core analogue for ancient and deeply buried Estuarine sandstones[J]. Journal of Sedimentary Research, 2018, 88(10): 1205-1237.
[148] Wooldridge L J, Worden R H, Griffiths J, et al. The origin of clay-coated sand grains and sediment heterogeneity in tidal flats[J]. Sedimentary Geology, 2018, 373: 191-209.
[149] Wooldridge L J, Worden R H, Griffiths J, et al. Biofilm origin of clay-coated sand grains[J]. Geology, 2017, 45(10): 875-878.
[150] Stal L J. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments[J]. Geomicrobiology Journal, 2003, 20(5): 463-478.
[151] Vignaga E, Sloan D M, Luo X Y, et al. Erosion of biofilm-bound fluvial sediments[J]. Nature Geoscience, 2013, 6(9): 770-774.
[152] Konhauser K O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews, 1998, 43(3/4): 91-121.
[153] Wooldridge L J, Worden R H, Griffiths J, et al. Clay-coat diversity in marginal marine sediments[J]. Sedimentology, 2019, 66(3): 1118-1138.
[154] Konhauser K O, Ferris F G. Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations[J]. Geology, 1996, 24(4): 323-326.
[155] Fomina M, Gadd G M. Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium[J]. Journal of Chemical Technology and Biotechnology, 2003, 78(1): 23-34.
[156] Jesus B, Brotas V, Ribeiro L, et al. Adaptations of microphytobenthos assemblages to sediment type and tidal position[J]. Continental Shelf Research, 2009, 29(13): 1624-1634.
[157] Garwood J C, Hill P S, Macintyre H L, et al. Grain sizes retained by diatom biofilms during erosion on tidal flats linked to bed sediment texture[J]. Continental Shelf Research, 2015, 104: 37-44.
[158] Malarkey J, Baas J H, Hope J A, et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications, 2015, 6(1): 6257.
[159] Duteil T, Bourillot R, Grégoire B, et al. Experimental formation of clay-coated sand grains using diatom biofilm exopolymers[J]. Geology, 2020, 48(10): 1012-1017.
[160] Konhauser K O, Urrutia M M. Bacterial clay authigenesis: A common biogeochemical process[J]. Chemical Geology, 1999, 161(4): 399-413.
[161] Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9): 623-633.
[162] Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(2): 9-24.
[163] Verhagen I T E, Crisóstomo-Figueroa A, Utley J E P, et al. Abrasion of detrital grain-coating clays during sediment transport: Implications for diagenetic clay coats[J]. Sedimentary Geology, 2020, 403: 105653.
[164] 田建锋,喻建,张庆洲. 孔隙衬里绿泥石的成因及对储层性能的影响[J]. 吉林大学学报(地球科学版),2014,44(3):741-748.

Tian Jianfeng, Yu Jian, Zhang Qingzhou. The pore-lining chlorite formation mechanism and its contribution to reservoir quality[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3): 741-748.
[165] Beaufort D, Rigault C, Billon S, et al. Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems:a review[J]. Clay Minerals, 2015, 50(4): 497-523.
[166] Cho M S, Fawcett J J. Morphologies and growth mechanisms of synthetic Mg-chlorite and cordierite[J]. American Mineralogist, 1986, 71(1/2): 78-84.
[167] 陈思芮,曲希玉,王冠民,等. 渤中凹陷CFD18-2油田高岭石胶结作用及其对储层物性的影响[J]. 吉林大学学报(地球科学版),2019,49(5):1235-1246.

Chen Sirui, Qu Xiyu, Wang Guanmin, et al. Kaolinite cementation and its influences on reservoir properties in CFD18-2 oilfield in Bozhong Sag[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5): 1235-1246.
[168] Storvoll V, Bjørlykke K, Karlsen D, et al. Porosity preservation in reservoir sandstones due to grain-coating illite: A study of the Jurassic Garn Formation from the Kristin and Lavrans fields, offshore Mid-Norway[J]. Marine and Petroleum Geology, 2002, 19(6): 767-781.
[169] 朱国华. 粘土矿物对陕甘宁盆地中生界砂岩储层性质的影响及其意义[J]. 石油勘探与开发,1988,15(4):20-29.

Zhu Guohua. Effects of clay minerals on the Triassic sandstone reservoir in Shan-Gan-Ning Basin and their significance[J]. Petroleum Exploration and Development, 1988, 15(4): 20-29.
[170] 孙全力,孙晗森,贾趵,等. 川西须家河组致密砂岩储层绿泥石成因及其与优质储层关系[J]. 石油与天然气地质,2012,33(5):751-757.

Sun Quanli, Sun Hansen, Jia Bao, et al. Genesis of chlorites and its relationship with high-quality reservoirs in the Xujiahe Formation tight sandstones, western Sichuan Depression[J]. Oil & Gas Geology, 2012, 33(5): 751-757.
[171] 吉利明,邱军利,夏燕青,等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报,2012,33(2):249-256.

Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256.
[172] Heald M T, Anderegg R C. Differential cementation in the Tuscarora sandstone[J]. Journal of Sedimentary Research, 1960, 30(4): 568-577.
[173] Billault V, Beaufort D, Baronnet A, et al. A nanopetrographic and textural study of grain-coating chlorites in sandstone reservoirs[J]. Clay Minerals, 2003, 38(3): 315-328.
[174] Berger A, Gier S, Krois P. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones: Evidence from Cretaceous sandstones of the Sawan gas field, Pakistan[J]. AAPG Bulletin, 2009, 93(5): 595-615.
[175] 丁晓琪,张哨楠,葛鹏莉,等. 鄂南延长组绿泥石环边与储集性能关系研究[J]. 高校地质学报,2010,16(2):247-254.

Ding Xiaoqi, Zhang Shaonan, Ge Pengli, et al. Relationship between reservoir properties and chlorite rims: A case study from Yanchang Formation of south Ordos Basin, North China[J]. Geological Journal of China Universities, 2010, 16(2): 247-254.
[176] Walderhaug O, Porten K W. How do grain coats prevent formation of quartz overgrowths?[J]. Journal of Sedimentary Research, 2022, 92(10): 988-1002.
[177] Shuttleworth R. The surface tension of solids[J]. Proceedings of the Physical Society. Section A, 1950, 63(5): 444-457.
[178] Nicholson M M. Surface tension in ionic crystals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 228(1175): 490-510.
[179] 廖纪佳,唐洪明,朱筱敏,等. 特低渗透砂岩储层水敏实验及损害机理研究:以鄂尔多斯盆地西峰油田延长组第8油层为例[J]. 石油与天然气地质,2012,33(2):321-328.

Liao Jijia, Tang Hongming, Zhu Xiaomin, et al. Water sensitivity experiment and damage mechanism of sandstone reservoirs with ultra-low permeability: A case study of the eighth oil layer in the Yanchang Formation of Xifeng oilfield, Ordos Basin[J]. Oil & Gas Geology, 2012, 33(2): 321-328.
[180] 金之钧,王冠平,刘光祥,等. 中国陆相页岩油研究进展与关键科学问题[J]. 石油学报,2021,42(7):821-835.

Jin Zhijun, Wang Guanping, Liu Guangxiang, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(7): 821-835.
[181] 丛奇,陈君青,卢贵武,等. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述[J]. 中南大学学报(自然科学版),2022,53(9):3474-3489.

Cong Qi, Chen Junqing, Lu Guiwu, et al. Review on influencing factors and microscopic mechanism of shale adsorption capacity by molecular dynamics simulation[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3474-3489.
[182] Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.
[183] 党伟,张金川,聂海宽,等. 页岩油微观赋存特征及其主控因素:以鄂尔多斯盆地延安地区延长组7段3亚段陆相页岩为例[J]. 石油学报,2022,43(4):507-523.

Dang Wei, Zhang Jinchuan, Nie Haikuan, et al. Microscopic occurrence characteristics of shale oil and their main controlling factors: A case study of the 3rd submember continental shale of member 7 of Yanchang Formation in Yan’an area, Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 507-523.
[184] 尚福华,苗科,朱炎铭,等. 复杂构造区页岩孔隙结构、吸附特征及其影响因素[J]. 煤炭科学技术,2023,51(2):269-282.

Shang Fuhua, Miao Ke, Zhu Yanming, et al. Pore structure, adsorption capacity and their controlling factors of shale in complex structural area[J]. Coal Science and Technology, 2023,51(2):269-282.
[185] 熊健,林海宇,李原杰,等. 富有机质页岩中不同矿物的解吸规律[J]. 石油学报,2022,43(7):989-997.

Xiong Jian, Lin Haiyu, Li Yuanjie, et al. The desorption laws of different minerals in the organic-rich shale[J]. Acta Petrolei Sinica, 2022, 43(7): 989-997.
[186] 窦锦爱,林业青,邵丰,等. 页岩气储层孔隙结构表征技术及实验方法研究进展[J]. 西安科技大学学报,2020,40(6):1019-1030.

Dou Jin’ai, Lin Yeqing, Shao Feng, et al. Advances in characterization techniques and experimental methods of shale gas reservoir pore structure[J]. Journal of Xi’an University of Science and Technology, 2020, 40(6): 1019-1030.
[187] 孙中良,李志明,申宝剑,等. 核磁共振技术在页岩油气储层评价中的应用[J]. 石油实验地质,2022,44(5):930-940.

Sun Zhongliang, Li Zhiming, Shen Baojian, et al. NMR technology in reservoir evaluation for shale oil and gas[J]. Petroleum Geology & Experiment, 2022, 44(5): 930-940.
[188] Wu K L, Chen Z X, Li X F. Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs[J]. Chemical Engineering Journal, 2015, 281: 813-825.
[189] 张卓,袁晓俊,饶大骞,等. 页岩气多尺度渗流数值模拟技术:以昭通国家级页岩气示范区为例[J]. 天然气工业,2021,41(增刊1):145-151.

Zhang Zhuo, Yuan Xiaojun, Rao Daqian, et al. A numerical simulation technology for the multi-scale flow of shale gas and its application in Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(Suppl.1): 145-151.
[190] 任文希,周玉,郭建春,等. 适用于中深层—深层页岩气的高压吸附模型[J]. 地球科学,2022,47(5):1865-1875.

Ren Wenxi, Zhou Yu, Guo Jianchun, et al. High-pressure adsorption model for middle-deep and deep shale gas[J]. Earth Science, 2022, 47(5): 1865-1875.
[191] 谢卫东,王猛,王华,等. 海陆过渡相页岩气储层孔隙多尺度分形特征[J]. 天然气地球科学,2022,33(3):451-460.

Xie Weidong, Wang Meng, Wang Hua, et al. Multi-scale fractal characteristics of pores in transitional shale gas reservoir[J]. Natural Gas Geoscience, 2022, 33(3): 451-460.
[192] 刘香禺,张烈辉,李树新,等. 考虑页岩多重吸附机制的超临界甲烷等温吸附模型[J]. 石油学报,2022,43(10):1487-1499.

Liu Xiangyu, Zhang Liehui, Li Shuxin, et al. Supercritical methane isothermal adsorption model considering multiple adsorption mechanisms in shale[J]. Acta Petrolei Sinica, 2022, 43(10): 1487-1499.
[193] 苟启洋,徐尚,郝芳,等. 纳米CT页岩孔隙结构表征方法:以JY-1井为例[J]. 石油学报,2018,39(11):1253-1261.

Gou Qiyang, Xu Shang, Hao Fang, et al. Characterization method of shale pore structure based on nano-CT: A case study of well JY-1[J]. Acta Petrolei Sinica, 2018, 39(11): 1253-1261.
[194] Ma Y, Pan Z J, Zhong N N, et al. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi shales, Sichuan Basin, China[J]. Fuel, 2016, 180: 106-115.
[195] 黄振凯,陈建平,王义军,等. 微米CT在烃源岩微观结构表征方面的应用[J]. 石油实验地质,2016,38(3):418-422.

Huang Zhenkai, Chen Jianping, Wang Yijun, et al. Application of micron CT in the characterization of microstructure in source rocks[J]. Petroleum Geology & Experiment, 2016, 38(3): 418-422.
[196] 李金华,潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学(D辑):地球科学,2015,45(9):1359-1382.

Li Jinhua, Pan Yongxin. Applications of transmission electron microscopy in the earth sciences[J]. Science China (Seri. D): Earth Sciences, 2015, 45(9): 1359-1382.
[197] 唐旭,李金华. 透射电子显微镜技术新进展及其在地球和行星科学研究中的应用[J]. 地球科学,2021,46(4):1374-1415.

Tang Xu, Li Jinhua. Transmission electron microscopy: New advances and applications for earth and planetary sciences[J]. Earth Science, 2021, 46(4): 1374-1415.
[198] Hong H L, Cheng F, Yin K, et al. Three-component mixed-layer illite/smectite/kaolinite (I/S/K) minerals in hydromorphic soils, South China[J]. American Mineralogist, 2015, 100(8/9): 1883-1891.
[199] He H P, Ji S C, Tao Q, et al. Transformation of halloysite and kaolinite into beidellite under hydrothermal condition[J]. American Mineralogist, 2017, 102(5): 997-1005.
[200] 姚素平,焦堃,张科,等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报,2011,56(22):1820-1827.

Yao Suping, Jiao Kun, Zhang Ke, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(22): 1820-1827.
[201] 李航宇,聂鹏程,关东石. 探索微纳米世界的手:原子力显微镜[J]. 力学与实践,2021,43(5):806-811.

Li Hangyu, Nie Pengcheng, Guan Dongshi. A hand of exploring the micro- and nano-scale world: Atomic force microscope[J]. Mechanics in Engineering, 2021, 43(5): 806-811.
[202] Liewig N, Clauer N, Sommer F. Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoir, North Sea[J]. AAPG Bulletin, 1987, 71(12): 1467-1474.
[203] 张有瑜,罗修泉. 塔里木盆地哈6井石炭系、志留系砂岩自生伊利石K-Ar、Ar-Ar测年与成藏年代[J]. 石油学报,2012,33(5):748-757.

Zhang Youyu, Luo Xiuquan. K-Ar and Ar-Ar dating of authigenic illite and hydrocarbon accumulation history of Carboniferous and Silurian sandstone reservoirs in well Ha 6, Tarim Basin[J]. Acta Petrolei Sinica, 2012, 33(5): 748-757.
[204] 王龙樟,王立云,李季,等. 伊利石40Ar-39Ar年龄的统计分析与成藏期[J]. 地球科学,2022,47(2):479-489.

Wang Longzhang, Wang Liyun, Li Ji, et al. Statistics analysis of illite 40Ar-39Ar ages and petroleum accumulation period[J]. Earth Science, 2022, 47(2): 479-489.
[205] 包书景,何生. 泌阳凹陷地质流体对砂岩储集层中黏土矿物形成和分布的控制作用[J]. 地质科技情报,2005,24(2):51-56.

Bao Shujing, He Sheng. Geofluids control of the formation and distribution of clay minerals within the sandstone reservoir in Biyang Depression[J]. Geological Science and Technology Information, 2005, 24(2): 51-56.
[206] 李忠,陈景山,关平. 含油气盆地成岩作用的科学问题及研究前沿[J]. 岩石学报,2006,22(8):2113-2122.

Li Zhong, Chen Jingshan, Guan Ping. Scientific problems and frontiers of sedimentary diagenesis research in oil-gas-bearing basins[J]. Acta Petrologica Sinica, 2006, 22(8): 2113-2122.