[1] Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury[J]. Annual Review of Ecology and Systematics, 1998, 29: 543-566.
[2] Selin N E. Global biogeochemical cycling of mercury: A review[J]. Annual Review of Environment and Resources, 2009, 34(1): 43-63.
[3] Shen J, Algeo T J, Chen J B, et al. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin[J]. Earth and Planetary Science Letters, 2019, 511: 130-140.
[4] Shen J, Feng Q L, Algeo T J, et al. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy[J]. Earth and Planetary Science Letters, 2020, 543: 116333.
[5] Pérez-Rodríguez M, Horák-Terra I, Rodríguez-Lado L, et al. Long-term (~57 ka) controls on mercury accumulation in the souther hemisphere reconstructed using a peat record from pinheiro mire (minas gerais, brazil)[J]. Environmental Science & Technology, 2015, 49(3): 1356-1364.
[6] Fadina O A, Venancio I M, Belem A, et al. Paleoclimatic controls on mercury deposition in northeast Brazil since the Last Interglacial[J]. Quaternary Science Reviews, 2019, 221: 105869.
[7] Jitaru P, Gabrielli P, Marteel A, et al. Atmospheric depletion of mercury over Antarctica during glacial periods[J]. Nature Geoscience, 2009, 2(7): 505-508.
[8] Obrist D. Atmospheric mercury pollution due to losses of terrestrial carbon pools?[J]. Biogeochemistry, 2007, 85(2): 119-123.
[9] Wang X, Yuan W, Lin C J, et al. Climate and vegetation as primary drivers for global mercury storage in surface soil[J]. Environmental Science & Technology, 2019, 53(18): 10665-10675.
[10] Wang X, Luo J, Yin R S, et al. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the eastern Tibetan Plateau[J]. Environmental Science & Technology, 2017, 51(2): 801-809.
[11] Wang X, Yuan W, Lin C J, et al. Underestimated sink of atmospheric mercury in a deglaciated forest chronosequence[J]. Environmental Science & Technology, 2020, 54(13): 8083-8093.
[12] Mailman M, Bodaly R A. Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in northwestern Ontario[J]. Environmental Pollution, 2005, 138(1): 161-166.
[13] Campos I, Vale C, Abrantes N, et al. Effects of wildfire on mercury mobilisation in eucalypt and pine forests[J]. CATENA, 2015, 131: 149-159.
[14] 侍文芳,冯新斌,张干,等. 150年以来红原雨养型泥炭中高分辨的汞同位素沉积记录[J]. 科学通报,2011,56(8):583-588.

Shi Wenfang, Feng Xinbin, Zhang Gan, et al. High-precision measurement of mercury isotope records of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan province, China[J]. Chinese Science Bulletin, 2011, 56(8): 583-588.
[15] 李远平,马春梅,朱诚,等. 大九湖泥炭地距今16000年以来Hg沉积记录及影响因子[J]. 中国环境科学,2017,37(3):1103-1110.

Li Yuanping, Ma Chunmei, Zhu Cheng, et al. Long-term (16000yr) controls on mercury accumulation reconstructed using a peat record from Dajiuhu mire, central China[J]. China Environmental Science, 2017, 37(3): 1103-1110.
[16] Zaarur S, Stein M, Adam O, et al. Late Quaternary climate in southern China deduced from Sr-Nd isotopes of Huguangyan Maar sediments[J]. Earth and Planetary Science Letters, 2018, 496: 10-19.
[17] Xue J B, Zhong W, Xie L C, et al. Millennial-scale variability in biomass burning covering the interval ~41,000-7050 cal BP in the tropical Leizhou Peninsula (south China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 344-351.
[18] Xue J B, Zhong W, Xie L C, et al. Vegetation responses to the last glacial and Early Holocene environmental changes in the northern Leizhou Peninsula, south China[J]. Quaternary Research, 2015, 84(2): 223-231.
[19] Xue J B, Zhong W, Cao J Y. Changes in C3 and C4 plant abundances reflect climate changes from 41,000 to 10,000 yr ago in northern Leizhou Peninsula, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 396: 173-182.
[20] Sanei H, Grasby S E, Beauchamp B. Latest Permian mercury anomalies[J]. Geology, 2012, 40(1): 63-66.
[21] Reimer P J, Austin W E N, Bard E, et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757.
[22] 钟巍,薛积彬,甄治国,等. 雷州半岛北部晚更新世晚期气候环境变化的泥炭沉积记录[J]. 海洋地质与第四纪地质,2007,27(6):97-104.

Zhong Wei, Xue Jibin, Zhen Zhiguo, et al. The climatic changes during late Late-Pleistocene indicated by peat deposit in the north Leizhou peninsula[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 97-104.
[23] 钟巍,陈援翰,魏志强,等. 近50ka以来雷州半岛北部泥炭序列87Sr/86Sr比值变化的环境意义研究[J]. 华南师范大学学报(自然科学版),2018,50(5):89-97.

Zhong Wei, Chen Yuanhan, Wei Zhiqiang, et al. The paleoenvironmental significance of 87Sr/86Sr derived from peat successions over the Past ~50 000 years on northern Leizhou Peninsula, North Tropic China[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(5): 89-97.
[24] Friedli H R, Radke L F, Lu J Y, et al. Mercury emissions from burning of biomass from temperate North American forests: Laboratory and airborne measurements[J]. Atmospheric Environment, 2003, 37(2): 253-267.
[25] Enrico M, Roux G L, Marusczak N, et al. Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition[J]. Environmental Science & Technology, 2016, 50(5): 2405-2412.
[26] 黄银晓,林舜华,姚依群,等. 植物对汞的吸收和反应[J]. 植物学通报,1983(1):47-49.

Huang Yinxiao, Lin Shunhua, Yao Yiqun, et al. The absorption and response of plants to mercury[J]. Botany Bulletin, 1983(1): 47-49.
[27] Obrist D, Johnson D W, Lindberg S E, et al. Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils[J]. Environmental Science & Technology, 2011, 45(9): 3974-3981.
[28] Leonard T L, Taylor G E, Gustin M S, et al. Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere[J]. Environmental Toxicology and Chemistry, 1998, 17(10): 2063-2071.
[29] Leonard T L, Taylor G E, Gustin M S, et al. Mercury and plants in contaminated soils: 2. Environmental and physiological factors governing mercury flux to the atmosphere[J]. Environmental Toxicology and Chemistry, 1998, 17(10): 2072-2079.
[30] Burke M P, Hogue T S, Ferreira M, et al. The effect of wildfire on soil mercury concentrations in southern California watersheds[J]. Water, Air, & Soil Pollution, 2010, 212(1): 369-385.
[31] Certini G. Effects of fire on properties of forest soils: A review[J]. Oecologia, 2005, 143(1): 1-10.
[32] 刘发林,陈小伟,曾素平,等. 火干扰对森林土壤斥水性的影响研究进展[J]. 生态学报,2019,39(5):1846-1852.

Liu Falin, Chen Xiaowei, Zeng Suping, et al. Progress of the effects of fire disturbance on forest soil water repellency[J]. Acta Ecologica Sinica, 2019, 39(5): 1846-1852.
[33] Obrist D, Kirk J L, Zhang L, et al. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use[J]. Ambio, 2018, 47(2): 116-140.
[34] Vandal G M, Fitzgerald W F, Boutron C F, et al. Variations in mercury deposition to Antarctica over the past 34,000 years[J]. Nature, 1993, 362(6421): 621-623.
[35] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
[36] Xiao J L, An Z S, Liu T S, et al. East Asian monsoon variation during the last 130,000 years: Evidence from the Loess Plateau of central China and Lake Biwa of Japan[J]. Quaternary Science Reviews, 1999, 18(1): 147-157.
[37] Ruth U, Bigler M, Röthlisberger R, et al. Ice core evidence for a very tight link between North Atlantic and East Asian glacial climate[J]. Geophysical Research Letters, 2007, 34(3): L03706.
[38] Charbonnier G, Adatte T, Föllmi K B, et al. Effect of intense weathering and postdepositional degradation of organic matter on Hg/TOC proxy in organic‐rich sediments and its Implications for deep‐time investigations[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008707.
[39] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348.
[40] 程海,艾思本,王先锋,等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究,2005,25(2):157-163.

Cheng Hai, Edwards R L, Wang Xianfeng, et al. Oxygen isotope records of stalagmites from southern China[J]. Quaternary Sciences, 2005, 25(2): 157-163.
[41] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77.
[42] 刘毅,孙立广,罗宇涵,等. 南海湖泊沉积物中的陆源粉尘记录[J]. 海洋地质与第四纪地质,2013,33(3):1-8.

Liu Yi, Sun Liguang, Luo Yuhan, et al. Records of terrigenous dust in lacustrine sediments from Dongdao Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2013, 33(3): 1-8.
[43] Pérez-Rodríguez M, Margalef O, Corella J P, et al. The role of climate: 71 ka of atmospheric mercury deposition in the southern hemisphere recorded by Rano Aroi Mire, Easter Island (Chile)[J]. Geosciences, 2018, 8(10): 374.
[44] Figueiredo T S, Santos T P, Costa K B, et al. Effect of deep Southwestern Subtropical Atlantic Ocean circulation on the biogeochemistry of mercury during the last two glacial/interglacial cycles[J]. Quaternary Science Reviews, 2020, 239: 106368.
[45] Goodsite M E, Plane J M C, Skov H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere[J]. Environmental Science & Technology, 2004, 38(6): 1772-1776.
[46] Martı́nez-Cortizas A, Pontevedra-Pombal X, Garcı́a-Rodeja E, et al. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition[J]. Science, 1999, 284(5416): 939-942.
[47] Stern G A, Macdonald R W, Outridge P M, et al. How does climate change influence arctic mercury?[J]. Science of the Total Environment, 2012, 414: 22-42.