[1] McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in sedimentology. Oxford: Backwell, 1988: 63-85.
[2]

Hartmann D, Flemming B. From particle size to sediment dynamics: An introduction[J]. Sedimentary Geology, 2007, 202(3): 333-336.
[3]

Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202(3): 409-424.
[4]

Bright C, Mager S, Horton S. Response of nephelometric turbidity to hydrodynamic particle size of fine suspended sediment[J]. International Journal of Sediment Research, 2020, 35(5): 444-454.
[5]

Sternberg H. Untersuchungen uber langen-und querprofil geschiebefuhrender flusse[J]. Zeitschrift fur Bauwesen, 1875, 25: 483-506.
[6] Udden J A. The mechanical composition of wind deposits[M]. Illinois: Augustana Lihrary Publications, 1898: 1-69.
[7]

Krumbein W C. Size frequency distributions of sediments[J]. Journal of Sedimentary Petrology, 1934, 4(2): 65-77.
[8]

Passega R. Grain size representation by CM patterns as a geological tool[J]. Journal of Sedimentary Petrology, 1964, 34(4): 830-847.
[9]

IJmker J, Stauch G, Dietze E, et al. Characterisation of transport processes and sedimentary deposits by statistical end-member mixing analysis of terrestrial sediments in the Donggi Cona lake catchment, NE Tibetan Plateau[J]. Sedimentary Geology, 2012, 281: 166-179.
[10]

Zhang X D, Wang H M, Xu S M, et al. A basic end-member model algorithm for grain-size data of marine sediments[J]. Estuarine, Coastal and Shelf Science, 2020, 236: 106656.
[11]

Liu Y M, Wang T, Liu B, et al. Universal decomposition model: An efficient technique for palaeoenvironmental reconstruction from grain-size distribution[J]. Sedimentology, 2023, 70(7): 2127-2149.
[12]

Román-Sánchez A, Temme A, Willgoose G, et al. The fingerprints of weathering: Grain size distribution changes along weathering sequences in different lithologies[J]. Geoderma, 2021, 383: 114753.
[13]

Hjulstrom F. The load of the River Fyris in Central Sweden[J]. Bulletin Geology Institution University of Upsala, 1936, 25: 221-527.
[14]

Sahu B K. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Research, 1964, 34(1): 73-83.
[15]

Doeglas D J. Grain-size indices, classification and environment[J]. Sedimentology, 1968, 10(2): 83-100.
[16]

Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Petrology, 1969, 39(3): 1074-1106.
[17]

Nelson P A, Bellugi D, Dietrich W E. Delineation of river bed-surface patches by clustering high-resolution spatial grain size data[J]. Geomorphology, 2014, 205: 102-119.
[18]

Qiao J B, Zhu Y J, Jia X X, et al. Multifractal characteristics of particle size distributions (50-200 m) in soils in the vadose zone on the Loess Plateau, China[J]. Soil and Tillage Research, 2021, 205: 104786.
[19]

Liu Y M, Liu X X, Sun Y B. QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions[J]. Sedimentary Geology, 2021, 423: 105980.
[20]

McLaren P, Hill S H, Bowles D. Deriving transport pathways in a sediment trend analysis (STA)[J]. Sedimentary Geology, 2007, 202(3): 489-498.
[21]

Risović D. Two-component model of sea particle size distribution[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(7): 1459-1473.
[22]

Xiao J L, Chang Z G, Fan J W, et al. The link between grain-size components and depositional processes in a modern clastic lake[J]. Sedimentology, 2012, 59(3): 1050-1062.
[23]

Wu L, Krijgsman W, Liu J, et al. CFLab: A MATLAB GUI program for decomposing sediment grain size distribution using Weibull functions[J]. Sedimentary Geology, 2020, 398: 105590.
[24] 袁瑞,张昌民,赵芸,等. 基于偏正态概率分布的粒度分布次总体分离及其沉积环境指示意义[J]. 地质论评,2022,68(3):1033-1047.

Yuan Rui, Zhang Changmin, Zhao Yun, et al. Decomposing subpopulations from grain-size distributions based on skew normal probability distribution and their significances for sedimentary environments[J]. Geological Review, 2022, 68(3): 1033-1047.
[25]

Gan S Q, Scholz C A. Skew normal distribution deconvolution of grain-size distribution and its application to 530 samples from Lake Bosumtwi, Ghana[J]. Journal of Sedimentary Research, 2017, 87(11): 1214-1225.
[26]

Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506.
[27]

van Hateren J A, Prins M A, van Balen R T. On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms[J]. Sedimentary Geology, 2018, 375: 49-71.
[28] 赵鹏大. 地质大数据特点及其合理开发利用[J]. 地学前缘,2019,26(4):1-5.

Zhao Pengda. Characteristics and rational utilization of geological big data[J]. Earth Science Frontiers, 2019, 26(4): 1-5.
[29]

Karpatne A, Ebert-Uphoff I, Ravela S, et al. Machine learning for the geosciences: Challenges and opportunities[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(8): 1544-1554.
[30]

MacLEOD N. Artificial intelligence & machine learning in the Earth sciences[J]. Acta Geologica Sinica (English Edition), 2019, 93(Supp.l): 48-51.
[31]

Spencer D W. The interpretation of grain size distribution curves of clastic sediments[J]. Journal of Sedimentary Petrology, 1963, 33(1): 180-190.
[32]

Udden J A. Mechanical composition of clastic sediments[J]. GSA Bulletin, 1914, 25(1): 655-744.
[33]

Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
[34]

Lane E W. Report of the subcommittee on sediment terminology[J]. Eos, Transactions American Geophysical Union, 1947, 28(6): 936-938.
[35] Friedman G M, Sanders J E. Principles of sedimentology[M]. New York: Wiley, 1978.
[36]

Blott S J, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248.
[37]

Blott S J, Pye K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures[J]. Sedimentology, 2012, 59(7): 2071-2096.
[38] ISO 14688-1:2017. Geotechnical investigation and testing — Identification and classification of soil — Part 1: Identification and description[S]. International Organization for Standardization, 2017.
[39] 张昌民,王绪龙,朱锐,等. 准噶尔盆地玛湖凹陷百口泉组岩石相划分[J]. 新疆石油地质,2016,37(5):606-614.

Zhang Changmin, Wang Xulong, Zhu Rui, et al. Litho-facies classification of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(5): 606-614.
[40]

Folk R L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature[J]. The Journal of Geology, 1954, 62(4): 344-359.
[41] Krumbein W C, Pettijohn F J. Manual of sedimentary petrography[M]. New York: Appleton-Century-Crofts, 1938.
[42]

Inman D L. Measures for describing the size distribution of sediments[J]. Journal of Sedimentary Petrology, 1952, 22(3): 125-145.
[43]

Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
[44] 贾建军,高抒,薛允传. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼,2002,33(6):577-582.

Jia Jianjun, Gao Shu, Xue Yunchuan. Grain-size parameters derived from graphic and moment methods: A comparative study[J]. Oceanologia et Limnologia Sinica, 2002, 33(6): 577-582.
[45]

Friedman G M. Distinction between dune, beach, and river sands from their textural characteristics[J]. Journal of Sedimentary Petrology, 1961, 31(4): 514-529.
[46]

Klovan J E. The use of factor analysis in determining depositional environments from grain-size distributions[J]. Journal of Sedimentary Petrology, 1966, 36(1): 115-125.
[47]

Bartholdy J, Christiansen C, Pedersen J B T. Comparing spatial grain-size trends inferred from textural parameters using percentile statistical parameters and those based on the log-hyperbolic method[J]. Sedimentary Geology, 2007, 202(3): 436-452.
[48] 高抒. 沉积物粒径趋势分析:原理与应用条件[J]. 沉积学报,2009,27(5):826-836.

Gao Shu. Grain size trend analysis: Principle and applicability[J]. Acta Sedimentologica Sinica, 2009, 27(5): 826-836.
[49] 李玉中,陈沈良. 系统聚类分析在现代沉积环境划分中的应用:以崎岖列岛海区为例[J]. 沉积学报,2003,21(3):487-494.

Li Yuzhong, Chen Shenliang. Application of system cluster analysis to classification of modern sedimentary environment: A case study in Qiqu Archipelago area[J]. Acta Sedimentologica Sinica, 2003, 21(3): 487-494.
[50]

Ordóñez C, Ruiz-Barzola O, Sierra C. Sediment particle size distributions apportionment by means of functional cluster analysis (FCA)[J]. CATENA, 2016, 137: 31-36.
[51] 章婷曦,文莹亭,董丹萍,等. 太湖西北部表层沉积物粒度特征与沉积环境[J]. 湖泊科学,2018,30(3):836-846.

Zhang Tingxi, Wen Yingting, Dong Danping, et al. Grain size features and sedimentary environment of surficial sediments in the northwest Lake Taihu[J]. Journal of Lake Sciences, 2018, 30(3): 836-846.
[52] 刘祥奇,宋磊,吴奇龙,等. 基于粒度分布曲线的邻近传播聚类算法在沉积环境识别中的应用:以白洋淀地区为例[J]. 海洋地质与第四纪地质,2020,40(1):198-209.

Liu Xiangqi, Song Lei, Wu Qilong, et al. Application of the affinity propagation clustering algorithm based on grain-size distribution curve to discrimination of sedimentary environment: A case study in Baiyangdian area[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 198-209.
[53]

Grout H, Tarquis A M, Wiesner M R. Multifractal analysis of particle size distributions in soil[J]. Environmental Science & Technology, 1998, 32(9): 1176-1182.
[54]

Miranda J G V, Montero E, Alves M C, et al. Multifractal characterization of saprolite particle-size distributions after topsoil removal[J]. Geoderma, 2006, 134(3/4): 373-385.
[55] 常宏,左合君,王海兵,等. 黄河乌兰布和沙漠段两岸地表沉积物多重分形特征及其指示意义[J]. 干旱区研究,2019,36(6):1559-1567.

Chang Hong, Zuo Hejun, Wang Haibing, et al. Multi-fractal features and their significances of surface sediments along both banks of the Yellow River reach in the Ulanbuh Desert[J]. Arid Zone Research, 2019, 36(6): 1559-1567.
[56]

Li J L, He X B, Wei J, et al. Multifractal features of the particle-size distribution of suspended sediment in the Three Gorges Reservoir, China[J]. International Journal of Sediment Research, 2021, 36(4): 489-500.
[57]

Kuhnle R A. Fluvial transport of sand and gravel mixtures with bimodal size distributions[J]. Sedimentary Geology, 1993, 85(1/2/3/4): 17-24.
[58]

Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549.
[59]

Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1/2): 39-62.
[60]

Carder K L, Beardsley Jr G F, Pak H. Particle size distributions in the eastern equatorial Pacific[J]. Journal of Geophysical Research, 1971, 76(21): 5070-5077.
[61]

Kondolf G M, Adhikari A. Weibull vs. lognormal distributions for fluvial gravels[J]. Journal of Sedimentary Research, 2000, 70(3): 456-460.
[62]

Peng J, Zhao H, Dong Z B, et al. Numerical methodologies and tools for efficient and flexible unmixing of single-sample grain-size distributions: Application to Late Quaternary aeolian sediments from the desert-loess transition zone of the Tengger Desert[J]. Sedimentary Geology, 2022, 438: 106211.
[63]

Clark M W. Some methods for statistical analysis of multimodal distributions and their application to grain-size data[J]. Journal of the International Association for Mathematical Geology, 1976, 8(3): 267-282.
[64]

Ashley G M. Interpretation of polymodal sediments[J]. The Journal of Geology, 1978, 86(4): 411-421.
[65]

Azzalini A. A class of distributions which includes the normal ones[J]. Scandinavian Journal of Statistics, 1985, 12(2): 171-178.
[66] 孙东怀,鹿化煜, Rea D,等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报,2000,18(3):327-335.

Sun Donghuai, Lu Huayu, Rea D, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335.
[67]

Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3/4): 263-277.
[68]

Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. CATENA, 2004, 55(3): 325-340.
[69]

Ibbeken H. Jointed source rock and fluvial gravels controlled by Rosin’s law: A grain-size study in Calabria, South Italy[J]. Journal of Sedimentary Petrology, 1983, 53(4): 1213-1231.
[70]

Purkait B. Patterns of grain-size distribution in some point bars of the Usri River, India[J]. Journal of Sedimentary Research, 2002, 72(3): 367-375.
[71]

Seidel M, Hlawitschka M. An R-based function for modeling of end member compositions[J]. Mathematical Geosciences, 2015, 47(8): 995-1007.
[72]

Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180.
[73]

Dietze E, Dietze M. Grain-size distribution unmixing using the R package EMMAgeo[J]. E&G Quaternary Science Journal, 2019, 68(1): 29-46.
[74]

Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741.
[75] 赵庆,郑祥民,周立旻,等. 末次冰期东海嵊山岛黄土粒度端元分析及其环境意义[J]. 沉积学报,2024,42(2):521-533.

Zhao Qing, Zheng Xiangmin, Zhou Limin, et al. Grain size end member characteristics and paleoclimatic significance of loess deposit in Shengshan Island during the last glacial period[J]. Acta Sedimentologica Sinica, 2024, 42(2): 521-533.
[76] 袁瑞,冯文杰,张昌民,等. 长江武汉段天兴洲低滩沉积物粒度端元对河流—风成沙丘沉积环境的指示意义[J]. 地质论评,2024,70(2):436-448.

Yuan Rui, Feng Wenjie, Zhang Changmin, et al. Fluvial-Aeolian dune depositional environment significances from grain-size end-member in low-beach at the head of Tianxing central-bar in Wuhan section of Yangtze River[J]. Geological Review, 2024, 70(2): 436-448.
[77] 朱海,张玉芬,李长安. 端元分析在长江武汉段古洪水识别中的应用[J]. 沉积学报,2020,38(2):297-305.

Zhu Hai, Zhang Yufen, Li Chang’an. The application of end-member analysis in identification of paleo-floods in Wuhan section of the Yangtze River[J]. Acta Sedimentologica Sinica, 2020, 38(2): 297-305.
[78] 周声芳,刘秀铭,毛学刚,等. 美国Bryce峡谷Claron组粒度端元指示的风尘沉积及意义[J]. 沉积学报,2023,41(4):1011-1024.

Zhou Shengfang, Liu Xiuming, Mao Xuegang, et al. Eolian deposition and its significance in the Claron Formation indicated by grain-size end members in the Bryce Canyon, Utah, USA[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1011-1024.
[79] Hey T, Tansley S, Tolle K. The fourth paradigm: Data-intensive scientific discovery[M]. Washington: Microsoft Research, 2009.
[80] 左仁广. 基于数据科学的矿产资源定量预测的理论与方法探索[J]. 地学前缘,2021,28(3):49-55.

Zuo Renguang. Data science-based theory and method of quantitative prediction of mineral resources[J]. Earth Science Frontiers, 2021, 28(3): 49-55.
[81] 李灿锋,刘达,周德坤,等. 人工智能在地质领域的应用与展望[J]. 矿物岩石地球化学通报,2022,41(3):668-677.

Li Canfeng, Liu Da, Zhou Dekun, et al. Application and prospect of artificial intelligence in the field of geology[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(3): 668-677.
[82]

Wang C S, Hazen R M, Cheng Q M, et al. The Deep-Time Digital Earth program: Data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9): nwab027.
[83] 李秋立,李扬,刘春茹,等. 地质年代学主要数据库现状分析与展望[J]. 高校地质学报,2020,26(1):44-63.

Li Qiuli, Li Yang, Liu Chunru, et al. Analyses of current main geochronological databases and future perspectives[J]. Geological Journal of China Universities, 2020, 26(1): 44-63.
[84] 蒋璟鑫,李超,胡修棉. 沉积学数据库建设与沉积大数据科学研究进展:以Macrostrat数据库为例[J]. 高校地质学报,2020,26(1):27-43.

Jiang Jingxin, Li Chao, Hu Xiumian. Advances on sedimentary database building and related research: Macrostrat as an example[J]. Geological Journal of China Universities, 2020, 26(1): 27-43.
[85] 张颖慧,王涛,焦守涛,等. 国内外岩浆岩数据库现状与应用前景[J]. 高校地质学报,2020,26(1):11-26.

Zhang Yinghui, Wang Tao, Jiao Shoutao, et al. Review of igneous rock databases and their application prospect[J]. Geological Journal of China Universities, 2020, 26(1): 11-26.
[86]

Peters S E, Husson J M, Czaplewski J. Macrostrat: A platform for geological data integration and Deep-Time Earth crust research[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1393-1409.