[1] 王秋舒,元春华. 全球锂矿供应形势及我国资源安全保障建议[J]. 中国矿业,2019,28(5):1-6.

Wang Qiushu, Yuan Chunhua. The global supply situation of lithium ore and suggestions on resources security in China[J]. China Mining Magazine, 2019, 28(5): 1-6.
[2] 王登红,郑绵平,王成辉,等. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果[J]. 中国地质调查,2019,6(6):1-11.

Wang Denghong, Zheng Mianping, Wang Chenghui, et al. Progresses and main achievements on bulk lacking minerals and strategic emerging industry minerals survey project[J]. Geological Survey of China, 2019, 6(6): 1-11.
[3] 温汉捷,罗重光,杜胜江,等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报,2020,65(1):53-59.

Wen Hanjie, Luo Chongguang, Du Shengjiang, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 2020, 65(1): 53-59.
[4] 钟海仁,孙艳,杨岳清,等. 铝土矿(岩)型锂资源及其开发利用潜力[J]. 矿床地质,2019,38(4):898-916.

Zhong Hairen, Sun Yan, Yang Yueqing, et al. Bauxite (aluminum)-type lithium resources and analysis of its development and utilization potential[J]. Mineral Deposits, 2019, 38(4): 898-916.
[5] 张英利,陈雷,王坤明,等. 豫西巩义地区上石炭统本溪组泥岩地球化学和富锂特征及其控制因素[J]. 地球科学与环境学报,2023,45(2):208-226.

Zhang Yingli, Chen Lei, Wang Kunming, et al. Geochemistry and Li-rich characteristics of mudstones from Upper Carboniferous Benxi Formation in Gongyi area, the western Henan, China and their controlling factors[J]. Journal of Earth Sciences and Environment, 2023, 45(2): 208-226.
[6]

Benson T R, Coble M A, Rytuba J J, et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in Caldera basins[J]. Nature Communications, 2017, 8(1): 270.
[7] 王秋舒. 全球锂矿资源勘查开发及供需形势分析[J]. 中国矿业,2016,25(3):11-15,24.

Wang Qiushu. Analysis of global lithium resources exploration and development, supply and demand situation[J]. China Mining Magazine, 2016, 25(3): 11-15, 24.
[8] 钟海仁. 重庆南川铝土矿沉积物源及含矿岩系伴生锂赋存状态和富集机理研究[D]. 北京:中国地质大学(北京),2020:54-63.

Zhong Hairen. Provenance of bauxite, and occurrence state, enrichment mechanism of associated lithium in ore-bearing rocks of deposits in Nanchuan district, Chongqing[D]. Beijing: China University of Geosciences (Beijing), 2020: 54-63.
[9] 左贵彬. 河南禹州煤田石炭—二叠纪煤中锂的富集机理[D]. 邯郸:河北工程大学,2021:23-40.

Zuo Guibin. Mechanism of lithium enrichment in Carboniferous-Permian coals in Yuzhou coalfield, Henan province[D]. Handan: Hebei University of Engineering, 2021: 23-40.
[10] 许箭琪. 桂西二叠系含铝岩系中锂的超常富集机制研究[D]. 桂林:桂林理工大学,2021:13-29.

Xu Jianqi. Supernormal enrichment mechanism of lithium in bauxite series in Permian, western Guangxi[D]. Guilin: Guilin University of Technology, 2021: 13-29.
[11] 雷志远. 贵州务正道地区高铝岩系锂的存在形式和富集机制[D]. 武汉:中国地质大学,2021:44-50.

Lei Zhiyuan. Existence form and enrichment mechanism of lithium in bauxitic rocks of the Wuzhengdao belt, northern Guizhou[D]. Wuhan: China University of Geosciences, 2021: 44-50.
[12] 梁航,温淑女,姚双秋,等. 桂西上二叠统合山组锂超常富集黏土岩的物源分析与地质意义[J]. 桂林理工大学学报,2022,42(3):535-548.

Liang Hang, Wen Shunü, Yao Shuangqiu, et al. Provenance analysis and geological significance of Li-rich claystone in Upper Permian Heshan Formation, western Guangxi[J]. Journal of Guilin University of Technology, 2022, 42(3): 535-548.
[13] 梁厚鹏. 贵州小山坝铝土矿伴生锂赋存特征及富集机理探讨[D]. 贵阳:贵州大学,2018:21-34.

Liang Houpeng. Investigate the occurrence characteristics and enrichment mechanism of the bauxite and aluminized clay rock associated lithium resources to Xiaoshanba bauxite in Guizhou[D]. Guiyang: Guizhou University, 2018: 21-34.
[14] 凌坤跃,温汉捷,张起钻,等. 广西平果上二叠统合山组关键金属锂和铌的超常富集与成因[J]. 中国科学:地球科学,2021,51(6):853-873.

Ling Kunyue, Wen Hanjie, Zhang Qizuan, et al. Super-enrichment of lithium and niobium in the Upper Permian Heshan Formation in Pingguo, Guangxi, China[J]. Science China: Earth Sciences, 2021, 51(6): 853-873.
[15] 王滑冰,白德胜,安颖,等. 豫北焦作地区本溪组锂元素分布及富集特征[J]. 矿物岩石地球化学通报,2021,40(2):458-469.

Wang Huabing, Bai Desheng, An Ying, et al. Study on the distribution and enrichment characteristics of lithiumin in the Benxi Formation of the Jiaozuo area, northern Henan, China[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2021, 40(2): 458-469.
[16] 金中国,郑明泓,刘玲,等. 贵州铝土矿含矿岩系中锂的分布特征及富集机理[J]. 地质学报,2023,97(1):69-81.

Jin Zhongguo, Zheng Minghong, Liu Ling, et al. Distribution characteristics and enrichment mechanism of lithium in bauxite series in Guizhou province[J]. Acta Geologica Sinica, 2023, 97(1): 69-81.
[17] 金中国,周家喜,黄智龙,等. 黔北务—正—道地区典型铝土矿床伴生有益元素锂、镓和钪分布规律[J]. 中国地质,2015,42(6):1910-1918.

Jin Zhongguo, Zhou Jiaxi, Huang Zhilong, et al. The distribution of associated elements Li, Sc and Ga in the typical bauxite deposits over the Wuchuan-Zhengan-Daozhen bauxite ore district, northern Guizhou province[J]. Geology in China, 2015, 42(6): 1910-1918.
[18] 龙珍. 黔北务正道地区铝土矿床Li的富集机制研究:以新民和大塘为例[D]. 贵阳:贵州大学,2022:37-45.

Long Zhen. Study on the enrichment mechanism of Li in bauxite deposits in Wuzhengdao area, northern Guizhou[D]. Guiyang: Guizhou University, 2022: 37-45.
[19] 刘云霞. 山西省典型矿区煤及煤灰中锂镓赋存状态与转化机制[D]. 太原:太原理工大学,2022:35-77.

Liu Yunxia. Occurrence and transformation of lithium and gallium in coal and coal ash from typical mining areas of Shanxi province[D]. Taiyuan: Taiyuan University of Technology, 2022: 35-77.
[20] 赵蕾,王西勃,代世峰. 煤系中的锂矿产:赋存分布、成矿与资源潜力[J]. 煤炭学报,2022,47(5):1750-1760.

Zhao Lei, Wang Xibo, Dai Shifeng. Lithium resources in coal-bearing strata: Occurrence, mineralization, and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750-1760.
[21]

Wanner C, Bucher K, von Strandmann P A E P, et al. On the use of Li isotopes as a proxy for water-rock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel[J]. Geochimica et Cosmochimica Acta, 2017, 198: 396-418.
[22] 赵越,马万平,杨洋,等. 黏土矿物对Li+的吸附实验研究:对黏土型锂矿成矿启示[J]. 矿物学报,2022,42(2):141-153.

Zhao Yue, Ma Wanping, Yang Yang, et al. Experimental study on the adsorption of Li+ by clay minerals: Implications for the mineralization of clay-type lithium deposit[J]. Acta Mineralogica Sinica, 2022, 42(2): 141-153.
[23] 曹泊,秦云虎,朱士飞,等. 广西上林合山组炭质泥岩中锂和稀土元素的成因及富集机制[J]. 煤炭学报,2022,47(5):1851-1864.

Cao Bo, Qin Yunhu, Zhu Shifei, et al. Origin and enrichment mechanism of lithium and rare earth elements in carbonaceous mudstone of Heshan Formation, Shanglin, Guangxi[J]. Journal of China Coal Society, 2022, 47(5): 1851-1864.
[24] 崔燚,温汉捷,于文修,等. 滇中下二叠统倒石头组富锂黏土岩系锂的赋存状态及富集机制研究[J]. 岩石学报,2022,38(7):2080-2094.

Cui Yi, Wen Hanjie, Yu Wenxiu, et al. Study on the occurrence state and enrichment mechanism of lithium in lithium-rich clay rock series of the Daoshitou Formation of Lower Permian in central Yunnan[J]. Acta Petrologica Sinica, 2022, 38(7): 2080-2094.
[25] 严爽. 黔北新民铝土矿锂的富集规律及其锂同位素指示意义[D]. 贵阳:贵州大学,2020:54-58.

Yan Shuang. Enrichment of lithium from Xinmin bauxite in northern Guizhou and its indication of lithium isotope[D]. Guiyang: Guizhou University, 2020: 54-58.
[26] 付金华,李明瑞,张雷,等. 鄂尔多斯盆地陇东地区铝土岩天然气勘探突破与油气地质意义探索[J]. 天然气工业,2021,41(11):1-11.

Fu Jinhua, Li Mingrui, Zhang Lei, et al. Breakthrough in the exploration of bauxite gas reservoir in Longdong area of the Ordos Basin and its petroleum geological implications[J]. Natural Gas Industry, 2021, 41(11): 1-11.
[27]

Chen A Q, Zou H, Ogg J G, et al. Source-to-sink of Late Carboniferous Ordos Basin: Constraints on crustal accretion margins converting to orogenic belts bounding the North China Block[J]. Geoscience Frontiers, 2020, 11(6): 2031-2052.
[28] 潘博,赵伟波,刘蝶,等. 鄂尔多斯盆地神木—米脂地区本溪组含铝岩系地球化学特征[J]. 天然气地球科学,2023,34(6):1072-1089.

Pan Bo, Zhao Weibo, Liu Die, et al. Geochemical characteristics of bauxite deposits of Benxi Formation in Shenmu-Mizhi area, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(6): 1072-1089.
[29] 刘巽锋,王庆生,陈有能. 黔北铝土矿成矿地质特征及成矿规律[M]. 贵州:贵州人民出版社,1990:12-148.

Liu Xunfeng, Wang Qingsheng, Chen Youneng. Bauxite minerogenic geological characteristic and minerogenic law in northern Guizhou, China[M]. Guizhou: Guizhou People’s Publishing House, 1990: 12-148.
[30] Bárdossy G. Karst bauxites: Bauxite deposits on carbonate rocks[M]. Amsterdam: Elsevier, 1982: 1-441.
[31] 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社,1986:1-386.

Liu Yingjun, Cao Liming, Li Zhaolin, et al. Geochemistry of the elements[M]. Beijing: Science Press, 1986: 1-386.
[32]

Turekian K K, Wedepohl K H. Distribution of the elements in some major units of the earth's crust[J]. GSA Bulletin, 1961, 72(2): 175-192.
[33] 王学求,刘汉粮,王玮,等. 中国锂矿地球化学背景与空间分布:远景区预测[J]. 地球学报,2020,41(6):797-806.

Wang Xueqiu, Liu Hanliang, Wang Wei, et al. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects[J]. Acta Geoscientica Sinica, 2020, 41(6): 797-806.
[34]

Zhao L, Ward C R, French D, et al. Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng coalfield, Qin-shui Basin, northern China[J]. International Journal of Coal Geology, 2018, 185: 61-78.
[35]

Sun B D, Liu J P, Wang X H, et al. Geochemical characteristics and genetic type of a lithium ore (mineralized) body in the central Yunnan province, China[J]. China Geology, 2019, 2(3): 287-300.
[36] 范宏鹏,叶霖,黄智龙. 铝土矿(岩)中伴生的锂资源[J]. 矿物学报,2021,41(增刊1):382-390.

Fan Hongpeng, Ye Lin, Huang Zhilong. The associated lithium resource in bauxite (bauxite-bearing rock)[J]. Acta Mineralogica Sinica, 2021, 41(Suppl.1): 382-390.
[37] 王瑞江,王登红,李建康,等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京:地质出版社,2015:1-37.

Wang Ruijiang, Wang Denghong, Li Jiankang, et al. Rare rare earth rare mineral resources and their development and utilization[M]. Beijing: Geological Publishing House, 2015: 1-37.
[38] 刘平,廖友常,张雅静. 黔北大竹园地区铝土矿含矿岩系沉积环境及形成机制[J]. 中国地质,2016,43(6):2173-2191.

Liu Ping, Liao Youchang, Zhang Yajing. The sedimentary environment and formation mechanism of bauxite-bearing rock series in Dazhuyuan area, northern Guizhou province[J]. Geology in China, 2016, 43(6): 2173-2191.
[39]

Vigier N, Decarreau A, Millot R, et al. Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 780-792.
[40] 靳平平,欧成华,马中高,等. 蒙脱石与相关黏土矿物的演变规律及其对页岩气开发的影响[J]. 石油物探,2018,57(3):344-355.

Jin Pingping, Chenghua Ou, Ma Zhonggao, et al. Evolution of montmorillonite and its related clay minerals and their effects on shale gas development[J]. Geophysical Prospecting for Petroleum, 2018, 57(3): 344-355.
[41] 邓国仕,李军敏,杨桂花,等. 渝南水江板桥铝土矿区锂的分布规律及其影响因素研究[J]. 中国矿业,2014,23(3):72-79.

Deng Guoshi, Li Junmin, Yang Guihua, et al. Distribution law of lithium and its influencing factors in Shuijiangbanqiao bauxite mining area, southern Chongqing[J]. China Mining Magazine, 2014, 23(3): 72-79.
[42] 廖家隆,李宝庆,张福强,等. 广西晚二叠世煤系沉积型锂矿研究现状及展望[J]. 中国煤炭地质,2022,34(10):9-14.

Liao Jialong, Li Baoqing, Zhang Fuqiang, et al. Research status and prospect of sedimentary lithium resources of Late Permian coal measure in Guangxi[J]. Coal Geology of China, 2022, 34(10): 9-14.
[43]

Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[44]

Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
[45]

Yang Z Y, Sun Z M, Yang T S, et al. A long connection (750-380 Ma) between South China and Australia: Paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 423-434.
[46]

Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J]. Earth-Science Reviews, 2013, 117: 40-79.
[47]

Yang J H, Cawood P A, Du Y S, et al. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low-paleolatitude sedimentary records[J]. Geology, 2014, 42(10): 835-838.
[48]

Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
[49]

Sheldon N D, Retallack G J, Tanaka S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon[J]. The Journal of Geology, 2002, 110(6): 687-696.
[50] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310,314.

Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment:Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.
[51]

Maslov A V, Krupenin M T, Kiseleva D V. Lithogeochemistry of the fine-grained siliciclastic rocks of the Vendian Serebryanka Group of the Central Urals[J]. Geochemistry International, 2011, 49(10): 974-1001.
[52] 冯乔,张耀,徐子苏,等. 胶莱盆地早白垩世瓦屋夼组、水南组元素地球化学特征与古环境分析[J]. 山东科技大学学报(自然科学版),2018,37(1):20-34.

Feng Qiao, Zhang Yao, Xu Zisu, et al. Geochemical characteristics and paleoenvironmental analysis of dark fine grained rocks of Wawukuang and Shuinan Formations in Jiaolai Basin[J]. Journal of Shandong University of Science and Technology (Natural Science), 2018, 37(1): 20-34.
[53]

Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
[54] 李军,桑树勋,林会喜,等. 渤海湾盆地石炭二叠系稀土元素特征及其地质意义[J]. 沉积学报,2007,25(4):589-596.

Li Jun, Sang Shuxun, Lin Huixi, et al. REE characteristics and its geological significance of the Permo-Carboniferous in Bohaiwan Basin[J]. Acta Sedimentologica Sinica, 2007, 25(4): 589-596.
[55]

Zarasvandi A, Carranza E J M, Ellahi S S. Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran[J]. Ore Geology Reviews, 2012, 48: 125-138.
[56] 张蕊,王琳霖,刘磊,等. 鄂尔多斯盆地东部晚石炭世本溪组源—汇充填过程与古地理格局[J/OL]. 沉积学报,doi:  10.14027/j.issn.1000-0550.2023.099.

Zhang Rui, Wang Linlin, Liu Lei, et al. Source-to-sink filling process and paleogeographic pattern of the Late Carboniferous Benxi Formation in the eastern Ordos Basin[J/OL]. Acta Sedimentologica Sinica, doi:  10.14027/j.issn.1000-0550.2023.099.
[57]

Huntington T G. The potential for calcium depletion in forest ecosystems of southeastern United States: Review and analysis[J]. Global Biogeochemical Cycles, 2000, 14(2): 623-638.