[1] 常西玲,郭进京,常璐璐,等. 西秦岭北缘渐新世砾岩沉积特征及沉积环境:渐新世—中新世盆地构造环境约束[J/OL]. 沉积学报,2023,41(5):1495-1511.

Chang Xiling, Guo Jinjing, Chang Lulu, et al. Characteristics of Oligocene conglomerates and their sedimentary environment in the northern margin of west Qinling: Constraints on the tectonic setting of the Oligocene-Miocene basin[J]. Acta Sedimentologica Sinica, 2023,41(5):1495-1511.
[2]

Sun J M, Zhang Z L, Cao M M, et al. Timing of seawater retreat from proto-paratethys, sedimentary provenance, and tectonic rotations in the Late Eocene-Early Oligocene in the Tajik Basin, Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109657.
[3] 呼其图,关平,王大华,等. 柴达木盆地北缘东段中侏罗统物源分析:来自重矿物、元素地球化学及碎屑锆石年代学的证据[J]. 沉积学报,2024,42(2):466-485.

HuQitu, Guan Ping, Wang Dahua, et al. Provenance analysis of the Middle Jurassic in northeastern Qaidam Basin: Evidence from heavy minerals, elemental geochemistry and detrital zircon U-Pb geochronology[J]. Acta Sedimentologica Sinica, 2024, 42(2): 466-485.
[4] 孙建勋,吴亮,肖长源,等. 黔北普宜地区晚三叠世二桥组砂岩碎屑锆石U-Pb年龄、重矿物分析及地质意义[J]. 地质学报,2022,96(3):824-839.

Sun Jianxun, Wu Liang, Xiao Changyuan, et al. Implications of detrital zircon U-Pb ages and analysis of heavy minerals from sandstone of the Late Triassic Erqiao Formation in Puyi area, north Guizhou[J]. Acta Geologica Sinica, 2022, 96(3): 824-839.
[5] 潘世乐,蒋赟,康健,等. 柴北缘冷湖七号下干柴沟组上段古气候及物源分析[J]. 沉积学报,2021,39(5):1292-1304.

Pan Shile, Jiang Yun, Kang Jian, et al. Analysis of paleoclimate and source of the upper section, Lower Ganchaigou Formation, Lenghu No. 7 region, north Qaidam Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1292-1304.
[6] 熊国庆,王剑,胡仁发. 贵州梵净山地区震旦系微量元素特征及沉积环境[J]. 地球学报,2008,29(1):51-60.

Xiong Guoqing, Wang Jian, Hu Renfa. Trace element characteristics and sedimentary environment of the Sinian system of the Fanjingshan area in Guizhou province[J]. Acta Geoscientica Sinica, 2008, 29(1): 51-60.
[7] 李国刚,李云海,布如源,等. 晚更新世以来南极罗斯海陆坡沉积物岩芯常量元素地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质,2022,42(4):1-11.

Li Guogang, Li Yunhai, Bu Ruyuan, et al. Geochemical characteristics and paleoenvironmental implications of major elements in sediments from the continental slope of the Ross Sea, Antarctica since Late Pleistocene[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 1-11.
[8] 任永健,张成信,孟庆伟. 张广才岭南部杨木岗组的厘定及物源分析[J]. 地质学报,2022,96(7):2333-2347.

Ren Yongjian, Zhang Chengxin, Meng Qinwei. Determination of the Yangmugang Formation in southern section of Zhangguangcai range and its provenance analysis[J]. Acta Geologica Sinica, 2022, 96(7): 2333-2347.
[9]

Xie Y Y, Yuan F, Zhan T, et al. Geochemistry of loess deposits in northeastern China: Constraint on provenance and implication for disappearance of the large Songliao palaeolake[J]. Journal of the Geological Society, 2018, 175(1): 146-162.
[10] 胡鹏,鲍志东,于兴河,等. 碎屑重矿物差异与物源演化:以长岭凹陷乾北地区青三段—姚一段为例[J]. 中国矿业大学学报,2017,46(2):375-387.

Hu Peng, Bao Zhidong, Yu Xinghe, et al. Detrital heavy mineral difference and its implication for provenance: A case study of the Third member of Qingshankou Formation and the First member of Yaojia Formation in Qianbei area, Changling Sag[J]. Journal of China University of Mining & Technology, 2017, 46(2): 375-387.
[11]

Andersen T, van Niekerk H, Elburg M A. Detrital zircon in an active sedimentary recycling system: Challenging the ‘source-to-sink’ approach to zircon-based provenance analysis[J]. Sedimentology, 2022, 69(6): 2436-2462.
[12]

Armstrong-Altrin J S. Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment[J]. Journal of Palaeogeography, 2020, 9(1): 28.
[13] 张凌,王平,陈玺赟,等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展,2020,35(4):414-430.

Zhang Ling, Wang Ping, Chen Xiyun, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430.
[14] 徐杰,姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报,2019,21(3):379-396.

Xu Jie, Jiang Zaixing. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396.
[15] 张庆云,林泽蓉. 白山土组堆积物成因的讨论[J]. 长春地质学院学报,1981(4):89-96.

Zhang Qingyun, Lin Zerong. Discussion on the genesis of the Baitushan Formation[J]. Journal of Changchun Institute of Geology, 1981(4): 89-96.
[16] 孙建中. 松辽平原冰缘期的划分[J]. 地理科学,1981,1(2):163-170.

Sun Jianzhong. Quaternary periglacial stages of the Songliao Plain[J]. Scientia Geographica Sinica, 1981, 1(2): 163-170.
[17] 孙建中,王雨灼,张庆云. 松辽平原第四纪地层的划分—几种年代学方法的应用[J]. 西安地质学院学报,1982(2):79-91,10.

Sun Jianzhong, Wang Yuzhuo, Zhang Qingyun. Division of Quaternary strata in Songliao Plain: Application of several chronological methods[J]. Journal of Earth Sciences and Environment, 1982(2): 79-91, 10.
[18] 裘善文,张爱新,夏玉梅,等. 东北白土山冰期的商榷[J]. 冰川冻土,1983,5(2):9-18.

Qiu Shanwen, Zhang Aixin, Xia Yumei, et al. A discussion on the Baitushan ice age in northeast China[J]. Journal of Glaciology and Geocryology, 1983, 5(2): 9-18.
[19] 裘善文,李风华. 东北“白土山冰期”沉积物成因与时代的研究[J]. 冰川冻土,1985,7(3):195-203.

Qiu Shanwen, Li Fenghua. Studies on genesis and time of the deposits of “The Baitushan Ice Age” in Northeast China[J]. Journal of Glaciology and Geocryology, 1985, 7(3): 195-203.
[20] 裘善文,夏玉海,汪佩芳,等. 松辽平原更新世地层及其沉积环境的研究[J]. 中国科学(B辑),1988(4):431-441.

Qiu Shanwen, Xia Yuhai, Wang Peifang, et al. Study on Pleistocene strata and sedimentary environment in Songliao Plain[J]. Science China Series B, 1988(4): 431-441.
[21] 裘善文,王锡魁,李取生,等. 伊通火山群地区“白土山组”地层研究新进展[J]. 地层学杂志,2001,25(4):279-282.

Qiu Shanwen, Wang Xikui, Li Qusheng, et al. New advances in the stratigraphic study on the “Baitushan Formation” of the Yitong volcanic area[J]. Journal of Stratigraphy, 2001, 25(4): 279-282.
[22] 王庆,杨景春. 松辽分水岭东段白土山组成因与时代[J]. 地层学杂志,1995,19(4):287-290.

Wang Qing, Yang Jingchun. The genesis and age of the Baitushan Formation in the eastern area of the Songliao divide[J]. Journal of Stratigraphy, 1995, 19(4): 287-290.
[23] 徐备,赵盼,鲍庆中,等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报,2014,30(7):1841-1857.

Xu Bei, Zhao Pan, Bao Qingzhong, et al. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 2014, 30(7): 1841-1857.
[24] 梁琛岳,刘永江,李伟,等. 大兴安岭北段伸展隆升样式:来自科洛—嘎拉山韧性变形带的证据[J]. 岩石学报,2018,34(10):2873-2900.

Liang Chenyue, Liu Yongjiang, Li Wei, et al. The extensional uplift style of north part of the Da Hinggan Mountains: Evidences from ductile deformation zone of Keluo-Galashan[J]. Acta Petrologica Sinica, 2018, 34(10): 2873-2900.
[25]

Zhao X, Coe R S, Gilder S A, et al. Palaeomagnetic constraints on the palaeogeography of China: Implications for Gondwanaland[J]. Australian Journal of Earth Sciences, 1996, 43(6): 643-672.
[26] 赵勇伟,樊祺诚. 大兴安岭哈拉哈河—绰尔河第四纪火山岩地幔源区与岩浆成因[J]. 岩石学报,2012,28(4):1119-1129.

Zhao Yongwei, Fan Qicheng. Mantle sources and magma genesis of Quaternary volcanic rocks in the Halaha River and Chaoer River area, Great Xing’an Range[J]. Acta Petrologica Sinica, 2012, 28(4): 1119-1129.
[27] 王洪涛. 大兴安岭中段晚中生代以来的隆升剥露史[D]. 长春:吉林大学,2022.

Wang Hongtao. Uplift and exhumation history of the middle Greater Khingan Mountains since Late Mesozoic[D]. Changchun: Jilin University, 2022.
[28] 康春国,李长安,王节涛,等. 江汉平原沉积物重矿物特征及其对三峡贯通的指示[J]. 地球科学:中国地质大学学报,2009,34(3):419-427.

Kang Chunguo, Li Chang’an, Wang Jietao, et al. Heavy minerals characteristics of sediments in Jianghan Plain and its indication to the forming of the Three Gorges[J]. Earth Science: Journal of China University of Geosciences, 2009, 34(3): 419-427.
[29] 侯心茹,谢远云,康春国,等. 大兴安岭东麓白土山组地层的沉积学特征:对地层划分的指示[J]. 沉积学报,2023,41(3):720-734.

Hou Xinru, Xie Yuanyun, Kang Chunguo, et al. Sedimentological characteristics of the Baitushan Formation in the eastern foothills of the Great Xing’an Range: Implications for stratigraphic divisions[J]. Acta Sedimentologica Sinica,2023,41(3):720-734.
[30] 王嘉新,谢远云,康春国,等. 哈尔滨荒山岩芯重矿物特征对松花江第四纪水系演化的指示[J]. 第四纪研究,2020,40(1):79-94.

Wang Jiaxin, Xie Yuanyun, Kang Chunguo, et al. The indication of the heavy mineral characteristics of the core in Harbin Huangshan to the Quaternary drainage evolution of Songhua River[J]. Quaternary Sciences, 2020, 40(1): 79-94.
[31] 袁方,谢远云,詹涛,等. 地球化学组成揭示的杜蒙沙地化学风化和沉积再循环特征及其对风尘物质贡献的指示[J]. 地理科学,2017,37(12):1885-1893.

Yuan Fang, Xie Yuanyun, Zhan Tao, et al. Source-area weathering and recycled sediment for Dumeng sandy land inferred from geochemistry compositions: Implication for contribution to aeolian dust[J]. Scientia Geographica Sinica, 2017, 37(12): 1885-1893.
[32] 魏春艳,谢远云,康春国,等. 哈尔滨地区罗家窝棚组地层的沉积学、矿物学及地球化学特征:对沉积环境的指示[J]. 地质科学,2022,57(1):172-189.

Wei Chunyan, Xie Yuanyun, Kang Chunguo, et al. Sedimentological, mineralogical, and geochemical characteristics of the Luojiawopeng Fm. in Harbin: Implications for the sedimentary environment[J]. Chinese Journal of Geology, 2022, 57(1): 172-189.
[33]

Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostandards and Geoanalytical Research, 1997, 21(1): 115-144.
[34]

Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of Zircon by laser ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370.
[35]

Sláma J, Košler J, Condon D J, et al. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.
[36]

Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(36): 4647-4654.
[37]

Ludwig K R. User's manual for Isoplot/Ex, Version 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4(2): 1-70.
[38]

Jiang Z W, Luo J L, Liu X S, et al. Provenance and implication of Carboniferous-Permian detrital zircons from the Upper Paleozoic, southern Ordos Basin, China: Evidence from U-Pb geochronology and Hf isotopes[J]. Minerals, 2020, 10(3): 265.
[39]

Cawood P A, Nemchin A A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, western Australia[J]. Sedimentary Geology, 2000, 134(3/4): 209-234.
[40]

Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
[41]

Maharana C, Srivastava D, Tripathi J K. Geochemistry of sediments of the Peninsular rivers of the Ganga Basin and its implication to weathering, sedimentary processes and provenance[J]. Chemical Geology, 2018, 483: 1-20.
[42]

Asiedu D K, Agoe M, Amponsah M, et al. Geochemical constraints on provenance and source area weathering of metasedimentary rocks from the Paleoproterozoic (~2.1 Ga) Wa-Lawra Belt, southeastern margin of the West African Craton[J]. Geodinamica Acta, 2019, 31(1): 27-39.
[43] 付玲,关平,赵为永,等. 柴达木盆地古近系路乐河组重矿物特征与物源分析[J]. 岩石学报,2013,29(8):2867-2875.

Fu Ling, Guan Ping, Zhao Weiyong, et al. Uplift of NW margin of Qaidam Basin in the Late Eocene: Implications for the initiation of Altyn Fault[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-2875.
[44] 杨守业,印萍. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程[J]. 海洋地质与第四纪地质,2018,38(1):1-10.

Yang Shouye, Yin Ping. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 1-10.
[45] 林刚,陈琳莹,罗敏,等. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质,2019,39(3):12-27.

Lin Gang, Chen Linying, Luo Min, et al. The geochemical characteristics of the surface sediments in the New Britain Trench of the western Pacific Ocean and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27.
[46] 罗情勇,钟宁宁,王延年,等. 华北北部中元古界洪水庄组页岩地球化学特征:物源及其风化作用[J]. 地质学报,2013,87(12):1913-1921.

Luo Qingyong, Zhong Ningning, Wang Yannian, et al. Geochemistry of Mesoproterozoic Hongshuizhuang Formation shales in northern North China: Lmplications for provenance and source weathering[J]. Acta Geologica Sinica, 2013, 87(12): 1913-1921.
[47]

Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
[48]

Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
[49] 冯连君,储雪蕾,张启锐,等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,2003,10(4):539-544.

Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA (Chemical Index of Alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.
[50] 杨江海,杜远生,徐亚军,等. 砂岩的主量元素特征与盆地物源分析[J]. 中国地质,2007,34(6):1032-1044.

Yang Jianghai, Du Yuansheng, Xu Yajun, et al. Major element characteristics of sandstones and provenance analysis of basins[J]. Geology in China, 2007, 34(6): 1032-1044.
[51] 陈骏,汪永进,陈旸,等. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义[J]. 地质学报,2001,75(2):259-266.

Chen Jun, Wang Yongjin, Chen Yang, et al. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate[J]. Acta Geologica Sinica, 2001, 75(2): 259-266.
[52] 刘聃,陈汉林,林秀斌,等. 南天山西部山前新生代晚期三期构造活动:来自乌鲁克恰提剖面砾石统计的证据[J]. 岩石学报,2012,28(8):2414-2422.

Liu Dan, Chen Hanlin, Lin Xiubin, et al. Three episodes of tectonism in western South Tian Shan during Late Cenozoic: Evidences from gravel counting in Wulukeqiati sedimentary succession[J]. Acta Petrologica Sinica, 2012, 28(8): 2414-2422.
[53]

Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
[54]

Parker A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504.
[55]

Xie Y Y, Yuan F, Zhan T, et al. Geochemical and isotopic characteristics of sediments for the Hulun Buir sandy land, Northeast China: Implication for weathering, recycling and dust provenance[J]. Catena, 2018, 160: 170-184.
[56]

van de Kamp P C, Leake B E. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1985, 76(4): 411-449.
[57]

Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77-93.
[58]

Mclennan S M, Taylor S R, Mcculloch M T, et al. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations[J]. Geochimica et Cosmochimica Acta, 1990, 54(7): 2015-2050.
[59]

Mongelli G, Critelli S, Perri F, et al. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani mountains, southern Italy[J]. Geochemical Journal, 2006, 40(2): 197-209.
[60]

Hassan S, Ishiga H, Roser B P, et al. Geochemistry of Permian-Triassic shales in the Salt Range, Pakistan: Implications for provenance and tectonism at the Gondwana margin[J]. Chemical Geology, 1999, 158(3/4): 293-314.
[61] 赵红格,刘池洋,王海然,等. 贺兰山北段晚三叠世沉积物源分析[J]. 沉积学报,2012,30(4):654-660.

Zhao Hongge, Liu Chiyang, Wang Hairan, et al. Analysis of Late Triassic sedimentary provenance in the north of Helan Mountain[J]. Acta Sedimentologica Sinica, 2012, 30(4): 654-660.
[62] 吴鹏,谢远云,康春国,等. 早更新世晚期松花江水系袭夺:地球化学和沉积学记录[J]. 地质学报,2020,94(10):3144-3160.

Wu Peng, Xie Yuanyun, Kang Chunguo, et al. The capture of the Songhua River system in the late Early Pleistocene: Geochemical and sedimentological records[J]. Acta Geologica Sinica, 2020, 94(10): 3144-3160.
[63] 周延坤. 《岩相古地理基础和工作方法》[J]. 石油物探译丛,1987(2):80.

Zhou Yankun. Lithofacies palaeogeography basis and working methods[J]. Petroleum Reservoir Evaluation and Development, 1987(2): 80.
[64] 李忠,王道轩,林伟,等. 库车坳陷中—新生界碎屑组分对物源类型及其构造属性的指示[J]. 岩石学报,2004,20(3):655-666.

Li Zhong, Wang Daoxuan, Lin Wei, et al. Mesozoic-Cenozoic clastic composition in Kuqa Depression, Northwest China: Implication for provenance types and tectonic attributes[J]. Acta Petrologica Sinica, 2004, 20(3): 655-666.
[65] 李秋杭,谢远云,康春国,等. 基于人工和TIMA自动化方法的松花江水系重矿物组成:对源—汇物源示踪的指示[J]. 海洋地质与第四纪地质,2022,42(3):170-183.

Li Qiuhang, Xie Yuanyun, Kang Chunguo, et al. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170-183.
[66]

Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[67]

Spalletti L A, Queralt I, Matheos S D, et al. Sedimentary petrology and geochemistry of siliciclastic rocks from the Upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting[J]. Journal of South American Earth Sciences, 2008, 25(4): 440-463.
[68]

Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
[69]

Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
[70]

Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies[J]. Lithos, 2000, 51(3): 181-203.
[71]

Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118.
[72]

Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A.[J]. Chemical Geology, 1988, 70(4): 335-348.
[73]

Armstrong-Altrin J S, Lee Y I, Verma S P, et al. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting[J]. Journal of Sedimentary Research, 2004, 74(2): 285-297.
[74]

Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2001, 172(1/2): 5-24.
[75]

Wang F, Xu W L, Meng E, et al. Early Paleozoic amalgamation of the Songnen-Zhangguangcai range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites[J]. Journal of Asian Earth Sciences, 2012, 49: 234-248.
[76] 陈斌,李壮,王家林,等. 辽东半岛~2.2Ga岩浆事件及其地质意义[J]. 吉林大学学报(地球科学版),2016,46(2):303-320.

Chen Bin, Li Zhuang, Wang Jialin, et al. Liaodong peninsula ~2.2 Ga magmatic event and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 303-320.
[77] 王昆山,石学法,刘升发,等. 泰国湾西部表层沉积物重矿物分布特征:对物质来源和沉积环境的指示[J]. 第四纪研究,2014,34(3):623-634.

Wang Kunshan, Shi Xuefa, Liu Shengfa, et al. Spatial distribution of heavy minerals in the surface sediments from the western gulf of Thailand: Implications for sediment provenance and sedimentary environment[J]. Quaternary Sciences, 2014, 34(3): 623-634.
[78] 陈渠,吕镔,刘秀铭,等. 伊犁典型黄土磁学与常量元素地球化学特征及其古气候意义[J]. 第四纪研究,2021,41(6):1632-1644.

Chen Qu, Bin Lü, Liu Xiuming, et al. Rock magnetism and geochemical characteristics of major elements of typical loesss in the Ily Basin and their paleoclimatic significance[J]. Quaternary Sciences, 2021, 41(6): 1632-1644.
[79] 马万里,江小青,李璇,等. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义[J]. 矿物岩石地球化学通报,2021,40(5):1166-1180.

Ma Wanli, Jiang Xiaoqing, Li Xuan, et al. Geochemical characteristics and paleoenvironment paleoclimate significance of mudstone in the Shang-Gan-Chai-Gou Formation at the northwestern margin of Qaidam Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1166-1180.
[80] 弋双文,鹿化煜,周亚利,等. 晚第四纪科尔沁黄土堆积的Rb-Sr地球化学特征及古气候变化[J]. 海洋地质与第四纪地质,2013,33(2):129-136.

Yi Shuangwen, Lu Huayu, Zhou Yali, et al. Rb/Sr geochemistry of loess deposits in the Horqin dunefield, northeastern China, and its implications for climate change during Late Quaternary[J]. Marine Geology & Quaternary Geology, 2013, 33(2): 129-136.
[81]

Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals[J]. Paleoceanography, 2004, 19(1): PA1010.
[82]

Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[83] 陆雨诗,胡勇,侯云东,等. 鄂尔多斯盆地西缘羊虎沟组微量元素地球化学特征及沉积环境指示意义[J]. 科学技术与工程,2021,21(28):11999-12009.

Lu Yushi, Hu Yong, Hou Yundong, et al. Geochemical characteristics of trace elements in Yanghugou Formation in the western margin of Ordos Basin and their implications for sedimentary environment[J]. Science Technology and Engineering, 2021, 21(28): 11999-12009.
[84] 张天福,孙立新,张云,等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报,2016,90(12):3454-3472.

Zhang Tianfu, Sun Lixin, Zhang Yun, et al. Geochemical characteristics of the Jurassic Yan’an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472.
[85] 李思琪,谢远云,康春国,等. 物源—河流过程—化学风化对松花江水系沉积物重矿物组成的影响[J]. 地质科学,2022,57(1):207-229.

Li Siqi, Xie Yuanyun, Kang Chunguo, et al. Influence of provenance-river process-chemical weathering on heavy mineral composition of the Songhua River sediment[J]. Chinese Journal of Geology, 2022, 57(1): 207-229.
[86] 朱吉昌,冯有良,孟庆任,等. 渤海湾盆地晚中生代构造地层划分及对比:对燕山运动的启示[J]. 中国科学(D辑):地球科学,2020,50(1):28-49.

Zhu Jichang, Feng Youliang, Meng Qingren, et al. Late Mesozoic tectonostratigraphic division and correlation of Bohai Bay Basin: Implications for the Yanshanian Orogeny[J]. Science China (Seri. D): Earth Sciences, 2020, 50(1): 28-49.
[87] 孙杨,谢远云,迟云平,等. 大兴安岭东麓龙江县白土山组地层特征:化学风化、沉积循环、源—汇体系和沉积环境[J]. 山地学报,2022,40(1):14-28.

Sun Yang, Xie Yuanyun, Chi Yunping, et al. Stratigraphic characteristics of the Baitushan Formation in Longjiang county, eastern foothills of the Great Xing’an range, China: Chemical weathering, sediment cycling, source-sink system and sedimentary environment[J]. Mountain Research, 2022, 40(1): 14-28.
[88] 孙建华,谢远云,康春国,等. 大兴安岭东麓平安镇白土山组的地层属性:对物源和沉积环境的指示[J]. 地层学杂志,2022,46(2):196-208.

Sun Jianhua, Xie Yuanyun, Kang Chunguo, et al. Stratigraphic properties of the Baitushan Formation in Ping’an town, the eastern foot of the great Hinggan Mountains:An indication of provenance and sedimentary environment[J]. Journal of Stratigraphy, 2022, 46(2): 196-208.
[89]

Taylor S R, McLennan S M. The continental crust: Its composition and evolution. xvi + 312 pp. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific. Price £16.80 (paperback). ISBN 0 632 01148 3[J]. Geological Magazine, 1985, 122(6): 673-674.
[90]

McLennan S M, Taylor S R, Eriksson K A, et al. Geochemistry of Archean shales from the Pilbara Supergroup, western Australia[J]. Geochimica et Cosmochimica Acta, 1983, 47(7): 1211-1222.
[91]

Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[92]

Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[93]

Rudnick R L, Gao S. 3.01- Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.
[94] 汪烨辉,谢远云,康春国,等. 科尔沁沙地粗—细组分的碎屑锆石 U-Pb年龄特征:对定量物源及区域构造—岩浆演化事件的指示[J/OL]. 地质学报,doi: 10.19762/j.cnki.dizhixuebao.2023041.

Wang Yehui, Xie Yuanyun, Kang Chunguo, et al. Detrital zircon U-Pb age signatures of coarse-fine fractions in the Horqin sand land: Implications for quantitative provenance and regional tectonic-magmatic evolutionary events[J/OL]. Acta Geologica Sinica, doi: 10.19762/j.cnki.dizhixuebao.2023041.
[95] 孔令耀,郭盼,万俊,等. 大别造山带中元古代变沉积岩碎屑锆石U-Pb年代学与Hf同位素特征及其地质意义[J]. 地球科学,2022,47(4):1333-1348.

Kong Lingyao, Guo Pan, Wan Jun, et al. Detrital zircon U-Pb geochronology and Hf isotopes of Mesoproterozoic metasedimentary rocks in Dabie Orogen and its geological significance[J]. Earth Science, 2022, 47(4): 1333-1348.
[96] 李锦轶,高立明,孙桂华,等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报,2007(3):565-582.

Li Jinyi, Gao Liming, Sun Guihua, et al. Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates[J]. Acta Petrologica Sinica, 2007(3): 565-582.
[97]

Jian P, Liu D Y, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1/2): 169-190.
[98]

Wang Y N, Xu W L, Wang F. Transition from a passive to active continental margin setting for the NE Asian continental margin during the Mesozoic: Insights from the sedimentary formations and paleogeography of the eastern Jiamusi massif, NE China[J]. GSA Bulletin, 2022, 134(1/2): 94-112.
[99]

Wilde S A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus paleo-Pacific plate subduction-a review of the evidence[J]. Tectonophysics, 2015, 662: 345-362.
[100] 吴福元,王建刚,刘传周,等. 大洋岛弧的前世今生[J]. 岩石学报,2019,35(1):1-15.

Wu Fuyuan, Wang Jiangang, Liu Chuanzhou, et al. Intra-oceanic arc: Its formation and evolution[J]. Acta Petrologica Sinica, 2019, 35(1): 1-15.
[101]

Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364.
[102]

Zhou J B, Wilde S A. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1365-1377.
[103]

Guo L, Wang T, Castro A, et al. Petrogenesis and evolution of Late Mesozoic granitic magmatism in the Hohhot metamorphic core complex, Daqing Shan, North China[J]. International Geology Review, 2012, 54(16): 1885-1905.
[104]

Wu F Y, Yang J H, Xu Y G, et al. Destruction of the North China Craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 173-195.
[105]

Ma Q, Xu Y G. Magmatic perspective on subduction of paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 2021, 213: 103473.
[106]

Yang W, Li S G. Geochronology and geochemistry of the Mesozoic volcanic rocks in western Liaoning: Implications for lithospheric thinning of the North China Craton[J]. Lithos, 2008, 102(1/2): 88-117.
[107]

Jiang Y H, Jiang S Y, Ling H F, et al. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China[J]. Mineralogy and Petrology, 2010, 100(3/4): 127-151.
[108] 刘永江,冯志强,蒋立伟,等. 中国东北地区蛇绿岩[J]. 岩石学报,2019,35(10):3017-3047.

Liu Yongjiang, Feng Zhiqiang, Jiang Liwei, et al. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 2019, 35(10): 3017-3047.
[109]

Fang W, Dai L Q, Zheng Y F, et al. Identification of Jurassic mafic arc magmatism in the eastern North China Craton: Geochemical evidence for westward subduction of the paleo-Pacific slab[J]. GSA Bulletin, 2021, 133(7/8): 1404-1420.