[1] 汪品先. 亚洲形变与全球变冷:探索气候与构造的关系[J]. 第四纪研究,1998,18(3):213-221.

Wang Pinxian. Deformation of Asia and global cooling: Searching links between climate and tectonics[J]. Quaternary Sciences, 1998, 18(3): 213-221.
[2] Dickinson W R. Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins[M]//Kleinspehn K L, Paola C. New perspectives in Basin analysis. New York, NY: Springer, 1988: 3-25.
[3] Dumont H J. The Nile: Origin, environments, limnology, and human use[M]. Dordrecht, Netherlands: Springer, 2009.
[4] Flament N, Gurnis M, Müller R D. A review of observations and models of dynamic topography[J]. Lithosphere, 2013, 5(2): 189-210.
[5] 郑洪波,贾军涛. 大河的地质演化与构造控制[J]. 第四纪研究,2009,29(2):268-275.

Zheng Hongbo, Jia Juntao. Geological evolution of big river systems and tectonic control[J]. Quaternary Sciences, 2009, 29(2): 268-275.
[6] Cox K G. The role of mantle plumes in the development of continental drainage patterns[J]. Nature, 1989, 342(6252): 873-877.
[7] Braun J. The many surface expressions of mantle dynamics[J]. Nature Geoscience, 2010, 3(12): 825-833.
[8] Gurnis M. Rapid continental subsidence following the initiation and evolution of subduction[J]. Science, 1992, 255(5051): 1556-1558.
[9] Bercovici D, Long M D. Slab rollback instability and supercontinent dispersal[J]. Geophysical Research Letters, 2014, 41(19): 6659-6666.
[10] 刘少峰. 叠加于弧后前陆盆地挠曲沉降之上的另一类沉降:动力沉降[J]. 地学前缘,2008,15(3):178-185.

Liu Shaofeng. Dynamic subsidence, another kind of subsidence superposed on flexural subsidence of retroarc foreland basin[J]. Earth Science Frontiers, 2008, 15(3): 178-185.
[11] Mitrovica J X, Jarvis G T. Surface deflections due to transient subduction in a convecting mantle[J]. Tectonophysics, 1985, 120(3/4): 211-237.
[12] Pekeris C L. Thermal convection in the interior of the earth[J]. Geophysical Journal International, 1935, 3(8): 343-367.
[13] Richards M A, Hager B H. Geoid anomalies in a dynamic Earth[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 5987-6002.
[14] Allen P A. Surface impact of mantle processes[J]. Nature Geoscience, 2011, 4(8): 498-499.
[15] Wang H L, Gurnis M, Skogseid J. Continent-wide drainage reorganization in North America driven by mantle flow[J]. Earth and Planetary Science Letters, 2020, 530: 115910.
[16] Forte A M, Peltier R. Viscous flow models of global geophysical observables: 1. Forward problems[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B12): 20131-20159.
[17] Karato S I. Importance of anelasticity in the interpretation of seismic tomography[J]. Geophysical Research Letters, 1993, 20(15): 1623-1626.
[18] Jordan T H. Composition and development of the continental tectosphere[J]. Nature, 1978, 274(5671): 544-548.
[19] Forte A M. Seismic-geodynamic constraints on mantle flow: Implications for layered convection, mantle viscosity, and seismic anisotropy in the deep mantle[M]//Karato S I, Forte A, Liebermann R, et al. Earth's deep interior: Mineral physics and tomography from the atomic to the global scale, volume 117. Washington, DC: American Geophysical Union, 2000: 3-36.
[20] Crough S T. Hotspot swells[J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 165-193.
[21] Gvirtzman Z, Nur A. Residual topography, lithospheric structure and sunken slabs in the central Mediterranean[J]. Earth and Planetary Science Letters, 2001, 187(1/2): 117-130.
[22] Faccenna C, Jolivet L, Piromallo C, et al. Subduction and the depth of convection in the Mediterranean mantle[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2): 2099.
[23] Zhang N, Zhong S J, Flowers R M. Predicting and testing continental vertical motion histories since the Paleozoic[J]. Earth and Planetary Science Letters, 2012, 317-318: 426-435.
[24] Xie X N, Müller R D, Li S T, et al. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23(7): 745-765.
[25] Gallagher K, Dumitru T A, Gleadow A J W. Constraints on the vertical motion of eastern Australia during the Mesozoic[J]. Basin Research, 1994, 6(2/3): 77-94.
[26] Burgess P M, Gurnis M, Moresi L. Formation of sequences in the cratonic interior of North America by interaction between mantle, eustatic, and stratigraphic processes[J]. GSA Bulletin, 1997, 109(12): 1515-1535.
[27] Heine C, Müller R D, Steinberger B, et al. Subsidence in intracontinental basins due to dynamic topography[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1/2/3/4): 252-264.
[28] Flowers R M, Schoene B. (U-Th)/He thermochronometry constraints on unroofing of the eastern Kaapvaal craton and significance for uplift of the southern African Plateau[J]. Geology, 2010, 38(9): 827-830.
[29] Davis W M. The geographical cycle[J]. The Geographical Journal, 1899, 14(5): 481-504.
[30] Penck W. Morphological analysis of land forms[J]. Soil Science, 1954, 77(1): 80.
[31] Hack J T. Dynamic equilibrium and landscape evolution[M]//Melhorn W C, Flemal R C. Theories of landform development. London: George, Allen & Unwin, 1975: 87-102.
[32] Tucker G E, Hancock G R. Modelling landscape evolution[J]. Earth Surface Processes and Landforms, 2010, 35(1): 28-50.
[33] Gilbert G K. Geology of the henry mountains[R]. Washington, DC: Government Printing Office, 1877: 1-160.
[34] Ahnert F. The role of the equilibrium concept in the interpretation of landforms of fluvial erosion and deposition[M]//Macar P. L'Evolution des versants. Liege, Belgium: University of Liege, 1967.
[35] McKean J A, Dietrich W E, Finkel R C, et al. Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile[J]. Geology, 1993, 21(4): 343-346.
[36] Roering J J. Soil creep and convex-upward velocity profiles: Theoretical and experimental investigation of disturbance-driven sediment transport on hillslopes[J]. Earth Surface Processes and Landforms, 2004, 29(13): 1597-1612.
[37] Cross T A. Quantitative dynamic stratigraphy[M]. Englewood Cliffs, NJ: Prentice Hall, 1990.
[38] Howard A D. A detachment-limited model of drainage Basin evolution[J]. Water Resources Research, 1994, 30(7): 2261-2285.
[39] Roering J J, Kirchner J W, Dietrich W E. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology[J]. Water Resources Research, 1999, 35(3): 853-870.
[40] Gabet E J. Gopher bioturbation: Field evidence for non-linear hillslope diffusion[J]. Earth Surface Processes and Landforms, 2000, 25(13): 1419-1428.
[41] Coulthard T J, Macklin M G, Kirkby M J. A cellular model of Holocene upland river Basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27(3): 269-288.
[42] Murray A B, Paola C. A cellular model of braided rivers[J]. Nature, 1994, 371(6492): 54-57.
[43] Simpson G, Schlunegger F. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B6): 2300.
[44] Dietrich W E, Bellugi D G, Sklar L S, et al. Geomorphic transport laws for predicting landscape form and dynamics[M]//Iverson R M, Wilcock P R. Prediction in geomorphology.Washington, D.C.: AGU. 2013: 103-132.
[45] Carson M A, Kirkby M J. Hillslope form and process[M]. Cambridge: University Press, 1972: 443-467.
[46] Tucker G E, Whipple K X. Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B9): ETG 1-1-ETG 1-16.
[47] Howard A D, Kerby G. Channel changes in badlands[J]. GSA Bulletin, 1983, 94(6): 739-752.
[48] 胡小飞,潘保田,李琼. 基岩河道水力侵蚀模型原理及其最新研究进展[J]. 兰州大学学报(自然科学版),2014,50(6):824-831.

Hu Xiaofei, Pan Baotian, Li Qiong. Principles of the stream power erosion model and its latest progress in research[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(6): 824-831.
[49] Whipple K X, Hancock G S, Anderson R S. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion and cavitation[J]. Geological Society of America Bulletin, 2000, 112(3): 490-503.
[50] 王一舟,张会平,郑德文,等. 基岩河道河流水力侵蚀模型及其应用:兼论青藏高原基岩河道研究的迫切性[J]. 第四纪研究,2016,36(4):884-897.

Wang Yizhou, Zhang Huiping, Zheng Dewen, et al. Stream-power incision model and its implications: Discussion on the urgency of studying bedrock channel across the Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(4): 884-897.
[51] Foster G R, Mayer L D. A closed-form soil erosion equation for upland areas[M]//Shen H W. Sedimentation: Symposium to honor prof. H. A. Einstein. Fort Collins, Colorado: Colorado State University, 1972: 12.1-12.19.
[52] Braun J, Sambridge M. Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization[J]. Basin Research, 1997, 9(1): 27-52.
[53] Salles T, Duclaux G. Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling[J]. Earth Surface Processes and Landforms, 2015, 40(6): 823-839.
[54] Salles T, Hardiman L. Badlands: An open-source, flexible and parallel framework to study landscape dynamics[J]. Computers & Geosciences, 2016, 91: 77-89.
[55] 刘泽,李三忠, Bukhari S W H,等. 动态古地貌再造:Badlands软件在盆地分析中的应用[J]. 古地理学报,2020,22(1):29-38.

Liu Ze, Li Sanzhong, Bukhari S W H, et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis[J]. Journal of Palaeogeography, 2020, 22(1): 29-38.
[56] Coulthard T J. Landscape evolution models: A software review[J]. Hydrological Processes, 2001, 15(1): 165-173.
[57] Paul J D, Roberts G G, White N. The African landscape through space and time[J]. Tectonics, 2014, 33(6): 898-935.
[58] 蔡顺,耿豪鹏,郑炜珊,等. 基于傅里叶变换的谷间距特征信息提取及其影响因素研究[J]. 地球信息科学学报,2020,22(3):399-409.

Cai Shun, Geng Haopeng, Zheng Weishan, et al. Valley spacing character information and its influencing factors based on the Fourier Transform[J]. Journal of Geo-Information Science, 2020, 22(3): 399-409.
[59] 潘保田,蔡顺,耿豪鹏. 山体隆升历史与地貌演化过程的数值模拟约束:以青藏高原东北缘河西走廊中段的周边年轻上升山地为例[J]. 中国科学(D辑):地球科学,2021,51(4):523-536.

Pan Baotian, Cai Shun, Geng Haopeng. Numerical simulation of landscape evolution and mountain uplift history constrain: A case study from the youthful stage mountains around the central Hexi Corridor, NE Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2021, 51(4): 523-536.
[60] 杨蓉. 几种地形演化的数值模拟模型简述[J]. 地震地质,2017,39(6):1173-1184.

Yang Rong. A brief review of several models of topographic evolution[J]. Seismology and Geology, 2017, 39(6): 1173-1184.
[61] Stanley J R, Braun J, Baby G, et al. Constraining plateau uplift in southern Africa by combining thermochronology, sediment flux, topography, and landscape evolution modeling[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2020JB021243.
[62] Moucha R, Forte A M, Rowley D B, et al. Deep mantle forces and the uplift of the Colorado plateau[J]. Geophysical Research Letters, 2009, 36(19): L19310.
[63] Liu L J, Spasojević S, Gurnis M. Reconstructing farallon plate subduction beneath north America back to the Late Cretaceous[J]. Science, 2008, 322(5903): 934-938.
[64] Mitrovica J X, Beaumont C, Jarvis G T. Tilting of continental interiors by the dynamical effects of subduction[J]. Tectonics, 1989, 8(5): 1079-1094.
[65] Heller P L, Dueker K, McMillan M E. Post-Paleozoic alluvial gravel transport as evidence of continental tilting in the U.S. Cordillera[J]. Geological Society of America Bulletin, 2003, 115(9): 1122-1132.
[66] Shephard G E, Müller R D, Liu L, et al. Miocene drainage reversal of the Amazon River driven by plate–mantle interaction[J]. Nature Geoscience, 2010, 3(12): 870-875.
[67] DiCaprio L, Gurnis M, Müller R D. Long-wavelength tilting of the Australian continent since the Late Cretaceous[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 175-185.
[68] Heine C, Müller R D, Steinberger B, et al. Integrating deep Earth dynamics in paleogeographic reconstructions of Australia[J]. Tectonophysics, 2010, 483(1/2): 135-150.
[69] Gurnis M, Mitrovica J X, Ritsema J, et al. Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African Superplume[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(7): 1020.
[70] Pysklywec R N, Mitrovica J X. The role of subduction‐induced subsidence in the evolution of the Karoo Basin[J]. The Journal of Geology, 1999, 107(2): 155-164.
[71] Mitrovica J X, Pysklywec R N, Beaumont C, et al. The Devonian to Permian sedimentation of the Russian Platform: An example of subduction-controlled long-wavelength tilting of continents[J]. Journal of Geodynamics, 1996, 22(1/2): 79-96.
[72] Cao X Z, Flament N, Müller D, et al. The dynamic topography of eastern China since the latest Jurassic Period[J]. Tectonics, 2018, 37(5): 1274-1291.
[73] Liu L J, Peng D D, Liu L, et al. East Asian lithospheric evolution dictated by multistage Mesozoic flat-slab subduction[J]. Earth-Science Reviews, 2021, 217: 103621.
[74] Liu S F, Ma P F, Zhang B, et al. The horizontal slab beneath east Asia and its subdued surface dynamic response[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021156.
[75] Ma P F, Liu S F, Gurnis M, et al. Slab horizontal subduction and slab tearing beneath east Asia[J]. Geophysical Research Letters, 2019, 46(10): 5161-5169.
[76] Faccenna C, Glišović P, Forte A, et al. Role of dynamic topography in sustaining the Nile River over 30 million years[J]. Nature Geoscience, 2019, 12(12): 1012-1017.
[77] Dickinson W R, Klute M A, Hayes M J, et al. Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region[J]. Geological Society of American Bulletin, 1988, 100(7): 1023-1039.
[78] Liu L J, Gurnis M. Dynamic subsidence and uplift of the Colorado Plateau[J]. Geology, 2010, 38(7): 663-666.
[79] Wang H L, Gurnis M, Skogseid J. Rapid Cenozoic subsidence in the gulf of Mexico resulting from Hess rise conjugate subduction[J]. Geophysical Research Letters, 2017, 44(21): 10930-10938.
[80] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
[81] Feng J H, Buffler R T, Kominz M A. Laramide orogenic influence on Late Mesozoic-Cenozoic subsidence history, western deep Gulf of Mexico Basin[J]. Geology, 1994, 22(4): 359-362.
[82] Blum M, Pecha M. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons[J]. Geology, 2014, 42(7): 607-610.
[83] Gurnis M, Müller R D, Moresi L. Cretaceous vertical motion of Australia and the Australian-Antarctic discordance[J]. Science, 1998, 279(5356): 1499-1504.
[84] Harrington L, Zahirovic S, Salles T, et al. Tectonic, geodynamic and surface process driving forces of Australia’s paleogeography since the Jurassic[C]//In: Keep M, Moss SJ, eds. The Sedimentary Basins of Western Australia V: Proceedings of the petroleum exploration society of Australia symposium. Perth WA, 2019: 30.
[85] Gallagher K, Subsidence Lambeck K., sedimentation and sea-level changes in the Eromanga Basin, Australia [J]. Basin Research, 1989, 2(2): 115-131.
[86] Karner G D, Driscoll N W, Weissel J K. Response of the lithosphere to in-plane force variations[J]. Earth and Planetary Science Letters, 1993, 114(4): 397-416.
[87] Müller R D, Lim V S L, Isern A R. Late Tertiary tectonic subsidence on the northeast Australian passive margin: Response to dynamic topography?[J]. Marine Geology, 2000, 162(2/4): 337-352.
[88] Salles T, Flament N, Müller D. Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1): 280-305.
[89] Kohn B P, Gleadow A J W, Brown R W, et al. Visualizing thermotectonic and denudation histories using apatite fission track thermochronology[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1): 527-565.
[90] Kohn B P, Gleadow A J W, Brown R W, et al. Shaping the Australian crust over the last 300 million years: Insights from fission track thermotectonic imaging and denudation studies of key terranes[J]. Australian Journal of Earth Sciences, 2002, 49(4): 697-717.
[91] Rey P F, Müller R D. Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge[J]. Nature Geoscience, 2010, 3(4): 257-261.
[92] Siddoway C. Microplate motion[J]. Nature Geoscience, 2010, 3(4): 225-226.
[93] Ochs III F A, Lange R A. The density of hydrous magmatic liquids[J]. Science, 1999, 283(5406): 1314-1317.
[94] Hirth G, Kohlstedt D L. Water in the oceanic Upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 93-108.
[95] Grove T L, Chatterjee N, Parman S W, et al. The influence of H2O on mantle wedge melting[J]. Earth and Planetary Science Letters, 2006, 249(1/2): 74-89.
[96] White R, McKenzie D. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B6): 7685-7729.
[97] Fielding L, Najman Y, Millar I, et al. The initiation and evolution of the River Nile[J]. Earth and Planetary Science Letters, 2018, 489: 166-178.
[98] Macgregor D S. The development of the Nile drainage system: Integration of onshore and offshore evidence[J]. Petroleum Geoscience, 2012, 18(4): 417-431.
[99] Pik R, Marty B, Carignan J, et al. Timing of East African Rift development in southern Ethiopia: Implication for mantle plume activity and evolution of topography[J]. Geology, 2008, 36(2): 167-170.
[100] Glišović P, Forte A M. A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4067-4084.
[101] Glišović P, Forte A M. On the deep-mantle origin of the Deccan Traps[J]. Science, 2017, 355(6325): 613-616.
[102] Moucha R, Forte A M. Changes in African topography driven by mantle convection[J]. Nature Geoscience, 2011, 4(10): 707-712.
[103] Hoorn C, Guerrero J, Sarmiento G A, et al. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America[J]. Geology, 1995, 23(3): 237-240.
[104] Roddaz M, Baby P, Brusset S, et al. Forebulge dynamics and environmental control in western Amazonia: The case study of the Arch of Iquitos (Peru)[J]. Tectonophysics, 2005, 399(1/2/3/4): 87-108.
[105] Flament N, Gurnis M, Müller R D, et al. Influence of subduction history on South American topography[J]. Earth and Planetary Science Letters, 2015, 430: 9-18.
[106] Fitzgerald P G, Sorkhabi R B, Redfield T F, et al. Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B10): 20175-20191.
[107] Steinberger B. Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface[J]. Physics of the Earth and Planetary Interiors, 2007, 164(1/2): 2-20.
[108] Hoorn C, Wesselingh F P, Steege H T, et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity[J]. Science, 2010, 330(6006): 927-931.
[109] Räsänen M E, Linna A M, Santos J C R, et al. Late Miocene tidal deposits in the Amazonian foreland Basin[J]. Science, 1995, 269(5222): 386-390.
[110] Liu S F, Gurnis M, Ma P F, et al. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma[J]. Earth-Science Reviews, 2017, 175: 114-142.
[111] Gurnis M, Turner M, Zahirovic S, et al. Plate tectonic reconstructions with continuously closing plates[J]. Computers & Geosciences, 2012, 38(1): 35-42.
[112] 李三忠,张国伟,周立宏,等. 中、新生代超级汇聚背景下的陆内差异变形:华北伸展裂解和华南挤压逆冲[J]. 地学前缘,2011,18(3):79-107.

Li Sanzhong, Zhang Guowei, Zhou Lihong, et al. The opposite Meso-Cenozoic intracontinental deformations under the superconvergence: Rifting and extension in the North China Craton and shortening and thrusting in the South China Craton[J]. Earth Science Frontiers, 2011, 18(3): 79-107.
[113] Yang T, Gurnis M. Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow[J]. Geophysical Journal International, 2016, 207(2): 1186-1202.
[114] Steinberger B, Schmeling H, Marquart G. Large-scale lithospheric stress field and topography induced by global mantle circulation[J]. Earth and Planetary Science Letters, 2001, 186(1): 75-91.
[115] Zhang N, Zhong S J, Leng W, et al. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6): B06401.
[116] Zhong S J, Gurnis M. Mantle convection with plates and mobile, faulted plate margins[J]. Science, 1995, 267(5199): 838-843.
[117] Yang T, Moresi L, Gurnis M, et al. Contrasted East Asia and South America tectonics driven by deep mantle flow[J]. Earth and Planetary Science Letters, 2019, 517: 106-116.
[118] Li C, van der Hilst R D, Engdahl E R, et al. A new global model for P wave speed variations in Earth’s mantle[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05018.
[119] Wei W, Xu J D, Zhao D P, et al. East Asia mantle tomography: New insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 2012, 60: 88-103.
[120] Hoggard M J, Winterbourne J, Czarnota K, et al. Oceanic residual depth measurements, the plate cooling model, and global dynamic topography[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(3): 2328-2372.
[121] 索艳慧,李三忠,戴黎明,等. 东亚及其大陆边缘新生代构造迁移与盆地演化[J]. 岩石学报,2012,28(8):2602-2618.

Suo Yanhui, Li Sanzhong, Dai Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8): 2602-2618.
[122] Liu Z, Dai L M, Li S Z, et al. Earth’s surface responses during geodynamic evolution: Numerical insight from the southern East China Sea Continental Shelf Basin, West Pacific[J]. Gondwana Research, 2020,https://doi.org/10.1016/j.gr.2020.12.011
[123] Rubey M, Brune S, Heine C, et al. Global patterns in Earth’s dynamic topography since the Jurassic: The role of subducted slabs[J]. Solid Earth, 2017, 8(5): 899-919.
[124] 张少武,李春峰. 磁异常三维解析信号所揭示的中国东部及邻近海域岩浆岩特征[J]. 物探与化探,2011,35(3):290-297.

Zhang Shaowu, Li Chunfeng. Magnetic activities in eastern China and adjacent seas revealed by 3D analytic signals of magnetic data[J]. Geophysical & Geochemical Exploration, 2011, 35(3): 290-297.
[125] Mao J. Reassessing the place of Chou Ju-Teng (1547-1629) in Late Ming thought[J]. Ming Studies, 1994, 1994(1): 1-11.
[126] Liu G D. Geodynamical evolution and tectonic framework of China[J]. Earth Science Frontiers, 2007, 14(3): 39-46.
[127] 杨传胜,李刚,栾锡武,等. 东海陆架盆地雁荡低凸起综合地球物理解释及其成因探讨[J]. 地球物理学报,2014,57(9):2981-2992.

Yang Chuansheng, Li Gang, Luan Xiwu, et al. The geophysical interpretation of Yandang low uplift and discussion on its genesis in the East China Sea Shelf Basin[J]. Chinese Journal of Geophysics, 2014, 57(9): 2981-2992.
[128] Liu Z, Dai L M, Li S Z, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: Thermo-mechanical modelling[J]. Geological Journal, 2018, 53(Suppl.1): 240-251.
[129] Suo Y H, Li S Z, Jin C, et al. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 2019, 196: 102884.
[130] Iaffaldano G, Bunge H P. Strong plate coupling along the Nazca-South America convergent margin[J]. Geology, 2008, 36(6): 443-446.
[131] Braun J, Robert X, Simon-Labric T. Eroding dynamic topography[J]. Geophysical Research Letters, 2013, 40(8): 1494-1499.
[132] Chang C, Liu L J. Distinct responses of intraplate sedimentation to different subsidence mechanisms: Insights from forward landscape evolution simulations[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(5): 1139-1159.
[133] Gao M, Fan M J, Moucha R. Southwestward weakening of Wyoming lithosphere during the Laramide orogeny[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6219-6234.
[134] Liu S F, Nummedal D, Liu L J. Migration of dynamic subsidence across the Late Cretaceous United States western Interior Basin in response to Farallon plate subduction[J]. Geology, 2011, 39(6): 555-558.
[135] Zhong S J, Gurnis M. Controls on trench topography from dynamic models of subducted slabs[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B8): 15683-15695.
[136] Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 2004, 23(1): TC1006.
[137] van Hoang L, Wu F Y, Clift P D, et al. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11): Q11008.
[138] Robinson R A J, Brezina C A, Parrish R R, et al. Large rivers and orogens: The evolution of the Yarlung Tsangpo–Irrawaddy system and the eastern Himalayan syntaxis[J]. Gondwana Research, 2014, 26(1): 112-121.
[139] Wang P, Zheng H B, Wang Y D, et al. Sedimentology, geochronology, and provenance of the Late Cenozoic “Yangtze Gravel”: Implications for Lower Yangtze River reorganization and tectonic evolution in southeast China[J]. Geological Society of America Bulletin, 2021, doi:10.1130/B35851.1 .