[1] Zolitschka B, Francus P, Ojala A E K, et al. Varves in lake sediments: A review[J]. Quaternary Science Reviews, 2015, 117: 1-41.
[2] de Geer G. Geochronology of the last 12000 years[J]. Geologische Rundschau, 1912, 3: 457-471.
[3] Schimmelmann A, Lange C B, Schieber J, et al. Varves in marine sediments: A review[J]. Earth-Science Reviews, 2016, 159: 215-246.
[4] Ojala A E K, Francus P, Zolitschka B, et al. Characteristics of sedimentary varve chronologies: A review[J]. Quaternary Science Reviews, 2012, 43: 45-60.
[5] Anderson R Y, Dean W E. Lacustrine varve formation through time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62(1/2/3/4): 215-235.
[6] Kemp A E S. Palaeoclimatology and palaeoceanography from laminated sediments[M]. London: Geological Society, 1996: 258.
[7] Dickman M D. A possible varving mechanism for meromictic lakes[J]. Quaternary Research, 1979, 11(1): 113-124.
[8] 刘嘉麒,刘东生,储国强,等. 玛珥湖与纹泥年代学[J]. 第四纪研究,1996(4):353-358.

Liu Jiaqi, Liu Tungsheng, Chu Guoqiang, et al. Maar lake and varve chronology[J]. Quaternary Sciences, 1996(4): 353-358.
[9] 李万春,李世杰,濮培民. 高分辨率古环境指示器:湖泊纹泥研究综述[J]. 地球科学进展,1999,14(2):172-176.

Li Wanchun, Li Shijie, Pu Peimin. Review on the high-resolution varved lake sediments as a proxy of paleoenvironment[J]. Advance in Earth Sciences, 1999, 14(2): 172-176.
[10] Kitagawa H, van der Plicht J. A 40,000-year varve chronology from Lake Suigetsu, Japan: Extension of the 14C calibration curve[J]. Radiocarbon, 1997, 40(1): 505-515.
[11] Zolitschka B. A 14,000 year sediment yield record from western Germany based on annually laminated lake sediments[J]. Geomorphology, 1998, 22(1): 1-17.
[12] Schettler G, Liu Q, Mingram J, et al. East-Asian monsoon variability between 15 000 and 2000 cal. yr BP recorded in varved sediments of Lake Sihailongwan (northeastern China, Long Gang volcanic field)[J]. The Holocene, 2006, 16(8): 1043-1057.
[13] You H T, Liu J Q, Liu Q, et al. Study of the varve record from Erlongwan Maar Lake, NE China, over the last 13 ka BP[J]. Chinese Science Bulletin, 2008, 53(2): 262-266.
[14] Hu F S, Slawinski D, Wright H E, et al. Abrupt changes in North American climate during Early Holocene times[J]. Nature, 1999, 400(6743): 437-440.
[15] Lotter A F. How long was the Younger Dryas? Preliminary evidence from annually laminated sediments of Soppensee (Switzerland)[J]. Hydrobiologia, 1991, 214(1): 53-57.
[16] Reimer P J, Austin W E N, Bard E, et al. The intcal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757.
[17] Tian X, Gao Y, Kukla T, et al. Early Cretaceous solar cycles recorded in lacustrine laminations in North China[J]. American Journal of Science, 2021, 321(9): 1285-1307.
[18] Wolff C, Haug G H, Timmermann A, et al. Reduced interannual rainfall variability in East Africa during the last ice age[J]. Science, 2011, 333(6043): 743-747.
[19] Zhai Q M, Guo Z Y, Li Y L, et al. Annually laminated lake sediments and environmental changes in Bashang Plateau, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 95-102.
[20] Zhou A F, Chen F H, Qiang M R, et al. The discovery of annually laminated sediments (varves) from shallow Sugan Lake in inland arid China and their paleoclimatic significance[J]. Science in China Series D: Earth Sciences, 2007, 50(8): 1218-1224.
[21] Chu G Q, Sun Q, Yang K, et al. Evidence for decreasing South Asian summer monsoon in the past 160 years from varved sediment in Lake Xinluhai, Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D2): D02116.
[22] 冀克家,朱二雷,储国强,等. 青藏高原中部湖泊江错纹层记录的过去2000年降水变化[J]. 第四纪研究,2021,41(2):424-433.

Ji Kejia, Zhu Erlei, Chu Guoqiang, et al. Precipitation record based on varve chronology in jiang co on the central Tibetan Plateau during the past 2000 years[J]. Quaternary Sciences, 2021, 41(2): 424-433.
[23] Chu G Q, Sun Q, Li S Q, et al. Minor element variations during the past 1300 years in the varved sediments of Lake Xiaolongwan, northeastern China[J]. GFF, 2013, 135(3/4): 265-272.
[24] 刘强,游海涛,刘嘉麒. 湖泊沉积物年纹层的研究方法及其意义[J]. 第四纪研究,2004,24(6):683-694.

Liu Qiang, You Haitao, Liu Jiaqi. Methodology of studying on varved lake sediments and its significance[J]. Quaternary Sciences, 2004, 24(6): 683-694.
[25] Haines P W, Hocking R M, Grey K, et al. Vines 1 revisited: Are older Neoproterozoic glacial deposits preserved in western Australia?[J]. Australian Journal of Earth Sciences, 2008, 55(3): 397-406.
[26] Anderson R Y, Dean Jr W E, Kirkland D W, et al. Permian castile varved evaporite sequence, west Texas and New Mexico[J]. Geological Society of America Bulletin, 1972, 83(1): 59-86.
[27] Kirkland D W. An explanation for the varves of the Castile evaporites (Upper Permian), Texas and New Mexico, USA[J]. Sedimentology, 2003, 50(5): 899-920.
[28] Zhang X L, Sha J G. Sedimentary laminations in the lacustrine Jianshangou Bed of the Yixian Formation at Sihetun, western Liaoning, China[J]. Cretaceous Research, 2012, 36: 96-105.
[29] 田兴. 白垩纪松辽盆地及邻区年际古气候:来自年纹层证据[D]. 北京:中国地质大学(北京),2021:1-135.

Tian Xing. Inter-annual paleoclimates in the Cretaceous Songliao Basin and its adjcent areas: Evidences from varves[D]. Beijing: China University of Geosciences (Beijing), 2021: 1-135.
[30] Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
[31] Anderson R Y, Kirkland D W. Intrabasin varve correlation[J]. Geological Society of America Bulletin, 1966, 77(3): 241-256.
[32] Bonk A, Müller D, Ramisch A, et al. Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland)[J]. Quaternary Science Reviews, 2021, 251: 106715.
[33] Sturm M, Lotter A. Lake sediments as environmental archives[N]. EAWAG News 38 E, 1995, 6-9.
[34] Davies A, Kemp A E S, Pike J. Late Cretaceous seasonal ocean variability from the Arctic[J]. Nature, 2009, 460(7252): 254-258.
[35] Davies A, Kemp A E S, Weedon G P, et al. El Niño-southern oscillation variability from the Late Cretaceous marca shale of California[J]. Geology, 2012, 40(1): 15-18.
[36] 陈钰,刘兴起,何利,等. 青藏高原北部可可西里库赛湖年纹层微区分析及形成机理[J]. 地质学报,2016,90(5):1006-1015.

Chen Yu, Liu Xingqi, He Li, et al. Micro-area analysis and mechanism of varves from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau[J]. Acta Geologica Sinica, 2016, 90(5): 1006-1015.
[37] Du X J, Hendy I, Hinnov L, et al. High-resolution interannual precipitation reconstruction of southern California: Implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters, 2021, 554: 116670.
[38] Ma J, Wu C D, Wang Y Z, et al. Paleoenvironmental reconstruction of a saline lake in the Tertiary: Evidence from aragonite laminae in the northern Tibet Plateau[J]. Sedimentary Geology, 2017, 353: 1-12.
[39] Ma J, Wu C D, Huang H, et al. Evolving Eocene-Miocene seasonality decoded from aragonitic laminae deposited within the Qaidam Basin, north Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 623: 111604.
[40] Kemp A E S. Laminated sediments as palaeo-indicators [M]// Kemp A E S.Palaeoclimatology and palaeoceanography from laminated sediments. Geological Society of London Special Publications, 1996.
[41] Brauer A. Annually laminated lake sediments and their palaeoclimatic relevance[M]//Fischer H, Kumke T, Lohmann G, et al. The climate in historical times. Berlin Heidelberg: Springer, 2004: 109-127.
[42] O'Sullivan P E. Annually-laminated lake sediments and the study of Quaternary environmental changes: A review[J]. Quaternary Science Reviews, 1983, 1(4): 245-313.
[43] Ojala A E K, Saarinen T, Salonen V P. Preconditions for the formation of annually laminated lake sediments in southern and central Finland[J]. Boreal Environment Research, 2000, 5(3): 243-255.
[44] Larsen C P S, Pienitz R, Smol J P, et al. Relations between lake morphometry and the presence of laminated lake sediments: A re-examination of Larsen and MacDonald (1993)[J]. Quaternary Science Reviews, 1998, 17(8): 711-717.
[45] Larsen C P S, MacDonald G M. Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeo- ecological studies[J]. Quaternary Science Reviews, 1993, 12(9): 781-792.
[46] Ramisch A, Brauser A, Dorn M, et al. Data inventory of the varve database (VARDA): Sediment profiles, chronologies, radiocarbon dates, tephra layers and varve thickness data, v. 1.3.[DB]. GFZ Data Services, 2019.
[47] Ramisch A, Brauser A, Dorn M, et al. VARDA (VARved sediments DAtabase): Providing and connecting proxy data from annually laminated lake sediments[J]. Earth System Science Data, 2020, 12(3): 2311-2332.
[48] Chu G Q, Sun Q, Wang X H, et al. A 1600 year multiproxy record of paleoclimatic change from varved sediments in Lake Xiaolongwan, northeastern China[J]. Journal of Geophysical Research, 2009, 114(D22): D22108.
[49] Mingram J, Allen J R M, Brüchmann C, et al. Maar-and crater lakes of the Long Gang Volcanic Field (N.E. China): Overview, laminated sediments, and vegetation history of the last 900 years[J]. Quaternary International, 2004, 123-125: 135-147.
[50] Sun C Q, You H T, He H Y, et al. New evidence for the presence of Changbaishan Millennium eruption ash in the Longgang volcanic field, Northeast China[J]. Gondwana Research, 2015, 28(1): 52-60.
[51] Shi J Y, Jin Z J, Liu Q Y, et al. Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China[J]. Global and Planetary Change, 2021, 205: 103614.
[52] Tang D J, Shi X Y, Jiang G Q. Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites[J]. Precambrian Research, 2014, 248: 1-16.
[53] Ebert T, Trauth M H. Semi-automated detection of annual laminae (varves) in lake sediments using a fuzzy logic algorithm[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 272-282.
[54] Brauer A, Casanova J. Chronology and depositional processes of the laminated sediment record from Lac d'Annecy, French Alps[J]. Journal of Paleolimnology, 2001, 25(2): 163-177.
[55] Żarczyński M, Tylmann W, Goslar T. Multiple varve chronologies for the last 2000 years from the sediments of Lake Żabińskie (northeastern Poland): Comparison of strategies for varve counting and uncertainty estimations[J]. Quaternary Geochronology, 2018, 47: 107-119.
[56] Lamoureux S F, Bradley R S. A Late Holocene varved sediment record of environmental change from northern Ellesmere Island, Canada[J]. Journal of Paleolimnology, 1996, 16(2): 239-255.
[57] Lotter A F, Lemcke G. Methods for preparing and counting biochemical varves[J]. Boreas, 2008, 28(2): 243-252.
[58] 李凯,游海涛,刘兴起. 中国湖泊沉积物纹层年代学研究进展[J]. 湖泊科学,2017,29(2):266-275.

Li Kai, You Haitao, Liu Xingqi. Review on lake sediment varve chronology in China[J]. Journal of Lake Sciences, 2017, 29(2): 266-275.
[59] Neugebauer I, Brauer A, Dräger N, et al. A younger dryas varve chronology from the rehwiese palaeolake record in NE-Germany[J]. Quaternary Science Reviews, 2012, 36: 91-102.
[60] Bronk Ramsey C, Staff R A, Bryant C L, et al. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P.[J]. Science, 2012, 338(6105): 370-374.
[61] Landmann G, Reimer A, Lemcke G, et al. Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1/2/3/4): 107-118.
[62] Snowball I, Sandgrena P. Geomagnetic field variations in northern Sweden during the Holocene quantified from varved lake sediments and their implications for cosmogenic nuclide production rates[J]. The Holocene, 2002, 12(5): 517-530.
[63] Anderson R Y. Solar-terrestrial climatic patterns in varved sediments[J]. Annals of the New York Academy of Sciences, 1961, 95(1): 424-439.
[64] de Geer G. Solar registration by pre-Quaternary varve-shales[J]. Geografiska Annaler, 1929, 11(3/4): 242-246.
[65] Li P B, Tang D J, Shi X Y, et al. Sunspot cycles recorded in siliciclastic biolaminites at the dawn of the Neoproterozoic Sturtian glaciation in South China[J]. Precambrian Research, 2018, 315: 75-91.
[66] Haltia-Hovi E, Saarinen T, Kukkonen M. A 2000-year record of solar forcing on varved lake sediment in eastern Finland[J]. Quaternary Science Reviews, 2007, 26(5/6): 678-689.
[67] Reimer P J, Baillie M G L, Bard E, et al. Intcal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP[J]. Radiocarbon, 2004, 46(3): 1029-1058.
[68] Livingstone D M, Hajdas I. Climatically relevant periodicities in the thickness of biogenic carbonate varves in Spooensee, Switzerland (9740-6870 calendar yr BP)[J]. Journal of Paleolimnology, 2001, 25(1): 17-24.
[69] Czymzik M, Brauer A, Dulski P, et al. Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany)[J]. Quaternary Science Reviews, 2013, 61: 96-110.
[70] Ripepe M, Roberts L T, Fischer A G. Enso and sunspot cycles in varved Eocene oil shales from image analysis[J]. Journal of Sedimentary Research, 1991, 61(7): 1155-1163.
[71] Andrews S D, Trewin N H, Hartley A J, et al. Solar variance recorded in lacustrine deposits from the Devonian and Proterozoic of scotland[J]. Journal of the Geological Society, 2010, 167(5): 847-856.
[72] Cai W J, Santoso A, Wang G J, et al. ENSO and greenhouse warming[J]. Nature Climate Change, 2015, 5(9): 849-859.
[73] Guyard H, Chapron E, St-Onge G, et al. Late-Holocene NAO and oceanic forcing on high-altitude proglacial sedimentation (Lake Bramant, western French Alps)[J]. The Holocene, 2013, 23(8): 1163-1172.
[74] Sun Q, Shan Y B, Sein K, et al. A 530 year long record of the Indian summer monsoon from carbonate varves in Maar Lake Twintaung, Myanmar[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5620-5630.
[75] Zahrer J, Dreibrodt S, Brauer A. Evidence of the North Atlantic Oscillation in varve composition and diatom assemblages from recent, annually laminated sediments of Lake Belau, northern Germany[J]. Journal of Paleolimnology, 2013, 50(2): 231-244.
[76] Kaplan A, Cane M A, Kushnir Y, et al. Analyses of global sea surface temperature 1856—1991[J]. Journal of Geophysical Research: Oceans, 1998, 103(C9): 18567-18589.
[77] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407.
[78] Fagel N, Boës X, Loutre M F. Climate oscillations evidenced by spectral analysis of southern Chilean lacustrine sediments: The assessment of ENSO over the last 600 years[J]. Journal of Paleolimnology, 2008, 39(2): 253-266.
[79] Ariztegui D, Bösch P, Davaud E. Dominant ENSO frequencies during the Little Ice Age in northern Patagonia: The varved record of proglacial Lago Frías, Argentina[J]. Quaternary International, 2007, 161(1): 46-55.
[80] Muñoz A, Ojeda J, Sánchez-Valverde B. Sunspot-like and ENSO/NAO-like periodicities in lacustrine laminated sediments of the Pliocene Villarroya Basin (La Rioja, Spain)[J]. Journal of Paleolimnology, 2002, 27(4): 453-463.
[81] Bloxham J, Gubbins D. The secular variation of Earth's magnetic field[J]. Nature, 1985, 317(6040): 777-781.
[82] Snowball I, Zillén L, Ojala A, et al. FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular variation and relative palaeointensity stacks for fennoscandia[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 106-116.
[83] Stockhausen H. Geomagnetic palaeosecular variation (0-13 000 yr BP) as recorded in sediments from three maar lakes from the West Eifel (Germany)[J]. Geophysical Journal International, 1998, 135(3): 898-910.
[84] Sprowl D R, Banerjee S K. The Holocene paleosecular variation record from Elk Lake, Minnesota[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9369-9388.
[85] Ojala A E K, Saarinen T. Palaeosecular variation of the Earth's magnetic field during the last 10000 years based on the annually laminated sediment of Lake Nautäjarvi, central Finland[J]. The Holocene, 2002, 12(4): 391-400.
[86] Saarinen T. High-resolution palaeosecular variation in northern Europe during the last 3200 years[J]. Physics of the Earth and Planetary Interiors, 1998, 106(3/4): 299-309.
[87] Haltia-Hovi E, Nowaczyk N, Saarinen T. Environmental influence on relative palaeointensity estimates from Holocene varved lake sediments in Finland[J]. Physics of the Earth and Planetary Interiors, 2011, 185(1/2): 20-28.
[88] Korte M, Constable C G. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(2): Q02H16.
[89] Zolitschka B, Negendank J F W, Lottermoser B G. Sedimentological proof and dating of the Early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany)[J]. Geologische Rundschau, 1995, 84(1): 213-219.
[90] Mörner N A. Paleoseismology: The application of multiple parameters in four case studies in Sweden[J]. Quaternary International, 2011, 242(1): 65-75.
[91] Schillereff D N, Chiverrell R C, Macdonald N, et al. Flood stratigraphies in lake sediments: A review[J]. Earth-Science Reviews, 2014, 135: 17-37.
[92] Lottermoser B G, Schütz U, Boenecke J, et al. Natural and anthropogenic influences on the geochemistry of Quaternary lake sediments from Holzmaar, Germany[J]. Environmental Geology, 1997, 31(3): 236-247.
[93] Brauer A, Haug G H, Dulski P, et al. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period[J]. Nature Geoscience, 2008, 1(8): 520-523.
[94] Brauer A, Endres C, Günter C, et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany[J]. Quaternary Science Reviews, 1999, 18(3): 321-329.
[95] Brauer A, Endres C, Negendank J F W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany[J]. Quaternary International, 1999, 61(1): 17-25.
[96] Wulf S, Ott F, Słowiński M, et al. Tracing the laacher see tephra in the varved sediment record of the Trzechowskie palaeolake in central northern Poland[J]. Quaternary Science Reviews, 2013, 76: 129-139.
[97] Boës X, Fagel N. Relationships between southern chilean varved lake sediments, precipitation and ENSO for the last 600 years[J]. Journal of Paleolimnology, 2008, 39(2): 237-252.
[98] Czymzik M, Dulski P, Plessen B, et al. A 450 year record of spring-summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany)[J]. Water Resources Research, 2010, 46(11): W11528.
[99] Dreibrodt S, Wiethold J. Lake Belau and its catchment (northern Germany): A key archive of environmental history in northern central Europe since the onset of agriculture[J]. The Holocene, 2015, 25(2): 296-322.
[100] Renberg I, Brännvall M L, Bindler R, et al. Atmospheric lead pollution history during four millennia (2000 BC to 2000 AD) in Sweden[J]. AMBIO: A Journal of the Human Environment, 2000, 29(3): 150-156.
[101] 王成善,王天天,陈曦,等. 深时古气候对未来气候变化的启示[J]. 地学前缘,2017,24(1):1-17.

Wang Chengshan, Wang Tiantian, Chen X, et al. Paleoclimate implications for future climate change[J]. Earth Science Frontiers, 2017, 24(1): 1-17.
[102] Zolitschka B, Pike J, von Gunten L, et al. Annual recorders of the past[J]. Past Global Changes Magazine, 2014, 22(1): 1-56.