[1] 王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业,2017,37(6):115-130.

Wang Shiqian. Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industry, 2017, 37(6): 115-130.
[2] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796.

Zou Caineng, Zhao Qun, Dong Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.
[3] 门晓溪,韩志辉,王磊. 页岩气资源勘探开发历史及现状[J]. 新疆石油地质,2018,39(3):372-376.

Xiaoxi Men, Han Zhihui, Wang Lei. History and current situation of shale gas exploration and development[J]. Xinjiang Petroleum Geology, 2018, 39(3): 372-376.
[4] 张金川,金之钧,袁明生. 页岩气成藏机理和分布[J]. 天然气工业,2004,24(7):15-18.

Zhang Jinchuan, Jin Zhijun, Yuan Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18.
[5] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[6] 邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报,2011,27(6):1857-1864.

Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
[7] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
[8] 王茂桢,柳少波,任拥军,等. 页岩气储层粘土矿物孔隙特征及其甲烷吸附作用[J]. 地质论评,2015,61(1):207-216.

Wang Maozhen, Liu Shaobo, Ren Rongjun, et al. Pore characteristics and methane adsorption of clay minerals in shale gas reservoir[J]. Geological Review, 2015, 61(1): 207-216.
[9] 吉利明,邱军利,夏燕青,等. 常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性[J]. 石油学报,2012,33(2):249-256.

Ji Liming, Qiu Junli, Xia Yanqing, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning[J]. Acta Petrolei Sinica, 2012, 33(2): 249-256.
[10] 侯宇光,何生,易积正,等. 页岩孔隙结构对甲烷吸附能力的影响[J]. 石油勘探与开发,2014,41(2):248-256.

Hou Yuguang, He Sheng, Yi Jizheng, et al. Effect of pore structure on methane sorption capacity of shales[J]. Petroleum Exploration and Development, 2014, 41(2): 248-256.
[11] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
[12] Topór T, Derkowski A, Ziemiański P, et al. The effect of organic matter maturation and porosity evolution on methane storage potential in the Baltic Basin (Poland) shale-gas reservoir[J]. International Journal of Coal Geology, 2017, 180: 46-56.
[13] Wang Y, Liu L F, Zheng S S, et al. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 134-146.
[14] Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
[15] 陈燕燕,邹才能, Mastalerz M,等. 页岩微观孔隙演化及分形特征研究[J]. 天然气地球科学,2015,26(9):1646-1656.

Chen Yanyan, Zou Caineng, Mastalerz M, et al. Porosity and fractal characteristics of shale across a maturation gradient[J]. Natural Gas Geoscience, 2015, 26(9): 1646-1656.
[16] Chen J, Xiao X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181.
[17] Sun L N, Tuo J C, Zhang M F, et al. Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J]. Fuel, 2015, 158: 549-557.
[18] 吴松涛,朱如凯,崔京钢,等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发,2015,42(2):167-176.

Wu Songtao, Zhu Rukai, Cui Jinggang, et al. Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 167-176.
[19] Guo H J, Jia W L, Peng P A, et al. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of the Yanchang Shale with Type II kerogen[J]. Organic Geochemistry, 2017, 105: 56-66.
[20] Xu L W, Wang Y, Liu L F, et al. Evolution characteristics and model of nanopore structure and adsorption capacity in organic-rich shale during artificial thermal maturation: A pyrolysis study of the Mesoproterozoic Xiamaling marine shale with type II kerogen from Zhangjiakou, Hebei, China[J]. Energy Exploration & Exploitation, 2019, 37(1): 493-518.
[21] O'Brien N R. Fabric of kaolinite and illite floccules[J]. Clays and Clay Minerals, 1971, 19(6): 353-359.
[22] Bennett R H, O'Brien N R, Hulbert M H. Determinants of clay and shale microfabric signatures: Processes and mechanisms[M]//Bennett R H, Bryant W R, Hulbert M H, et al. Microstructure of fine-grained sediments: From mud to shale. New York: Springer-Verlag, 1991.
[23] Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
[24] O'Brien N R, Slatt R M. Argillaceous rock atlas [M]. New York: Springer-Verlag, 1990.
[25] Katsube T J. Statistical analysis of poresize distribution data of tight shales from the Scotian shelf [M]. Canada: Geological Survey of Canada, 1992.
[26] 张盼盼,刘小平,王雅杰,等. 页岩纳米孔隙研究新进展[J]. 地球科学进展,2014,29(11):1242-1249.

Zhang Panpan, Liu Xiaoping, Wang Yajie, et al. Research progress in shale nanopores[J]. Advances in Earth Science, 2014, 29(11): 1242-1249.
[27] 焦堃,姚素平,吴浩,等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报,2014,20(1):151-161.

Jiao Kun, Yao Suping, Wu Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161.
[28] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
[29] 张金川,薛会,张德明,等. 页岩气及其成藏机理[J]. 现代地质,2003,17(4):466.

Zhang Jinchuan, Xue Hui, Zhang Deming, et al. Shale gas and its accumulation mechanism[J]. Geoscience, 2003, 17(4): 466.
[30] Singh P, Slatt R, Borges G, et al. Reservoir characterization of unconventional gas shale reservoirs: Example from the Barnett Shale, Texas, U.S.A.[J]. Oklahoma City Geological Society, 2009, 1(60): 15-31.
[31] Chalmers G R, Bustin R M, Power I. A pore by any other name would be as small: The importance of meso- and microporosity in shale gas capacity[C]//AAPG annual convention and exhibition. Denver, Colorado: AAPG, 2009.
[32] Ross D J K, Marc Bustin R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[33] Passey Q R, Bohacs K, Esch W L, et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale gas reservoirs[C]//International oil and gas conference and exhibition in China. Beijing, China: SPE, 2010.
[34] Sondergeld C H, Ambrose R J, Rai C S, et al. Micro-structural studies of gas shales[C]//SPE unconventional gas conference. Pittsburgh, Pennsylvania, USA: SPE, 2010.
[35] Milner M, Mclin R, Petriello J, et al. Imageing Texture and Porosity in Mudstones and shale: Comparision of secondary and ion-milled backscatter SEM methods[J]. SPE 138975, 2010.
[36] Slatt R M, O'Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
[37] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
[38] Modica C J, Lapierre S G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming[J]. AAPG Bulletin, 2012, 96(1): 87-108.
[39] 白斌,朱如凯,吴松涛,等. 非常规油气致密储层微观孔喉结构表征新技术及意义[J]. 中国石油勘探,2014,19(3):78-86.

Bai Bin, Zhu Rukai, Wu Songtao, et al. New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2014, 19(3): 78-86.
[40] 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘,2013,20(4):211-220.

Yu Bingsong. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers, 2013, 20(4): 211-220.
[41] Wang Y, Zhu Y M, Wang H, et al. Nanoscale pore morphology and distribution of lacustrine shale reservoirs: Examples from the Upper Triassic Yanchang Formation, Ordos Basin[J]. Journal of Energy Chemistry, 2015, 24(4): 512-519.
[42] Tang X, Zhang J C, Jin Z J, et al. Experimental investigation of thermal maturation on shale reservoir properties from hydrous pyrolysis of Chang 7 shale, Ordos Basin[J]. Marine and Petroleum Geology, 2015, 64: 165-172.
[43] Hu H Y, Zhang T W, Wiggins-Camacho J D, et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis[J]. Marine and Petroleum Geology, 2015, 59: 114-128.
[44] Wang P F, Jiang Z X, Ji W M, et al. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries[J]. Marine and Petroleum Geology, 2016, 72: 122-138.
[45] Tian H, Pan L, Xiao X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
[46] Shao X H, Pang X Q, Li Q W, et al. Pore structure and fractal characteristics of organic-rich shales: A case study of the Lower Silurian Longmaxi shales in the Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2017, 80: 192-202.
[47] Sun L N, Tuo J C, Zhang M F, et al. Pore structures and fractal characteristics of nano-pores in shale of Lucaogou formation from Junggar Basin during water pressure-controlled artificial pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 404-412.
[48] Clarkson C R, Haghshenas B, Ghanizadeh A, et al. Nanopores to megafractures: Current challenges and methods for shale gas reservoir and hydraulic fracture characterization[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 612-657.
[49] Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
[50] Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744.
[51] 刘大永,郭慧娟,彭平安,等. 下扬子地区下古生界页岩纳米孔隙特征及其控制因素[J]. 煤炭学报,2013,38(5):778-782.

Liu Dayong, Guo Huijuan, Peng Ping’an, et al. Characteristics and controlling factors of pore size distribution of the Lower Paleozoic shale rocks in Lower Yangtze area[J]. Journal of China Coal Society, 2013, 38(5): 778-782.
[52] 郭旭升,李宇平,刘若冰,等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业,2014,34(6):9-16.

Guo Xusheng, Li Yuping, Liu Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16.
[53] 曹茜,周文,陈文玲,等. 鄂尔多斯盆地南部延长组长7段陆相页岩气地层孔隙类型、尺度及成因分析[J]. 矿物岩石,2015,35(2):90-97.

Cao Qian, Zhou Wen, Chen Wenling, et al. Analysis of pore types, sizes and genesis in continental shale gas reservoir of Chang 7 of Yanchang Formation, Ordos Basin[J]. Journal of Mineralogy and Petrology, 2015, 35(2): 90-97.
[54] 周文,陈文玲,邓昆,等. 陆相页岩油气地层油气相态的确定方法初探:以鄂尔多斯盆地延长组长7段为例[J]. 成都理工大学学报(自然科学版),2013,40(6):640-647.

Zhou Wen, Chen Wenling, Deng Kun, et al. Determination of oil/gas phase in continental shale: Taking member Chang 7 shale of Yanchang Formation in Ordos Basin for example[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(6): 640-647.
[55] 聂海宽,唐玄,边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报,2009,30(4):484-491.

Nie Haikuan, Tang Xuan, Bian Ruikang. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4): 484-491.
[56] 张琴,刘畅,梅啸寒,等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质,2015,36(4):666-674.

Zhang Qin, Liu Chang, Mei Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology, 2015, 36(4): 666-674.
[57] 宋董军,妥进才,王晔桐,等. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报,2019,37(6):1309-1324.

Song Dongjun, Jincai Tuo, Wang Yetong, et al. Research advances on characteristics of nanopore structure of organic rich shales[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324.
[58] Wang Y, Wang L H, Wang J Q, et al. Characterization of organic matter pores in typical marine and terrestrial shales, China[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 56-65.
[59] Yang C, Zhang J C, Tang X, et al. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China[J]. International Journal of Coal Geology, 2017, 171: 76-92.
[60] 何建华,丁文龙,付景龙,等. 页岩微观孔隙成因类型研究[J]. 岩性油气藏,2014,26(5):30-35.

He Jianhua, Ding Wenlong, Fu Jinglong, et al. Study on genetic type of micropore in shale reservoir[J]. Lithologic Reservoirs, 2014, 26(5): 30-35.
[61] 张廷山,杨洋,龚其森,等. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报,2014,88(9):1728-1740.

Zhang Tingshan, Yang Yang, Gong Qisen, et al. Characteristics and mechanisms of the micro-pores in the Early Palaeozoic marine shale, southern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88(9): 1728-1740.
[62] Bustin R M, Bustin A M M, Cui A, et al. Impact of shale properties on pore structure and storage characteristics[C]//SPE shale gas production conference. Fort Worth, Texas, USA: SPE, 2008.
[63] 梁兴,张廷山,杨洋,等. 滇黔北地区筇竹寺组高演化页岩气储层微观孔隙特征及其控制因素[J]. 天然气工业,2014,34(2):18-26.

Liang Xing, Zhang Tingshan, Yang Yang, et al. Microscopic pore structure and its controlling factors of overmature shale in the Lower Cambrian Qiongzhusi Fm, northern Yunnan and Guizhou provinces of China[J]. Natural Gas Industry, 2014, 34(2): 18-26.
[64] Xu L W, Liu L F, Jiang Z X, et al. Methane adsorption in the low–middle-matured Neoproterozoic Xiamaling marine shale in Zhangjiakou, Hebei[J]. Australian Journal of Earth Sciences, 2018, 65(5): 691-710.
[65] Chen L, Jiang Z X, Liu K Y, et al. Pore structure characterization for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: A possible mechanism for pore development[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 1-15.
[66] Behar F, Vandenbroucke M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24.
[67] 范二平,唐书恒,张成龙,等. 湘西北下古生界黑色页岩扫描电镜孔隙特征[J]. 古地理学报,2014,16(1):133-142.

Fan Erping, Tang Shuheng, Zhang Chenglong, et al. Scanning-electron-microscopic micropore characteristics of the Lower Paleozoic black shale in northwestern Hunan province[J]. Journal of Palaeogeography, 2014, 16(1): 133-142.
[68] Curtis M E, Sondergeld C H, Ambrose R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677.
[69] 张顺. 东营凹陷页岩储层成岩作用及增孔和减孔机制[J]. 中国矿业大学学报,2018,47(3):562-578.

Zhang Shun. Diagenesis and mechanism of shale reservoir pore incerase and reduction in Dongying Sag[J]. Journal of China University of Mining & Technology, 2018, 47(3): 562-578.
[70] 赵迪斐,郭英海,杨玉娟,等. 渝东南下志留统龙马溪组页岩储集层成岩作用及其对孔隙发育的影响[J]. 古地理学报,2016,18(5):843-856.

Zhao Difei, Guo Yinghai, Yang Yujuan, et al. Shale reservoir diagenesis and its impacts on pores of the Lower Silurian Longmaxi Formation in southeastern Chongqing[J]. Journal of Palagegeography, 2016, 18(5): 843-856.
[71] 张艺凡,于炳松,孙梦迪. 渝东南牛蹄塘组页岩成岩作用及其对孔隙的影响[J]. 成都理工大学学报(自然科学版),2017,44(1):48-56.

Zhang Yifan, Yu Bingsong, Sun Mengdi. Diagenesis and its effect on pores of the Niutitang Formation shale in southeast Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(1): 48-56.
[72] 郭秋麟,陈晓明,宋焕琪,等. 泥页岩埋藏过程孔隙度演化与预测模型探讨[J]. 天然气地球科学,2013,24(3):439-449.

Guo Qiulin, Chen Xiaoming, Song Huanqi, et al. Evolution and models of shale porosity during burial process[J]. Natural Gas Geoscience, 2013, 24(3): 439-449.
[73] Pan L, Xiao X M, Tian H, et al. A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region, eastern China[J]. International Journal of Coal Geology, 2015, 146: 68-78.
[74] Schieber J, Southard B J. Bedload transport of mud by floccule ripples—Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
[75] Wei S L, He S, Pan Z J, et al. Characteristics and evolution of pyrobitumen-hosted pores of the overmature Lower Cambrian Shuijingtuo shale in the south of Huangling anticline, Yichang area, China: Evidence from FE-SEM petrography[J]. Marine and Petroleum Geology, 2020, 116: 104303.
[76] 张顺,刘惠民,王永诗,等. 东营凹陷古近系页岩成岩事件及其对页岩储集空间发育特征的影响[J]. 油气地质与采收率,2019,26(1):109-118.

Zhang Shun, Liu Huimin, Wang Yongshi, et al. Diagenetic event of Paleogene shale and its influence on development characteristics of shale pore space in Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 109-118.
[77] 薛莲花,杨巍,仲佳爱,等. 富有机质页岩生烃阶段孔隙演化:来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J]. 地质学报,2015,89(5):970-978.

Xue Lianhua, Yang Wei, Zhong Jia’ai, et al. Porous evolution of the organic-rich shale from simulated experiment with geological constrains, samples from Yanchang Formation in Ordos Basin[J]. Acta Geologica Sinica, 2015, 89(5): 970-978.
[78] 张建坤,何生,颜新林,等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报(自然科学版),2017,41(1):11-24.

Zhang Jiankun, He Sheng, Yan Xinlin, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum, 2017, 41(1): 11-24.
[79] 孔令明,万茂霞,严玉霞,等. 四川盆地志留系龙马溪组页岩储层成岩作用[J]. 天然气地球科学,2015,26(8):1547-1555.

Kong Lingming, Wan Maoxia, Yan Yuxia, et al. Reservior diagenesis research of Silurian Longmaxi Formation in Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(8): 1547-1555.
[80] 姜福杰,庞雄奇,姜振学,等. 烃源岩滞留油气作用及其对泥页岩含油气率的影响[J]. 中南大学学报(自然科学版),2013,44(6):2439-2448.

Jiang Fujie, Pang Xiongqi, Jiang Zhenxue, et al. Residual oil and gas in source rocks and its influence on oil and gas rate in shale[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2439-2448.
[81] Guo S B, Mao W J. Division of diagenesis and pore evolution of a Permian Shanxi shale in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106351.]
[82] 崔景伟,朱如凯,崔京钢. 页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据[J]. 地质学报,2013,87(5):730-736.

Cui Jingwei, Zhu Rukai, Cui Jinggang. Relationship of porous evolution and residual hydrocarbon: Evidence from modeling experiment with geological constrains[J]. Acta Geologica Sinica, 2013, 87(5): 730-736.
[83] 胡海燕. 富有机质Woodford页岩孔隙演化的热模拟实验[J]. 石油学报,2013,34(5):820-825.

Hu Haiyan. Porosity evolution of the organic-rich shale with thermal maturity increasing[J]. Acta Petrolei Sinica, 2013, 34(5): 820-825.
[84] Fishman N S, Hackley P C, Lowers H A, et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103: 32-50.
[85] Zhao J H, Jin Z J, Jin Z K, et al. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2017, 86: 655-674.
[86] 郑伦举,秦建中,何生,等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质,2009,31(3):296-302, 306.

Zheng Lunju, Qin Jianzhong, He Sheng, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302, 306.
[87] 董春梅,马存飞,栾国强,等. 泥页岩热模拟实验及成岩演化模式[J]. 沉积学报,2015,33(5):1053-1061.

Dong Chunmei, Ma Cunfei, Luan Guoqiang, et al. Pyrolysis simulation experiment and diagenesis evolution pattern of shale[J]. Acta Sedimentologica Sinica, 2015, 33(5): 1053-1061.
[88] Zargari S, Canter K L, Prasad M. Porosity evolution in oil-prone source rocks[J]. Fuel, 2015, 153: 110-117.
[89] Löhr S C, Baruch E T, Hall P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132.
[90] 马中良,郑伦举,徐旭辉,等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报,2017,38(1):23-30.

Ma Zhongliang, Zheng Lunju, Xu Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30.
[91] 吉利明,吴远东,贺聪,等. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报,2016,37(2):172-181.

Ji Liming, Wu Yuandong, He Cong, et al. High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale[J]. Acta Petrolei Sinica, 2016, 37(2): 172-181.