[1] Posamentier H W, Jervey M T, Vail P R. Eustatic controls on clastic deposition II-sequence and systems tract models[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988: 125-154.
[2] van Wagoner J C, Posamentier H W, Mitchum R M, et al. An overview of the fundamentals of sequence stratigraphy and key definitions[M]//Wilgus C K, Hastings B S, Posamentier H, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Society for Sedimentary Geology, 1988: 39-45.
[3]

Embry A F. Transgressive–regressive (T–R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago[J]. Canadian Journal of Earth Sciences, 1993, 30(2): 301-320.
[4]

Helland-Hansen W, Martinsen O J. Shoreline trajectories and sequences: Description of variable depositional-dip scenarios[J]. Journal of Sedimentary Research, 1996, 66(4): 670-688.
[5] Posarnentier H W, Allen G P. Siliciclastic sequence stratigraphy-concepts and applications[M]. Tulsa: SEPM Society for Sedimentary Geology, 1999: 619-630.
[6]

Burgess P M, Lammers H, van Oosterhout C, et al. Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios, and conditional frequency maps[J]. AAPG Bulletin, 2006, 90(12): 1883-1901.
[7]

Jackson C A L, Gawthorpe R L, Carr I D, et al. Normal faulting as a control on the stratigraphic development of shallow marine syn-rift sequences: The Nukhul and Lower Rudeis Formations, Hammam Faraun fault block, Suez Rift, Egypt[J]. Sedimentology, 2005, 52(2): 313-338.
[8]

Edwards C M, Howell J A, Flint S S. Depositional and stratigraphic architecture of the Santonian emery sandstone of the Mancos shale: Implications for Late Cretaceous evolution of the western interior foreland Basin of central Utah, U.S.A.[J]. Journal of Sedimentary Research, 2005, 75(2): 280-299.
[9]

Martinsen O J, Helland-Hansen W. Strike variability of clastic depositional systems: Does it matter for sequence-stratigraphic analysis?[J]. Geology, 1995, 23(5): 439-442.
[10]

Helland-Hansen W, Hampson G J. Trajectory analysis: Concepts and applications[J]. Basin Research, 2009, 21(5): 454-483.
[11] Steel R, Olsen T. Clinoforms, clinoform trajectories and deepwater sands[M]. Tulsa: SEPM Society for Sedimentary Geology, 2002: 367-381.
[12] 丛富云,徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展,2017,32(9):937-948.

Cong Fuyun, Xu Shang. Research status and application prospect of shelf-edge trajectory analysis[J]. Advances in Earth Science, 2017, 32(9): 937-948.
[13]

Porębski S J, Steel R J. Shelf-margin deltas: Their stratigraphic significance and relation to deepwater sands[J]. Earth-Science Reviews, 2003, 62(3/4): 283-326.
[14]

Harris A D, Baumgardner S E, Sun T, et al. A poor relationship between sea level and deep-water sand delivery[J]. Sedimentary Geology, 2018, 370: 42-51.
[15]

Patruno S, Helland-Hansen W. Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins[J]. Earth-Science Reviews, 2018, 185: 202-233.
[16] Burgess P M, Steel R J, Granjeon D. Stratigraphic forward modeling of basin-margin clinoform systems: Implications for controls on topset and shelf width and timing of Formation of shelf-edge deltas[M]//Hampson G J, Steel R J, Burgess P M, et al. Recent advances in models of siliciclastic shallow-marine stratigraphy. Tulsa, Oklahoma: Society for Sedimentary Geology, 2008: 35-45.
[17]

Muto T, Steel R J. Principles of regression and transgression: The nature of the interplay between accommodation and sediment supply[J]. Journal of Sedimentary Research, 1997, 67(6): 994-1000.
[18]

Qi K, Gong C L, Zhang J Y, et al. Relative sea-level control on the building of two distinct shelf-margin clinothems on the Late-Quaternary Pearl River margin: Insights from numerical stratigraphic forward modelling[J]. Basin Research, 2023, 35(2): 842-864.
[19]

Muto T, Steel R J. Retreat of the front in a prograding delta[J]. Geology, 1992, 20(11): 967-970.
[20]

Muto T. Shoreline autoretreat substantiated in flume experiments[J]. Journal of Sedimentary Research, 2001, 71(2): 246-254.
[21] Swift D J P, Oertel G F, Tillman R W, et al. Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy[M]. Oxford: Blackwell Scientific Publicatons, 1992: 1-31.
[22]

Henriksen S, Vorren T O. Late Cenozoic sedimentation and uplift history on the mid-Norwegian continental shelf[J]. Global and Planetary Change, 1996, 12(1/2/3/4): 171-199.
[23] Steel R J, Crabaugh J, Schellpeper M, et al. Deltas vs. rivers on the shelf edge: Their relative contributions to the growth of shelf-margins and basin-floor fans (Barremian and Eocene, Spitsbergen)[M]//Weimer P. Deep-water reservoirs of the world. Tulsa: Society for Sedimentary Geology, 2000: 981-1099.
[24] Sidi F H, Nummedal D, Imbert P, et al. Tropical deltas of southeast Asia: Sedimentology, stratigraphy, and petroleum geology[M]. Tulsa: Society for Sedimentary Geology, 2003: 125-145.
[25]

Sztanó O, Szafián P, Magyar I, et al. Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary[J]. Global and Planetary Change, 2013, 103: 149-167.
[26]

Pellegrini C, Asioli A, Bohacs K M, et al. The Late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning[J]. Marine and Petroleum Geology, 2018, 96: 16-50.
[27]

Paumard V, Bourget J, Payenberg T, et al. Shelf-margin architecture and shoreline processes at the shelf-edge: Controls on sediment partitioning and prediction of deep-water deposition style[J]. ASEG Extended Abstracts, 2018, 2018(1): 1-6.
[28]

Paumard V, Bourget J, Payenberg T, et al. Controls on shelf-margin architecture and sediment partitioning during a syn-rift to post-rift transition: Insights from the Barrow Group (northern Carnarvon Basin, North West Shelf, Australia)[J]. Earth-Science Reviews, 2018, 177: 643-677.
[29]

Bullimore S A, Henriksen S, Liestøl F M, et al. Clinoform stacking patterns, shelf-edge trajectories and facies associations in Tertiary coastal deltas, offshore Norway: Implications for the prediction of lithology in prograding systems[J]. Norsk Geologisk Tidsskrift, 2005, 85(1): 169-187.
[30] 王俊辉, Muto T,鲜本忠. 大尺度自成因机制与自成因地层学[J]. 地质学报,2024,98(7):1977-2000.

Wang Junhui, Muto T, Xian Benzhong. Large-scale autogenic stratigraphic mechanisms and autostratigraphy[J]. Acta Geologica Sinica, 2024, 98(7): 1977-2000.
[31]

Tomer A, Muto T. Emergence and drowning of fluviodeltaic systems during steady rise of sea level: Implication from geometrical modeling and tank experiments[J]. Journal of the Sedimentological Society of Japan, 2010, 69(2): 63-72.
[32] Granjeon D. 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys[M]//Martinius A W, Ravnas R, Howell J A, et al. From depositional systems to sedimentary successions on the Norwegian continental margin. Chichester: Wiley Blackwell, 2014: 453-472.
[33]

Eymard R, Gallouët T T, Granjeon D, et al. Multi-lithology stratigraphic model under maximum erosion rate constraint[J]. International Journal for Numerical Methods in Engineering, 2004, 60(2): 527-548.
[34] 李丽,徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展,2017,32(11):1126-1136.

Li Li, Xu Qin. Review of studies in sea level change of Sunda shelf since Pliocene[J]. Advances in Earth Science, 2017, 32(11): 1126-1136.
[35]

Harris P T, Macmillan-Lawler M, Rupp J, et al. Geomorphology of the oceans[J]. Marine Geology, 2014, 352: 4-24.
[36] 王韫闻. 坡度统计分布与地形类型关系研究[D]. 西安:西北大学,2016:24-28.

Wang Yunwen. Research on the relationship between landform types and distribution of slope[D]. Xi'an: Northwest University, 2016: 24-28.
[37]

Zhang J Y, Covault J, Pyrcz M, et al. Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico[J]. AAPG Bulletin, 2018, 102(9): 1685-1702.
[38] 肖春晖,王永红,林间. 近1 Ma以来帕里西维拉海盆沉积物物源和古气候:粒度和黏土矿物特征的指示[J]. 沉积学报,2022,40(2):508-524.

Xiao Chunhui, Wang Yonghong, Lin Jian. Provenance and paleoclimate of sediments in the Parece Vela Basin in past 1 Ma: Inferences from grain-size and clay mineral distribution[J]. Acta Sedimentologica Sinica, 2022, 40(2): 508-524.
[39]

Balázs A, Maţenco L, Granjeon D, et al. Towards stratigraphic-thermo-mechanical numerical modelling: Integrated analysis of asymmetric extensional basins[J]. Global and Planetary Change, 2021, 196: 103386.
[40] 雷超. 琼东南盆地深水区盆地结构构造及其形成机制研究[D]. 武汉:中国地质大学,2009:45-49.

Lei Chao. Basin structure and its Formation mechanism in deep water areas of Qiongdongnan Basin, South China Sea[D]. Wuhan: China University of Geosciences, 2009: 45-49.
[41] 唐立超,乐远福. 海滩岩在南海北部中晚全新世海平面重建中的应用和不确定性分析[J]. 海洋地质前沿,2023,39(3):1-19.

Tang Lichao, Yue Yuanfu. Application and uncertainty analysis of beachrock to Mid-Late Holocene sea-level reconstruction in the northern South China Sea[J]. Marine Geology Frontiers, 2023, 39(3): 1-19.
[42]

Muto T, Steel R J, Burgess P M. Contributions to sequence stratigraphy from analogue and numerical experiments[J]. Journal of the Geological Society, 2016, 173(5): 837-844.
[43]

Tomer A, Muto T, Kim W. Autogenic hiatus in fluviodeltaic successions: Geometrical modeling and physical experiments[J]. Journal of Sedimentary Research, 2011, 81(3): 207-217.
[44]

Han J H, Xu G Q, Li Y Y, et al. Evolutionary history and controlling factors of the shelf breaks in the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 179-189.
[45] 陶泽,林畅松,张忠涛,等. 珠江口盆地白云凹陷中新统韩江组中上部层序结构及深水重力流沉积[J]. 古地理学报,2017,19(4):623-634.

Tao Ze, Lin Changsong, Zhang Zhongtao, et al. Sequence architecture and deep water gravity-flow deposits of the Middle and Upper member of Hanjiang Formation of Miocene in Baiyun Sag, Pearl River Mouth Basin[J]. Journal of Palaeogeography, 2017, 19(4): 623-634.
[46] 刘洋,吴怀春,张世红,等. 珠江口盆地珠一坳陷韩江组—万山组旋回地层学[J]. 地球科学:中国地质大学学报,2012,37(3):411-423.

Liu Yang, Wu Huaichun, Zhang Shihong, et al. Cyclostratigraphy research on the Hanjiang-Wanshan Formations in Zhuyi Depression, Pearl River Mouth Basin[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(3): 411-423.
[47] 贺萍. 珠江口盆地新近系年代地层格架及沉积体系演化[D]. 荆州:长江大学,2023:23-24.

He Ping. Chronostratigraphic framework and sedimentary system evolution of the Neogene in the Pearl River Mouth Basin[D]. Jingzhou: Yangtze University, 2023: 23-24.
[48]

Xie H, Zhou D, Li Y P, et al. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 2014, 615-616: 182-198.
[49] 庞雄,陈长民,施和生,等. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘,2005,12(3):167-177.

Pang Xiong, Chen Changmin, Shi Hesheng, et al. Response between relative sea-level change and the Pearl River deep-water fan system in the South China Sea[J]. Earth Science Frontiers, 2005, 12(3): 167-177.
[50] 刘汉尧,林畅松,张忠涛,等. 珠江口盆地白云凹陷北坡第四纪层序地层和沉积体系演化及其控制因素[J]. 海洋地质与第四纪地质,2019,39(1):25-37.

Liu Hanyao, Lin Changsong, Zhang Zhongtao, et al. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 25-37.
[51] 毛雪莲,徐守立,刘新宇. 珠江口盆地西部新近纪高分辨率生物地层及海平面变化分析[J]. 海洋地质与第四纪地质,2019,39(3):40-50.

Mao Xuelian, Xu Shouli, Liu Xinyu. Late Cenozoic high resolution bio-stratigraphy and its bearing on sea-level fluctuation in the western Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 40-50.
[52] 郑金云,高阳东,张向涛,等. 珠江口盆地构造演化旋回及其新生代沉积环境变迁[J]. 地球科学,2022,47(7):2374-2390.

Zheng Jinyun, Gao Yangdong, Zhang Xiangtao, et al. Tectonic evolution cycles and Cenozoic sedimentary environment changes in Pearl River Mouth Basin[J]. Earth Science, 2022, 47(7): 2374-2390.
[53]

Zhu C Q, Cheng S, Li Q P, et al. Giant submarine landslide in the South China Sea: Evidence, causes, and implications[J]. Journal of Marine Science and Engineering, 2019, 7(5): 152.
[54] 齐昆. 第四纪晚期珠江陆缘洲扇源—汇系统对海平面变化的响应机制[D]. 北京:中国石油大学(北京),2023:20-21.

Qi Kun. The response mechanism of delta-to-fan source-to-sink systems to sea-level changes on the Late-Quaternary Pearl River margin[D]. Beijing: China University of Petroleum (Beijing), 2023: 20-21.
[55] 叶青,施和生,梅廉夫,等. 珠江口盆地珠—坳陷裂后期断裂作用:迁移、转换及其动力学[J]. 地球科学,2017,42(1):105-118.

Ye Qing, Shi Hesheng, Mei Lianfu, et al. Post-rift faulting migration, transition and dynamics in Zhu Ⅰ Depression, Pearl River Mouth Basin[J]. Earth Science, 2017, 42(1): 105-118.
[56] 岳翀,赵晓明,葛家旺,等. 琼东南盆地莺歌海组陆架边缘轨迹演化及主控因素[J]. 沉积学报,2023,41(1):110-125.

Yue Chong, Zhao Xiaoming, Ge Jiawang, et al. Evolution and main controlling factors of continental shelf-edge trajectory in Yinggehai Formation, Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 110-125.