[1] 冉祥滨,于志刚,姚庆祯,等. 水库对河流营养盐滞留效应研究进展[J]. 湖泊科学,2009,21(5):614-622.

Ran Xiangbin, Yu Zhigang, Yao Qingzhen, et al. Advances in nutrient retention of dams on river[J]. Journal of Lake Sciences, 2009, 21(5): 614-622.
[2] Gong G C, Chang J, Chiang K P, et al. Reduction of primary production and changing of nutrient ratio in the East China Sea: Effect of the Three Gorges Dam?[J]. Geophysical Research Letters, 2006, 33(7): L07610.
[3] 李茂田,孙千里,王红,等. 长江流域水库“过滤器效应”对入海溶解硅通量的影响[J]. 湖泊科学,2014,26(4):505-514.

Li Maotian, Sun Qianli, Wang Hong, et al. The filter effect of big reservoirs on dissolved silicate flux decrease in the Yangtze River Drainage Basin[J]. Journal of Lake Sciences, 2014, 26(4): 505-514.
[4] 李磊,王云龙,蒋玫,等. 三峡工程蓄水后长江口溶解硅酸盐(DSi)、营养盐结构的变化特征及其生态影响分析[J]. 环境化学,2014,33(1):135-141.

Li Lei, Wang Yunlong, Jiang Mei, et al. Changes and impacts of dissolved silicate and nutrient structure in the Yangtze River Estuary and adjacent area after water storage of the Three Gorges Project[J]. Environmental Chemistry, 2014, 33(1): 135-141.
[5] Humborg C, Conley D J, Rahm L, et al. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments[J]. AMBIO: A Journal of the Human Environment, 2000, 29(1): 45-50.
[6] Jossette G, Leporcq B, Sanchez N, et al. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France)[J]. Biogeochemistry, 1999, 47(2): 119-146.
[7] Li M T, Xu K Q, Watanabe M, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 3-12.
[8] Li M T, Chen Z Y, Finlayson B, et al. Water diversion and sea-level rise: Potential threats to freshwater supplies in the Changjiang River estuary[J]. Estuarine, Coastal and Shelf Science, 2015, 156: 52-60.
[9] 刘宁宁. 近50年长江流域建坝与营养盐物质输送研究进展[J]. 环境化学,2017,36(7):1579-1587.

Liu Ningning. Review on the nutrients transport in Yangtze River with responses to the damming in the drainage basin in the past 50 years[J]. Environmental Chemistry, 2017, 36(7): 1579-1587.
[10] Jiao N Z, Zhang Y, Zeng Y H, et al. Ecological anomalies in the East China Sea: Impacts of the Three Gorges Dam?[J]. Water Research, 2007, 41(6): 1287-1293.
[11] Klausmeier C A, Litchman E, Daufresne T, et al. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton[J]. Nature, 2004, 429(6988): 171-174.
[12] 周建军,张曼,李哲. 长江上游水库改变干流磷通量、效应与修复对策[J]. 湖泊科学,2018,30(4):865-880.

Zhou Jianjun, Zhang Man, Li Zhe. Dams altered Yangtze River phosphorus and restoration countermeasures[J]. Journal of Lake Sciences, 2018, 30(4): 865-880.
[13] 陈沈良,陈吉余. 河流建坝对海岸的影响[J]. 科学,2002,54(1):12-15.

Chen Shenliang, Chen Jiyu. Impacts of river dam construction on coast[J]. Science, 2002, 54(1): 12-15.
[14] 孟宪伟,刘焱光,王湘芹. 河流入海物质通量对海、陆环境变化的响应[J]. 海洋科学进展,2005,23(4):391-397.

Meng Xianwei, Liu Yanguang, Wang Xiangqin. Material flux from river to sea and its response to land and sea environment changes[J]. Advances in Marine Science, 2005, 23(4): 391-397.
[15] Marin A, Montoya S, Vita R, et al. Utility of sea urchin embryo–larval bioassays for assessing the environmental impact of marine fishcage farming[J]. Aquaculture, 2007, 271(1/2/3/4): 286-297.
[16] 叶曦雯,刘素美,张经. 生物硅的测定及其生物地球化学意义[J]. 地球科学进展,2003,18(3):420-426.

Ye Xiwen, Liu Sumei, Zhang Jing. The determination of biogenic silica and its biogeochemistry significance[J]. Advance in Earth Sciences, 2003, 18(3): 420-426.
[17] Li M T, Wang H, Li Y M, et al. Sedimentary BSi and TOC quantifies the degradation of the Changjiang Estuary, China, from river basin alteration and warming SST[J]. Estuarine, Coastal and Shelf Science, 2016, 183: 392-401.
[18] 季婧,曾令晗,卞昊昆,等. 近50年以来的东洞庭湖沉积物中氮磷硅元素变化与区域环境演变[J]. 第四纪研究,2018,38(4):1017-1023.

Ji Jing, Zeng Linghan, Bian Haokun, et al. Variations in sedimentary nitrogen, phosphorus and silicon and regional environmental changes in East Dongting Lake in recent 50 years[J]. Quaternary Sciences, 2018, 38(4): 1017-1023.
[19] Hereher M E, Salem M I, Darwish D H. Mapping water quality of Burullus Lagoon using remote sensing and geographic information system[J]. Journal of American Science, 2010, 7(1): 138-143.
[20] Shaltout K H, Khalil M T. Lake burullus: Burullus protected area[M]. Cairo: Publication of National Biodiversity Unit, 2005: 29-32.
[21] Zalat A, Vildary S S. Distribution of diatom assemblages and their relationship to environmental variables in the surface sediments of three northern Egyptian lakes[J]. Journal of Paleolimnology, 2005, 34(2): 159-174.
[22] Coutellier V, Stanley D J. Late Quaternary stratigraphy and paleogeography of the eastern Nile Delta, Egypt[J]. Marine Geology, 1987, 77(3/4): 257-275.
[23] Ameen N, El Beialy S, Ayyad S, et al. Environmental and human impact on the microbiotic assemblage in the Burullus Lagoon, North Nile Delta, Egypt[J]. Micropaleontology, 2013, 59(2-3): 133-144.
[24] Nixon S W. Replacing the Nile: Are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river?[J]. AMBIO: A Journal of the Human Environment, 2003, 32(1): 30-39.
[25] Stanley D J. Nile delta: Extreme case of sediment entrapment on a delta plain and consequent coastal land loss[J]. Marine Geology, 1996, 129(3/4): 189-195.
[26] Whaby S D, Bishara N F. The effect of River Nile on Mediterranean water before and after the construction of the High Dam at Aswan[M]//Matin I M, Burton J D, Eisma D. River inputs to ocean systems. New York: United Nations, 1980: 311-318.
[27] Ramdani M, Flower R J, Elkhiati N, et al. North African wetland lakes: Characterization of nine sites included in the CASSARINA Project[J]. Aquatic Ecology, 2001, 35(3/4): 281-302.
[28] Appleby P G, Birks H H, Flower R J, et al. Radiometrically determined dates and sedimentation rates for recent sediments in nine North African wetland lakes (the CASSARINA Project)[J]. Aquatic Ecology, 2001, 35(3/4): 347-367.
[29] Chen Z Y, Salem A, Xu Z, et al. Ecological implications of heavy metal concentrations in the sediments of Burullus Lagoon of Nile Delta, Egypt[J]. Estuarine, Coastal and Shelf Science, 2010, 86(3): 491-498.
[30] Appleby P G, Oldfieldz F. The assessment of 210Pb data from sites with varying sediment accumulation rates[J]. Hydrobiologia, 1983, 103(1): 29-35.
[31] Stanley D J. Subsidence in the northeastern Nile Delta: Rapid rates, possible causes, and consequences[J]. Science, 1988, 240(4851): 497-500.
[32] Stanley D J. Recent subsidence and northeast tilting of the Nile delta, Egypt[J]. Marine Geology, 1990, 94(1/2): 147-154.
[33] Siegel F R, Slaboda M L, Stanley D J. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture[J]. Environmental Geology, 1994, 23(2): 89-98.
[34] 顾家伟. 210Pb和137Cs计年在尼罗河三角洲的应用现状与适用性分析[J]. 地球与环境,2014,42(3):279-285.

Gu Jiawei. Chronological application of 210Pb and 137Cs in the Nile Delta and its practical implication[J]. Earth and Environment, 2014, 42(3): 279-285.
[35] Dunn R J K, Welsh D T, Teasdale P R, et al. Investigating the distribution and sources of organic matter in surface sediment of Coombabah Lake (Australia) using elemental, isotopic and fatty acid biomarkers[J]. Continental Shelf Research, 2008, 28(18): 2535-2549.
[36] Ludwig W, Dumont E, Meybeck M, et al. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?[J]. Progress in Oceanography, 2009, 80(3/4): 199-217.
[37] Dumont H J, El-Shabrawy G M. Lake Borullus of the Nile Delta: A short history and an uncertain future[J]. AMBIO: A Journal of the Human Environment, 2007, 36(8): 677-682.
[38] Oczkowski A, Nixon S. Increasing nutrient concentrations and the rise and fall of a coastal fishery; a review of data from the Nile Delta, Egypt[J]. Estuarine, Coastal and Shelf Science, 2008, 77(3): 309-319.
[39] Lin R G, Yoon W D, Wu J Y, et al. The N/P ratio in the northern South Yellow Sea in Autumn[J]. Chinese Journal of Oceanology and Limnology, 2002, 20(4): 384-388.
[40] 王朝晖,李友富,牟德海. 大亚湾大鹏澳海域C、N、BSi的沉积记录研究[J]. 海洋环境科学,2010,29(1):1-7.

Wang Zhaohui, Li Youfu, Mu Dehai. Study on sedimentary record of TOC, TN and BSi in Dapengao area of Daya Bay[J]. Marine Environmental Science, 2010, 29(1): 1-7.
[41] 李茂田,程和琴. 近50年来长江入海溶解硅通量变化及其影响[J]. 中国环境科学,2001,21(3):193-197.

Li Maotian, Cheng Heqin. Changes of dissolved silicate flux from the Changjiang River into sea and its influence since late 50 years[J]. China Environmental Science, 2001, 21(3): 193-197.
[42] Garnier J, Beusen A, Thieu V, et al. N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach[J]. Global Biogeochemical Cycles, 2010, 24(4): GB0A05.
[43] Gao L, Wang Z W, Shan J J, et al. Aquatic environmental changes and anthropogenic activities reflected by the sedimentary records of the Shima River, southern China[J]. Environmental Pollution, 2017, 224: 70-81.
[44] Ounissi M, Amira A B, Dulac F. Riverine and wet atmospheric inputs of materials to a North Africa coastal site (Annaba Bay, Algeria)[J]. Progress in Oceanography, 2018, 165: 19-34.
[45] Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386(6623): 385-388.
[46] Humborg C, Smedberg E, Medina M R, et al. Changes in dissolved silicate loads to the Baltic Sea -The effects of lakes and reservoirs[J]. Journal of Marine Systems, 2008, 73(3/4): 223-235.
[47] Krom M, Kress N, Berman-Frank I, et al. Past, present and future patterns in the nutrient chemistry of the eastern Mediterranean[M]//Goffredo S, Dubinsky Z. The Mediterranean Sea: Its history and present challenges. Dordrecht: Springer, 2014: 49-68.