[1] |
Zeng M X, Ma C M, Zhu C, et al. Influence of climate change on the evolution of ancient culture from 4500 to 3700 cal. yr BP in the Chengdu Plain, upper reaches of the Yangtze River, China[J]. Catena, 2016, 147: 742-754. |
[2] |
Zeng M X, Zhu C, Song Y G, et al. Significance of fluvial landform evolution and river reorganization in settlement development over the past 50 ka: A case study of Baodun site on Chengdu Plain, SW China[J]. Geomorphology, 2022, 409: 108267. |
[3] |
Wu J H, Zeng M Z, Zhu C, et al. Human activities flexibility under volatile environment conditions around 4000 a BP: Insights from the Jinsha site in the Chengdu Plain, SW China[J]. Quaternary Science Reviews, 2024, 326: 108501. |
[4] |
Wu J H, Zeng M X, Liu Y F, et al. Drivers of prehistoric cultural evolution in the Chengdu Plain: Fire events and environmental changes during the Middle and Late Holocene[J]. Ecological Indicators, 2024, 169: 112833. |
[5] |
Sheng E G, Liu B, Peng H J, et al. Hydroclimatic variations in southwestern China during the Middle to Late Holocene transition and effects on the evolution of Late Neolithic cultures in the Upper Yangtze River Valley[J]. Quaternary Science Reviews, 2025, 352: 109225. |
[6] |
黄明,马春梅,朱诚. 成都平原中—晚全新世环境考古研究进展[J]. 古地理学报,2017,19(6):1087-1098.
Huang Ming, Ma Chunmei, Zhu Cheng. Progress of the Mid-Late Holocene environmental archaeology in Chengdu Plain[J]. Journal of Palaeogeography, 2017, 19(6): 1087-1098. |
[7] |
徐佳佳. 成都平原中晚全新世典型遗址环境考古研究[D]. 南京:南京大学,2017.
Xu Jiajia. Mid-to Late Holocene environmental archaeology in Chengdu Plain, China[D]. Nanjing: Nanjing University, 2017. |
[8] |
付顺,李奋生,颜照坤,等. 成都平原全新世气候变迁与古蜀文化演进相关性研究[J]. 四川师范大学学报(自然科学版),2011,34(3):417-421.
Fu Shun, Li Fensheng, Yan Zhaokun, et al. The study of relativity on Chengdu Plain Holocene climatic change and the evolution of ancient Shu Culture[J]. Journal of Sichuan Normal University (Natural Science), 2011, 34(3): 417-421. |
[9] |
黄明,马春梅,何锟宇,等. 成都平原宝墩遗址中晚全新世孢粉记录的环境变迁及人类活动[J]. 第四纪研究,2022,42(4):1078-1093.
Huang Ming, Ma Chunmei, He Kunyu, et al. Environmental changes and human activities recorded by the pollen in the Middle-Late Holocene at Baodun site, Chengdu Plain[J]. Quaternary Sciences, 2022, 42(4): 1078-1093. |
[10] |
Huang M, Zhu C, Ma C M, et al. Paleoenvironmental context of the evolution of the Baodun Culture at Chengdu Plain, Sichuan province, China[J]. The Holocene, 2019, 29(11): 1731-1742. |
[11] |
罗丽萍,朱利东,向芳,等. 成都平原4 000 a BP以来的孢粉记录与环境变化[J]. 古生物学报,2008,47(2):195-202.
Luo Liping, Zhu Lidong, Xiang Fang, et al. Spore-pollen assemblage and environmental changes of the Chengdu Plain during the Late Holocene[J]. Acta Palaeontologica Sinica, 2008, 47(2): 195-202. |
[12] |
Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3): 243-255. |
[13] |
Giosan L, Clift P D, Macklin M G, et al. Fluvial landscapes of the Harappan civilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): E1688-E1694. |
[14] |
Walker M, Head M H, Berklehammer M, et al. Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/subseries[J]. Episodes, 2018, 41(4): 213-223. |
[15] |
Sun Q L, Liu Y, Wünnemann B, et al. Climate as a factor for Neolithic cultural collapses approximately 4000 years BP in China[J]. Earth-Science Reviews, 2019, 197: 102915. |
[16] |
Liu F G, Feng Z D. A dramatic climatic transition at ∼4 000 cal. yr B P and its cultural responses in Chinese cultural domains[J]. The Holocene, 2012, 22(10): 1181-1197. |
[17] |
Nan Q, Chen S Q, Liu X K, et al. The 4.2 ka event in the Northern Hemisphere: Spatial heterogeneity and driving mechanisms of hydroclimatic change[J]. Earth-Science Reviews, 2025, 265: 105128. |
[18] |
Tan L C, Cai Y J, Cheng H, et al. Centennial-to decadal-scale monsoon precipitation variations in the Upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482: 580-590. |
[19] |
Tan L C, Li Y Z, Wang X Q, et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273. |
[20] |
Huang C C, Pang J L, Zha X, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China[J]. Quaternary Science Reviews, 2011, 30(3/4): 460-468. |
[21] |
Guo L X, Hsieh M L, Gorodetskaya O, et al. Jianghan Plain, the locale of China’s Great Flood four thousand years ago[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2023, 34(1): 14. |
[22] |
Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Pe-trology, 1957, 27(1): 3-26. |
[23] |
鹿化煜,安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学:地球科学,1998,28(3):278-283.
Lu Huayu, An Zhisheng. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science China Earth Sciences, 1998, 28(3): 278-283. |
[24] |
陈敬安,万国江,张峰,等. 不同时间尺度下的湖泊沉积物环境记录:以沉积物粒度为例[J]. 中国科学:地球科学,2003,33(6):563-568.
Chen Jing’an, Wan Guojiang, Zhang Feng, et al. Environmental records of lacustrine sediments in different time scales: Sediment grain size as an example[J]. Science China Earth Sciences, 2003, 33(6): 563-568. |
[25] |
孙东怀,安芷生,苏瑞侠,等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展,2001,11(3):269-276.
Sun Donghuai, An Zhisheng, Su Ruixia, et al. Mathematicalapproach to sedimentary component partitioning of polymodalsediments and its applications[J]. Progress in Natural Science, 2001, 11(3): 269-276. |
[26] |
Dietze M, Schulte P, Dietze E. Application of end-member modelling to grain-size data: Constraints and limitations[J]. Sedimentology, 2022, 69(2): 845-863. |
[27] |
孙有斌,高抒,李军. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报,2003,48(1):83-86.
Sun Youbin, Gao Shu, Li Jun. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous components in marginal sea setting[J]. Chinese Science Bulletin, 2003, 48(1): 83-86. |
[28] |
Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180. |
[29] |
程良清,宋友桂,李越,等. 粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用[J]. 沉积学报,2018,36(6):1148-1156.
Cheng Liangqing, Song Yougui, Li Yue, et al. Preliminary application of grain size end member model for dust source tracing of Xinjiang Loess and paleoclimate reconstruction[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1148-1156. |
[30] |
朱海,张玉芬,李长安. 端元分析在长江武汉段古洪水识别中的应用[J]. 沉积学报,2020,38(2):297-305.
Zhu Hai, Zhang Yufen, Li Chang’an. The application of end-member analysis in identification of paleo-floods in Wuhan section of the Yangtze River[J]. Acta Sedimentologica Sinica, 2020, 38(2): 297-305. |
[31] |
梁斌,王全伟,朱兵,等. 川西地区成都粘土的光释光年代学[J]. 第四纪研究,2013,33(4):823-828.
Liang Bin, Wang Quanwei, Zhu Bing, et al. Optically stimulated luminescence dating of the Chengdu clay in the west Sichuan Basin[J]. Quaternary Sciences, 2013, 33(4): 823-828. |
[32] |
张露. 成都盆地第四纪古环境与古气候研究[D]. 成都:成都理工大学,2018.
Zhang Lu. Quaternary paleoenvironment and paleoclimate in Chengdu Basin[D]. Chengdu: Chengdu University of Technology, 2018. |
[33] |
孙吉. 成都平原更新世:全新世中期的地理环境与文明进入和选择[J]. 成都大学学报(社会科学版),2006(1):23-27.
Sun Ji. Geographic environment and civilization entry and selection in Pleistocene-Mid-Holocene of Chengdu Plain[J]. Journal of Chengdu University (Social Sciences), 2006(1): 23-27. |
[34] |
付小方,侯立玮,梁斌,等. 成都平原第四纪断裂及其活动性[M]. 北京:科学出版社,2013:10-15.
Fu Xiaofang, Hou Liwei, Liang Bin, et al. Quaternary faults and their activity in Chengdu Plain[M]. Beijing: Science Press, 2013: 10-15. |
[35] |
吕颖,张健平,唐淼,等. 植硅体分析揭示成都平原先秦农业发展及其环境背景分析:以宝墩和三星村遗址为例[J]. 第四纪研究,2021,41(5):1475-1488.
Ying Lü, Zhang Jianping, Tang Miao, et al. Phytolith analysis reveals the agricultural development and environmental background of the pre-Qin period in Chengdu Plain: A case study of Baodun and Sanxingcun sites[J]. Quaternary Sciences, 2021, 41(5): 1475-1488. |
[36] |
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. |
[37] |
Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474. |
[38] |
Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. |
[39] |
Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506. |
[40] |
Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297. |
[41] |
马志颖,王洪松,袁庆政,等. 烟台芝罘区北部海域表层沉积物粒度特征及其对沉积动力环境的指示作用[J]. 海洋环境科学,2025,44(1):59-66.
Ma Zhiying, Wang Hongsong, Yuan Qingzheng, et al. Grain size characteristics of surface sediments in the northern waters of Zhifu district, Yantai and their indications of the sedimentary dynamical environment[J]. Marine Environmental Science, 2025, 44(1): 59-66. |
[42] |
张涛,牛丽霞,何方婷,等. 人类活动影响下伶仃洋沉积格局演变特征[J]. 沉积学报,2022,40(3):753-764.
Zhang Tao, Niu Lixia, He Fangting, et al. Anthropogenic impact on evolution of Lingding Bay sedimentary framework[J]. Acta Sedimentologica Sinica, 2022, 40(3): 753-764. |
[43] |
张妤,杨萍果,赵辉,等. 运城盆地全新世黄土记录的千年尺度气候突变事件[J]. 第四纪研究,2024,44(6):1700-1712.
Zhang Yu, Yang Pingguo, Zhao Hui, et al. Millennium scale climate abrupt events recorded in the Holocene loess of the Yuncheng Basin[J]. Quaternary Sciences, 2024, 44(6): 1700-1712. |
[44] |
胡梦珺,许澳康,孙文丽,等. 青海湖湖东地区近32 ka BP以来风沙沉积的粒度端元特征及环境意义[J]. 现代地质,2024,38(2):487-496.
Hu Mengjun, Xu aokang, Sun Wenli, et al. Grain size end-member characteristics of the aeolian sediments in the east of Qinghai Lake and its environmental significance since 32 ka BP[J]. Geoscience, 2024, 38(2): 487-496. |
[45] |
刘阳,李瑜琴,黄春长,等. 黄河玛曲段晚全新世古洪水事件沉积记录及其气候背景研究[J]. 地理研究,2023,42(12):3147-3164.
Liu Yang, Li Yuqin, Huang Chunchang, et al. Sedimentary records and climatic background of Late Holocene palaeoflood events in the Maqu reaches of the Yellow River[J]. Geographical Research, 2023, 42(12): 3147-3164. |
[46] |
管静岚,战庆,赵小双,等. 基于尼罗河下游钻孔沉积物粒度端元分析的全新世流域水文气候变化[J]. 海洋与湖沼,2025,56(3):600-612.
Guan Jinglan, Zhan Qing, Zhao Xiaoshuang, et al. Holocene hydroclimatic changes of Nile River Basin highlighted by grain size end-member analysis of core sediments from its lower river basin[J]. Oceanologia et Limnologia Sinica, 2025, 56(3): 600-612. |
[47] |
Walling D E, Moorehead P W. The particle size characteristics of fluvial suspended sediment: An overview[J]. Hydrobiologia, 1989, 176(1): 125-149. |
[48] |
支钰,卞惠瑛,宋飞,等. 陕西洛南盆地黄土剖面色度参数及古气候变化[J]. 地质通报,2025,44(6):1151-1163.
Zhi Yu, Bian Huiying, Song Fei, et al. The chromaticity parameters and paleoclimate changes of loess profile in Luonan Basin, Shaanxi province[J]. Geological Bulletin of China, 2025, 44(6): 1151-1163. |
[49] |
马欢欢,戴霜,马晓军,等. 祁连山西段表土磁化率、色度特征与环境意义[J/OL]. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2024.034. doi: 10.14027/j.issn.1000-0550.2024.034
Ma Huanhuan, Dai Shuang, Ma Xiaojun, et al. Magnetic susceptibility and chromaticity characteristics of surface soil in the Western Qilian Mountains and their environmental significance[J/OL]. Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2024.034. doi: 10.14027/j.issn.1000-0550.2024.034 |
[50] |
韩一筱,宋友桂,程良清,等. 西藏林芝黄土记录的末次冰期粉尘活动与西风—季风变化[J]. 第四纪研究,2024,44(6):1688-1699.
Han Yixiao, Song Yougui, Cheng Liangqing, et al. Dust activity and Westerlies-monsoon variations during the last glacial period recorded in loess sediments in Linzhi area, southern Tibetan Plateau[J]. Quaternary Sciences, 2024, 44(6): 1688-1699. |
[51] |
Vandenberghe J, Sun Y, Wang X, et al. Grain-size characterization of reworked fine-grained aeolian deposits[J]. Earth-Science Reviews, 2018, 177: 43-52. |
[52] |
殷志强,秦小光,吴金水,等. 湖泊沉积物粒度多组分特征及其成因机制研究[J]. 第四纪研究,2008,28(2):345-353.
Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments[J]. Quaternary Sciences, 2008, 28(2): 345-353. |
[53] |
Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. CatenaA, 2004, 55(3): 325-340. |
[54] |
Woodward J, Macklin M, Fielding L, et al. Shifting sediment sources in the world's longest river: A strontium isotope record for the Holocene Nile[J]. Quaternary Science Reviews, 2015, 130: 124-140. |
[55] |
聂军胜,李曼. 柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义[J]. 第四纪研究,2017,37(5):1017-1026.
Nie Junsheng, Li Man. A grain size study on Late Miocene Huaitoutala section, NE Qaidam Basin, and its implications for Asian monsoon evolution[J]. Quaternary Sciences, 2017, 37(5): 1017-1026. |
[56] |
罗丽萍. 成都地区4ka以来环境—气候变化与其对古蜀文明的影响[D]. 成都:成都理工大学,2007:3-62.
Luo Liping. Environmental-climatic changes of Chengdu Plain from 4ka and it’s influence on ancient Shu Civilization[D]. Chengdu: Chengdu University of Technology, 2007: 3-62. |
[57] |
Wen X Y, Bai S, Zeng N, et al. Interruptions of the ancient Shu Civilization: Triggered by climate change or natural disaster?[J]. International Journal of Earth Sciences, 2013, 102(3): 933-947. |
[58] |
Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 221-232. |
[59] |
陈朝军. 2.9~ 8.2 ka BP期间亚洲夏季风的演化规律及对人类活动的影响[D]. 重庆:西南大学,2022.
Chen Chaojun. The evolution of Asian summer monsoon and its impact on human activities during 2.9~ 8.2 ka BP[D]. Chongqing: Southwest University, 2022. |
[60] |
于学峰,周卫健, Franzen L G,等. 青藏高原东部全新世冬夏季风变化的高分辨率泥炭记录[J]. 中国科学:地球科学,2006,36(2):182-187.
Yu Xuefeng, Zhou Weijian, Franzen L G, et al. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2006, 36(2): 182-187. |
[61] |
曾蒙秀. 四川西部晚冰期以来植被和气候变化及其对人类活动的影响[D]. 南京:南京大学,2017.
Zeng Mengxiu. The variation of vegetation and climate and its impact on human activities from Late Glacial Period in western Sichuan, China[D]. Nanjing: Nanjing University, 2017. |
[62] |
Hong B, Hong Y T, Uchida M, et al. Abrupt variations of Indian and East Asian summer monsoons during the last deglacial stadial and interstadial[J]. Quaternary Science Reviews, 2014, 97: 58-70. |
[63] |
Wang Z J, Chen S T, Wang Y J, et al. A high-resolution stalagmite record from Luoshui Cave, Central China over the past 23.5 kyr[J]. Quaternary Science Reviews, 2022, 282: 107443. |
[64] |
Wang D D, Li M Y, Zhang S R, et al. Spatial and temporal characteristics of the precipitation response to the 4.2 ka event in the Asian summer monsoon region[J]. Global and Planetary Change, 2022, 214: 103854. |
[65] |
Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275. |
[66] |
You H F, Li Y C, Zhang S R, et al. Climate and sea-level fluctuations on the western coast of Bohai Bay during the 4.2 ka event: Multi-proxy evidence from the Nandagang area of Cangzhou, China[J]. Quaternary Science Reviews, 2024, 324: 108467. |
[67] |
Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857. |
[68] |
Jiang X Y, He Y Q, Shen C C, et al. Replicated stalagmite-inferred centennial-to decadal-scale monsoon precipitation variability in southwest China since the mid Holocene[J]. The Holocene, 2013, 23(6): 841-849. |
[69] |
Wang T L, Li D, Cheng X, et al. Hydroclimatic changes in south-central China during the 4.2 ka event and their potential impacts on the development of Neolithic culture[J]. Quaternary Research, 2022, 109: 39-52. |
[70] |
Zhang H W, Cheng H, Cai Y J, et al. Hydroclimatic variations in southeastern China during the 4.2 ka event reflected by stalagmite records[J]. Climate of the Past, 2018, 14(11): 1805-1817. |
[71] |
Wu J J, Li Y, Liu Y Y, et al. Outburst floods and their impact on Chinese Neolithic cultures during the 4.2 ka BP event: Evidence from Dayeze Lake in the lower reaches of the Yellow River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2024, 655: 112513. |
[72] |
Chen C J, Wu Y, Li J Y, et al. Hydrological changes in the East Asian monsoon region around 4.2 ka precisely reconstructed from multi-proxy stalagmites[J]. Quaternary Science Reviews, 2025, 357: 109321. |
[73] |
胡文斌,乔雪,陈科艺,等. 基于降水特征的华西雨屏地理范围界定[J]. 山地学报,2023,41(5):662-675.
Hu Wenbin, Qiao Xue, Chen Keyi, et al. Geographic extent of the West China Rain Zone determined by precipitation characteristics[J]. Mountain Research, 2023, 41(5): 662-675. |
[74] |
贾天骄. 成都平原新石器时代以来地震与古洪水等事件环境考古研究[D]. 南京:南京大学,2016.
Jia Tianjiao. Environmental archaeological of the impacts of earthquake and paleofloods of the Neolithic Age in the Chengdu Plain, China[D]. Nanjing: Nanjing University, 2016. |
[75] |
Jia T J, Ma C M, Zhu C, et al. Depositional evidence of palaeofloods during 4.0-3.6 ka BP at the Jinsha site, Chengdu Plain, China[J]. Quaternary International, 2017, 440: 78-89. |
[76] |
黄明. 考古遗址所见成都平原史前洪水与治水[J]. 地球环境学报,2024,15(2):193-206.
Huang Ming. Prehistoric floods and water control documented at the archaeological sites in the Chengdu Plain[J]. Journal of Earth Environment, 2024, 15(2): 193-206. |