[1] Sholkovitz E R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 831-845.
[2] Elderfield H, Upstill-Goddard R, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971-991.
[3] Wang Z L, Liu C Q. Geochemistry of rare earth elements in the dissolved, acid-soluble and residual phases in surface waters of the Changjiang Estuary[J]. Journal of Oceanography, 2008, 64(3): 407-416.
[4] Sun X S, Fan D J, Liu M, et al. Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment[J]. Environmental Pollution, 2018, 241: 938-949.
[5] Sholkovitz E R. The geochemistry of rare earth elements in the Amazon River Estuary[J]. Geochimica et Cosmochimica Acta, 1993, 57(10): 2181-2190.
[6] 吴明清,王贤觉. 东海沉积物的稀土和微量元素[J]. 地球化学,1991(1):40-46.

Wu Mingqing, Wang Xianjue. Rare-earth and trace elements in the East China Sea sediments[J]. Geochimica, 1991(1): 40-46.
[7] Thorpe C L, Lloyd J R, Law G T W, et al. Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments[J]. Chemical Geology, 2012, 306-307: 114-122.
[8] 刘宝珺. 沉积岩石学[M]. 北京:地质出版社,1980:286-289.

Liu Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1980: 286-289.
[9] Jaraula C M B, Siringan F P, Klingel R, et al. Records and causes of Holocene salinity shifts in Laguna de Bay, Philippines[J]. Quaternary International, 2014, 349: 207-220.
[10] Wang A H, Wang Z H, Liu J K, et al. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta[J]. Chemical Geology, 2021, 559: 119923.
[11] Chen Z Y, Chen Z L, Zhang W G. Quaternary stratigraphy and trace-element indices of the Yangtze Delta, eastern China, with special reference to marine transgressions[J]. Quaternary Research, 1997, 47(2): 181-191.
[12] 魏巍, Algeo T J,陆永潮,等. 古盐度指标与渤海湾盆地古近系海侵事件初探[J]. 沉积学报,2021,39(3):571-592.

Wei Wei, Algeo T J, Lu Yongchao, et al. Paleosalinity proxies and marine incursions into the Paleogene Bohai Bay Basin lake system, northeastern China[J]. Acta Sedimentologica Sinica, 2021, 39(3): 571-592.
[13] 王爱华,叶思源,刘建坤,等. 不同选择性提取方法锶钡比的海陆相沉积环境判别探讨:以现代黄河三角洲为例[J]. 沉积学报,2020,38(6):1226-1238.

Wang Aihua, Ye Siyuan, Liu Jiankun, et al. Discrimination between marine and terrestrial sedimentary environments by the selectively extracted Sr/Ba ratio: A case of sediments in the Yellow River Delta[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1226-1238.
[14] Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters, 2002, 201(2): 407-419.
[15] Yang S Y, Li C X, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139.
[16] Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited[J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38.
[17] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. Nature, 1979, 279(5710): 206-210.
[18] Su N, Yang S Y, Guo Y L, et al. Revisit of rare earth element fractionation during chemical weathering and river sediment transport[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3): 935-955.
[19] Duddy L R. Redistribution and fractionation of rare-earth and other elements in a weathering profile[J]. Chemical Geology, 1980, 30(4): 363-381.
[20] Garzanti E, Andó S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh)[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 107-120.
[21] Garzanti E, Andò S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga⁃Brahmaputra, Bangladesh)[J]. Earth and Planetary Science Letters, 2010, 299(3/4): 368-381.
[22] Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1): 35-47.
[23] Sholkovitz E, Szymczak R. The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems[J]. Earth and Planetary Science Letters, 2000, 179(2): 299-309.
[24] Lawrence M G, Kamber B S. The behaviour of the rare earth elements during estuarine mixing—revisited[J]. Marine Chemistry, 2006, 100(1/2): 147-161.
[25] 陈吉余,沈焕庭,恽才兴. 长江河口动力过程和地貌演变[M]. 上海:上海科学技术出版社,1988:283-403.

Chen Jiyu, Shen Huanting, Yun Caixing. Processes of dynamics and geomorphology of the Yangtze Estuary[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988: 283-403.
[26] 恽才兴. 长江河口近期演变基本规律[M]. 北京:海洋出版社,2004:1-47.

Yun Caixing. The recent evolution basic law in the Yangtze River Estuary[M]. Beijing: China Ocean Press, 2004: 1-47.
[27] 沈焕庭. 长江河口物质通量[M]. 北京:海洋出版社,2001:60-80.

Shen Huanting. Material flux of the Changjiang Estuary[M]. Beijing: China Ocean Press, 2001: 60-80.
[28] Obodoefuna D C, Fan D D, Guo X J, et al. Highly accelerated siltation of abandoned distributary channel in the Yangtze Delta under everchanging social-ecological dynamics[J]. Marine Geology, 2020, 429: 106331.
[29] Wang Y H, Dong P, Oguchi T, et al. Long-term (1842-2006) morphological change and equilibrium state of the Changjiang (Yangtze) Estuary, China[J]. Continental Shelf Research, 2013, 56: 71-81.
[30] 何中发,杨守业,赵宝成,等. 长江口地区近1500年以来沉积物重金属含量变化及其对流域环境响应[J]. 海洋地质与第四纪地质,2019,39(2):21-30.

He Zhongfa, Yang Shouye, Zhao Baocheng, et al. Changes in heavy metal elements in the sediments from Changjiang Estuary and their environmental responses in recent 1500 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 21-30.
[31] 董永宏. 长江口—近岸陆架现代沉积物定年方法的研究探索[D]. 上海:华东师范大学,2010:36-75.

Dong Yonghong. The comparision and perspective on dating methods of recent sediments in the Yangtze River Estuary and adjacent shelf area[D]. Shanghai: East China Normal University, 2010: 36-75.
[32] Gao J H, Jia J, Sheng H, et al. Variations in the transport, distribution, and budget of 210Pb in sediment over the estuarine and inner shelf areas of the East China Sea due to Changjiang catchment changes[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(1): 235-247.
[33] 李军,胡邦琦,窦衍光,等. 中国东部海域泥质沉积区现代沉积速率及其物源控制效应初探[J]. 地质论评,2012,58(4):745-756.

Li Jun, Hu Bangqi, Dou Yanguang, et al. Modern sedimentation rate, budget and supply of the muddy deposits in the East China seas[J]. Geological Review, 2012, 58(4): 745-756.
[34] Qiao S Q, Shi X F, Wang G Q, et al. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea[J]. Marine Geology, 2017, 390: 270-281.
[35] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[36] 陈骏,王洪涛,鹿化煜. 陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J]. 地质学报,1996,70(1):61-72.

Chen Jun, Wang Hongtao, Lu Huayu. Behaviours of REE and other trace elements during pedological weathering—evidence from chemical leaching of loess and paleosol from the Luochuan section in central China[J]. Acta Geologica Sinica, 1996, 70(1): 61-72.
[37] 邹亮,韦刚健. 顺序提取法探讨沉积物中主量元素在不同相态的分配特征[J]. 海洋地质与第四纪地质,2007,27(2):133-140.

Zou Liang, Wei Gangjian. Distribution of major elements in sediment by sequential extraction procedures[J]. Marine Geology & Quaternary Geology, 2007, 27(2): 133-140.
[38] Snape I, Scouller R C, Stark S C, et al. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments[J]. Chemosphere, 2004, 57(6): 491-504.
[39] Choi M S, Yi H I, Yang S Y, et al. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios[J]. Marine Chemistry, 2007, 107(2): 255-274.
[40] 杨守业,王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报,2011,30(1):31-39.

Yang Shouye, Wang Zhongbo. Rare earth element compositions of the sediments from the major tributaries and the main stream of the Changjiang River[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 31-39.
[41] Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance[J]. Marine Geology, 2014, 357: 12-24.
[42] 何中发. 1.5ka以来长江入海沉积物组成变化及其对流域自然环境演变和人类活动响应[D]. 上海:同济大学,2019:32-177.

He Zhongfa. Variations in the Yangtze derived sediment compositions and theirresponse to natural environmental changes and human activities over the past 1500 years[D]. Shanghai: Tongji University, 2019: 32-177.
[43] 杨守业,李从先, Jung H S,等. 黄河沉积物中REE制约与示踪意义再认识[J]. 自然科学进展,2003,13(4):365-371.

Yang Shouye, Li Congxian, Jung H S, et al. Rerecognize the controlling and tracing implications of REE of Yellow River sediments[J]. Progress in Nature Science, 2003, 13(4): 365-371.
[44] Banner J L, Hanson G N, Meyers W J. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis[J]. Journal of Sedimentary Research, 1988, 58(3): 415-432.
[45] Hannigan R E, Sholkovitz E R. The development of middle rare earth element enrichments in freshwaters: Weathering of phosphate minerals[J]. Chemical Geology, 2001, 175(3/4): 495-508.
[46] Johannesson K H, Lyons W B, Yelken M A, et al. Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments[J]. Chemical Geology, 1996, 133(1/2/3/4): 125-144.
[47] Freslon N, Bayon G, Toucanne S, et al. Rare earth elements and neodymium isotopes in sedimentary organic matter[J]. Geochimica et Cosmochimica Acta, 2014, 140: 177-198.
[48] Galy V, France-Lanord C, Lartiges B. Loading and fate of particulate organic carbon from the Himalaya to the Ganga-Brahmaputra delta[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1767-1787.
[49] Bouchez J, Gaillardet J, Lupker M, et al. Floodplains of large rivers: Weathering reactors or simple silos?[J]. Chemical Geology, 2012, 332-333: 166-184.
[50] Lupker M, France-Lanord C, Galy V, et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga Basin)[J]. Geochimica et Cosmochimica Acta, 2012, 84: 410-432.
[51] Bouchez J, Gaillardet J, France-Lanord C, et al. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.
[52] Laceby J P, Evrard O, Smith H G, et al. The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: A review[J]. Earth-Science Reviews, 2017, 169: 85-103.
[53] Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A.[J]. Chemical Geology, 1987, 63(3/4): 275-297.
[54] Nesbitt H W, Macrae N D, Kronberg B I. Amazon deep-sea fan muds: Light REE enriched products of extreme chemical weathering[J]. Earth and Planetary Science Letters, 1990, 100(1/2/3): 118-123.
[55] Bayon G, German C R, Burton K W, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 477-492.
[56] Moflett J W. The relationship between cerium and manganese oxidation in the marine environment[J]. Limnology and Oceanography, 1994, 39(6): 1309-1318.
[57] Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579.
[58] 李俊,弓振斌,李云春,等. 长江口稀土元素地球化学特征[J]. 海洋学报,2005,27(5):164-172.

Li Jun, Gong Zhenbin, Li Yunchun, et al. Geochemical behaviors of rare earth elements in the estuary of Changjiang River in China[J]. Acta Oceanologica Sinica, 2005, 27(5): 164-172.
[59] Sholkovitz E R. The aquatic chemistry of rare earth elements in rivers and estuaries[J]. Aquatic Geochemistry, 1995, 1(1): 1-34.
[60] Sholkovitz E R, Elderfield H, Szymczak R, et al. Island weathering: River sources of rare earth elements to the western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1/2): 39-57.
[61] 杨作升,陈晓辉. 百年来长江口泥质区高分辨率沉积粒度变化及影响因素探讨[J]. 第四纪研究,2007,27(5):690-699.

Yang Zuosheng, Chen Xiaohui. Centurial high resolution records of sediment grain-size variation in the mud area off the Changjiang (Yangtze River) Estuary and its influencial factors[J]. Quaternary Sciences, 2007, 27(5): 690-699.
[62] 沈焕庭,徐海根,马相奇. 长江河口入海航道治理研究[J]. 海洋科学,1983(4):5-9.

Shen Huanting, Xu Haigen, Ma Xiangqi. On harnessing the sea-entering waterway of the Changjiang Estuary[J]. Marine Sciences, 1983(4): 5-9.
[63] 沈焕庭,李九发,肖成猷. 人类活动对长江河口过程的影响[J]. 气候与环境研究,1997,2(1):49-55.

Shen Huanting, Li Jiufa, Xiao Chengyou. Impacts of human activities on the processes of Changjiang Estuary[J]. Climatic and Environmental Research, 1997, 2(1): 49-55.
[64] Zhao J, Guo L C, He Q, et al. An analysis on half century morphological changes in the Changjiang Estuary: Spatial variability under natural processes and human intervention[J]. Journal of Marine Systems, 2018, 181: 25-36.
[65] Yang Y P, Li Y T, Sun Z H, et al. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: The trends and causes[J]. Journal of Geographical Sciences, 2014, 24(1): 129-142.