[1] |
Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003. |
[2] |
Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169. |
[3] |
Fisher R V. Flow transformations in sediment gravity flows[J]. Geology, 1983, 11(5): 273-274. |
[4] |
Waltham D. Flow transformations in particulate gravity currents[J]. Journal of Sedimentary Research, 2004, 74(1): 129-134. |
[5] |
操应长,杨田,王艳忠,等. 超临界沉积物重力流形成演化及特征[J]. 石油学报,2017,38(6):607-621.
Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow[J]. Acta Petrolei Sinica, 2017, 38(6): 607-621. |
[6] |
操应长,杨田,王艳忠,等. 深水碎屑流与浊流混合事件层类型及成因机制[J]. 地学前缘,2017,24(3):234-248.
Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current[J]. Earth Science Frontiers, 2017, 24(3): 234-248. |
[7] |
Tinterri R. A new turbidite facies-tract scheme including supercritical and transitional sand-mud flows: An outcrop perspective from Mediterranean-type foreland basins[J]. Journal of Sediment-ary Research, 2025, 95(2): 239-272. |
[8] |
Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 168. |
[9] |
何起祥. 沉积动力学若干问题的讨论[J]. 海洋地质与第四纪地质,2010,30(4):1-10.
He Qixiang. A discussion on sediment dynamics[J]. Marine Geology Quaternary Geology, 2010, 30(4): 1-10. |
[10] |
钟广法. 超临界浊流之地貌动力学和沉积特征[J]. 沉积学报,2023,41(1):52-72.
Zhong Guangfa. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits[J]. Acta Sedimentologica Sinica, 2023, 41(1): 52-72. |
[11] |
邹才能,冯有良,杨智,等. 中国湖盆细粒重力流沉积作用及其对页岩油“甜点段”发育的影响[J]. 石油勘探与开发,2023,50(5):883-897.
Zou Caineng, Feng Youliang, Yang Zhi, et al. Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet spot intervals in lacustrine basins in China[J]. Petroleum Exploration and Development, 2023, 50(5): 883-897. |
[12] |
Postma G. Deepwater geoscience: 1st Bouma special publication[J]. Journal of Sedimentary Research, 2025, 95(2): 361-366. |
[13] |
Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Petrology, 1982, 52(1): 279-297. |
[14] |
Mutti E. Turbidite sandstones[M]. Agip Spec. Publ., Istituto di Geologia, Università di Parma, Agip S. P. A., 1992. |
[15] |
Shanmugam G, Lehtonen L R, Straume T, et al. Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and northern North Seas (61-67°N): Implications for sand distribution[J]. AAPG Bulletin, 1994, 78(6): 910-937. |
[16] |
邹才能,赵政璋,杨华,等. 陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J]. 沉积学报,2009,27(6):1065-1075.
Zou Caineng, Zhao Zhengzhang, Yang Hua, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1065-1075. |
[17] |
Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits: Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918. |
[18] |
Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183. |
[19] |
Postma G, Cartigny M, Kleverlaan K. Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current?[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 1-6. |
[20] |
Talling P J, Malgesini G, Felletti F. Can liquefied debris flows deposit clean sand over large areas of sea floor? Field evidence from the Marnoso-arenacea Formation, Italian Apennines[J]. Sedimentology, 2013, 60(3): 720-762. |
[21] |
谈明轩,朱筱敏,耿名扬,等. 沉积物重力流流体转化沉积:混合事件层[J]. 沉积学报,2016,34(6):1108-1119.
Tan Ming-xuan, Zhu Xiaomin, Geng Mingyang, et al. The flow transforming deposits of sedimentary gravity flow-hybrid event bed[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1108-1119. |
[22] |
谈明轩,朱筱敏,刘伟,等. 旋回阶梯底形的动力地貌及其相关沉积物发育特征[J]. 地质论评,2017,63(6):1512-1522.
Tan Mingxuan, Zhu Xiaomin, Liu Wei, et al. The morpho-dynamics of cyclic steps and sedimentary characteristics of associated deposits[J]. Geological Review, 2017, 63(6): 1512-1522. |
[23] |
杨田,操应长,田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报,2021,39(1):88-111.
Yang Tian, Cao Yingchang, Tian Jingchun. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111. |
[24] |
杨田,操应长,田景春,等. 陆相湖盆深水重力流混合事件层沉积及沉积学意义[J]. 地质学报,2021,95(12):3842-3857.
Yang Tian, Cao Yingchang, Tian Jingchun, et al. Deposition of deep-water gravity-flow hybrid event beds in lacustrine basins and their sedimentological significance[J]. Acta Geologica Sinica, 2021, 95(12): 3842-3857. |
[25] |
窦鲁星,张昌民,张莉,等. 过渡型流体转换对洪水型重力流沉积研究的启示及地质意义[J]. 地质论评,2023,69(5):1952-1966.
Dou Luxing, Zhang Changmin, Zhang Li, et al. Transitional flow transformation mechanism: Implication for hyper-pycnal flow sedimentary research and geological significance[J]. Geological Review, 2023, 69(5): 1952-1966. |
[26] |
Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits: A synthesis[J]. Geology, 2014, 42(11): 987-990. |
[27] |
Alexander J, Bridge J S, Cheel R J, et al. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds[J]. Sedimentology 2001, 48, 133-152. |
[28] |
Hughes Clarke J E. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature Communications, 2016, 7: 11896. |
[29] |
Paull C K, Talling P J, Maier K L, et al. Powerful turbidity currents driven by dense basal layers[J]. Nature Communications, 2018, 9(1): 4114. |
[30] |
Haughton P D W, Barker S P, McCaffrey W D. 'Linked' debrites in sand-rich turbidite systems: Origin and significance[J]. Sedimentology, 2003, 50(3): 459-482. |
[31] |
Talling P J, Amy L A, Wynn R B, et al. Beds comprising debrite sandwiched within co‐genetic turbidite: Origin and widespread occurrence in distal depositional environments[J]. Sediment-ology, 2004, 51(1): 163-194. |
[32] |
Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47(1): 31-70. |
[33] |
Talling P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488. |
[34] |
冯有良,杨智,张洪,等. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义:以准噶尔盆地玛湖凹陷风城组为例[J]. 地质学报,2023,97(3):839-863.
Feng Youliang, Yang Zhi, Zhang Hong, et al. Fine-grained gravity flow sedimentary features and their petroleum significance within saline lacustrine basins: A case study of the Fengcheng Formation in Mahu Depression, Junggar Basin, China[J]. Acta Geologica Sinica, 2023, 97(3): 839-863. |
[35] |
杨田,操应长,王健,等. 陆相湖盆深水浊流与泥质碎屑流间过渡流沉积与沉积学意义[J]. 沉积学报,2023,41(5):1295-1310.
Yang Tian, Cao Yingchang, Wang Jian, et al. Deep-water deposition for transitional flow from turbidity current to muddy debris flow in lacustrine basins and its sedimentological significance[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1295-1310. |
[36] |
Łapcik P. Distribution of transitional flow deposits in sediment-ary environments of mixed sand-mud turbidite system[J]. Sedimentary Geology, 2024, 473: 106766. |
[37] |
Yang T, Cao Y C, Liu K Y, et al. Depositional elements and evolution of gravity-flow deposits on Lingshan Island (eastern China): An integrated outcrop-subsurface study[J]. Marine and Petroleum Geology, 2022, 138: 105566. |
[38] |
Yang T, Sun H N, Cao Y C, et al. Gravel-inlaid mud clasts as indicators of transport processes of subaqueous sediment gravity-flows[J]. Sedimentary Geology, 2024, 472: 106741. |
[39] |
于吉星,杨田,田景春,等. 深水重力流沉积油气勘探中的几个基础沉积学问题与研究展望[J]. 古地理学报,2023,25(6):1299-1314.
Yu Jixing, Yang Tian, Tian Jingchun, et al. Some basic sedimentological problems and research prospects of deep-water gravity-flow sedimentary in oil and gas exploration[J]. Journal of Palaeogeography, 2023, 25(6): 1299-1314. |
[40] |
Pohl F, Eggenhuisen J T, Tilston M, et al. New flow relaxation mechanism explains scour fields at the end of submarine channels[J]. Nature Communications, 2019, 10(1): 4425. |
[41] |
Ge Z Y, Nemec W, Vellinga A J, et al. How is a turbidite actually deposited?[J]. Science Advances, 2022, 8(3): eabl9124. |
[42] |
Talling P, Baker M, Pope E, et al. Flood and tides trigger longest measured sediment flow that accelerates for thousand kilometers into deep-sea[J]. Nature Communications, 2022, 13: 4193. |
[43] |
Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deep water sedimentation: Short course lecture notes. Los Angeles, California, 1973: 1-38. |
[44] |
Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. |
[45] |
Kostic S, Sequeiros O, Spinewine B, et al. Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-Environment Research, 2010, 3(4): 167-172. |
[46] |
Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304. |
[47] |
Sanders J E. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms[M]//Middleton G V. Primary sedimentary structures and their hydrodynamic interpretation. SEPM Society for Sedimentary Geology, 1965: 192-219. |
[48] |
Mutti E, Bernoulli D, Lucchi F R, et al. Turbidites and turbidity currents from Alpine 'flysch' to the exploration of continental margins[J]. Sedimentology, 2009, 56(1): 267-318. |
[49] |
Alexander J, McLelland S J, Gray T E, et al. Laboratory sustained turbidity currents form elongate ridges at channel mouths[J]. Sedimentology, 2008, 55(4): 845-868. |
[50] |
Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical‐flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748. |
[51] |
Hiscott R N. Traction-carpet stratification in turbidites; fact or fiction[J]. Journal of Sedimentary Research, 1994, 64(2a): 204-208. |
[52] |
Cartigny M J B, Eggenhuisen J T, Hansen E W M, et al. Concentration-dependent flow stratification in experimental high-density turbidity currents and their relevance to turbidite facies models[J]. Journal of Sedimentary Research, 2013, 83(12): 1046-1064. |
[53] |
Sohn Y K. On traction-carpet sedimentation[J]. Journal of Sedimentary Research, 1997, 67(3): 502-509. |
[54] |
Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/2/3/4): 40-56. |
[55] |
Slootman A, Cartigny M J B. Cyclic steps: Review and aggradation-based classification[J]. Earth-Science Reviews, 2020, 201: 102949. |
[56] |
Felix M, Peakall J. Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments[J]. Sedimentology, 2006, 53(1): 107-123. |
[57] |
Wang Z Y, Plate E C H J. A preliminary study on the turbulence structure of flows of non-Newtonian fluid[J]. Journal of Hydraulic Research, 1996, 34(3): 345-361. |
[58] |
Baas J H, Best J L, Peakall J. Depositional processes, bedform development and hybrid bed Formation in rapidly decelerated cohesive (mud–sand) sediment flows[J]. Sedimentology, 2011, 58(7): 1953-1987. |
[59] |
Baas J H, Best J L, Peakall J. Comparing the transitional behaviour of kaolinite and bentonite suspension flows[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1911-1921. |
[60] |
Malarkey J, Baas J H, Hope J A, et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications, 2015, 6(1): 6257. |
[61] |
Baker M L, Baas J H, Malarkey J, et al. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits[J]. Journal of Sedimentary Research, 2017, 87(11): 1176-1195. |
[62] |
Mutti E, Tinterri R, Remacha E, et al. An introduction to the analysis of ancient turbidite basins from an outcrop perspective[M]. Houston: American Association of Petroleum Geologists, 1999: 96. |
[63] |
Yang T, Zhu Z H, Cao Y C. Ancient hyperpycnites in deep-lacustrine basins: A comparison between the Jiyang Rift Basin and the Ordos Cratonic Basin, China[J]. Marine and Petroleum Geology, 2025, 180: 107475. |
[64] |
Slootman A, Vellinga A J, Moscariello A, et al. The depositional signature of high‐aggradation chute‐and‐pool bedforms: The build‐and‐fill structure[J]. Sedimentology, 2021, 68(4): 1640-1673. |
[65] |
Salinas J, Balachandar S, Shringarpure M, et al. Soft transition between subcritical and supercritical currents through intermittent cascading interfacial instabilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(31): 18278-18284. |
[66] |
Postma G, Kleverlaan K. Supercritical flows and their control on the architecture and facies of small-radius sand-rich fan lobes[J]. Sedimentary Geology, 2018, 364: 53-70. |
[67] |
Wynn R B, Kenyon N H, Masson D G, et al. Characterization and recognition of deep-water channel-lobe transition zones[J]. AAPG Bulletin, 2002, 86(8): 1441-1462. |
[68] |
Brooks H L, Hodgson D M, Brunt R L, et al. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa[J]. GSA Bulletin, 2018, 130(9/10): 1723-1746. |
[69] |
Postma G, Lang J, Hoyal D C, et al. Reconstruction of bedform dynamics controlled by supercritical flow in the channel-lobe transition zone of a deep‐water delta (Sant Llorenç del Munt, north‐east Spain, Eocene)[J]. Sedimentology, 2021, 68(4): 1674-1697. |
[70] |
Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model[J]. Sedimentology, 2014, 61(7): 2268-2290. |
[71] |
Pohl F, Eggenhuisen J T, Cartigny M J B, et al. The influence of a slope break on turbidite deposits: An experimental investigation[J]. Marine Geology, 2020, 424: 106160. |
[72] |
Winsemann J, Lang J, Fedele J J, et al. Re-examining models of shallow-water deltas: Insights from tank experiments and field examples[J]. Sedimentary Geology, 2021, 421: 105962. |
[73] |
Cartigny M. Morphodynamics of supercritical high-density turbidity currents[D]. Utrecht: Utrecht Studies in Earth Sciences, 2012. |
[74] |
Ventra D, Cartigny M J B, Bijkerk J F, et al. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance[J]. Geology, 2015, 43(8): 731-734. |
[75] |
Lang J, Brandes C, Winsemann J. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)[J]. Sedimentary Geology, 2017, 349: 79-102. |
[76] |
Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148. |
[77] |
Lang J, Winsemann J. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes[J]. Sedimentary Geology, 2013, 296: 36-54. |
[78] |
Baas J H, Best J L. Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition[J]. Journal of Sedimentary Research, 2002, 72(3): 336-340. |
[79] |
Tinterri R, Magalhaes P M, Tagliaferri A, et al. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)[J]. Sedimentary Geology, 2016, 344: 382-407. |
[80] |
Tinterri R, Mazza T, Muzzi Magalhaes P. Contained-reflected megaturbidites of the Marnoso–Arenacea Formation (Contessa key bed) and Helminthoid Flysches (northern Apennines, Italy) and Hecho Group (South-western Pyrenees)[J]. Frontiers in Earth Science, 2022, 10: 817012. |
[81] |
Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966. |
[82] |
Felix M, Leszczyński S, Ślączka A, et al. Field expressions of the transformation of debris flows into turbidity currents, with examples from the Polish Carpathians and the French Maritime Alps[J]. Marine and Petroleum Geology, 2009, 26(10): 2011-2020. |
[83] |
Hussain A, Morris E A, Al-Ramadan K, et al. Hybrid event beds (HEBs) and the 'greywacke problem' revisited[J]. Earth-Science Reviews, 2023, 237: 104297. |
[84] |
Southern S J, Kane I A, Warchoł M J, et al. Hybrid event beds dominated by transitional‐flow facies: Character, distribution and significance in the Maastrichtian Springar Formation, north‐west Vøring Basin, Norwegian Sea[J]. Sedimentology, 2017, 64(3): 747-776. |
[85] |
Pierce C S, Haughton P D W, Shannon P M, et al. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system, Pennsylvanian Ross Sandstone Formation, western Ireland[J]. Sedimentology, 2018, 65(3): 952-992. |
[86] |
Pritchard D, Gladstone C. Reversing buoyancy in turbidity currents: Developing a hypothesis for flow transformation and for deposit facies and architecture[J]. Marine and Petroleum Ge-ology, 2009, 26(10): 1997-2010. |
[87] |
Sumner E J, Talling P J, Amy L A. Deposits of flows transitional between turbidity current and debris flow[J]. Geology, 2009, 37(11): 991-994. |
[88] |
Tinterri R, Muzzi Magalhaes P. Synsedimentary structural control on foredeep turbidites: An example from Miocene Marnoso–Arenacea Formation, northern Apennines, Italy[J]. Marine and Petroleum Geology, 2011, 28(3): 629-657. |
[89] |
Fonnesu M, Felletti F, Haughton P D W, et al. Hybrid event bed character and distribution linked to turbidite system sub‐environments: The North Apennine Gottero Sandstone (north‐west Italy)[J]. Sedimentology, 2018, 65(1): 151-190. |
[90] |
Fonnesu M, Patacci M, Haughton P D W, et al. Hybrid event beds generated by local substrate delamination on a confined-basin floor[J]. Journal of Sedimentary Research, 2016, 86(8): 929-943. |
[91] |
Patacci M, Haughton P D W, McCaffrey W D. Rheological complexity in sediment gravity flows forced to decelerate against a confining slope, Braux, SE France[J]. Journal of Sedimentary Research, 2014, 84(4): 270-277. |
[92] |
Henstra G A, Grundvåg S A, Johannessen E P, et al. Depositional processes and stratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, east Greenland[J]. Marine and Petroleum Geology, 2016, 76: 187-209. |
[93] |
Brooks H L, Ito M, Zuchuat V, et al. Channel‐lobe transition zone development in tectonically active settings: Implications for hybrid bed development[J]. The Depositional Record, 2022, 8(2): 829-868. |
[94] |
Hovikoski J, Therkelsen J, Nielsen L H, et al. Density-flow deposition in a fresh-water lacustrine rift basin, Paleogene Bach Long Vi Graben, Vietnam[J]. Journal of Sedimentary Research, 2016, 86(9): 982-1007. |
[95] |
Yang T, Cao Y C, Liu K Y, et al. Origin of deep-water fine-grained sediments as revealed from the Lower Cretaceous rifting basin sequence in the Lingshan Island, Yellow Sea, eastern China[J]. Journal of Asian Earth Sciences, 2019, 186: 104065. |
[96] |
Mueller P, Patacci M, Di Giulio A. Hybrid event bed distribution in a mixed siliciclastic-calcareous turbidite succession: A cross-current perspective from the Bordighera Sandstone, Ligurian Alps, NW Italy[J]. Italian Journal of Geosciences, 2021, 140(2): 255-274. |
[97] |
Kane I A, Pontén A S M. Submarine transitional flow deposits in the Paleogene Gulf of Mexico[J]. Geology, 2012, 40(12): 1119-1122. |
[98] |
Baker M L, Baas J H. Mixed sand–mud bedforms produced by transient turbulent flows in the fringe of submarine fans: Indicators of flow transformation[J]. Sedimentology, 2020, 67(5): 2645-2671. |
[99] |
Łapcik P, Baas J H. Integrating transitional-flow signatures into hybrid event beds: Implications for hybrid-flow evolution on a submarine lobe fringe[J]. Journal of Sedimentary Research, 2024, 94(6): 799-821. |
[100] |
Baas J H, Tracey N D, Peakall J. Sole marks reveal deep-marine depositional process and environment: Implications for flow transformation and hybrid-event-bed models[J]. Journal of Sedimentary Research, 2021, 91(9): 986-1009. |
[101] |
Normandeau A, Lajeunesse P, Poiré A G, et al. Morphological expression of bedforms formed by supercritical sediment density flows on four fjord‐lake deltas of the south‐eastern Canadian Shield (eastern Canada)[J]. Sedimentology, 2016, 63(7): 2106-2129. |
[102] |
Dietrich P, Ghienne J F, Normandeau A, et al. Upslope-migrating bedforms in a proglacial Sandur Delta: Cyclic steps from river-derived underflows?[J]. Journal of Sedimentary Research, 2016, 86(2): 113-123. |
[103] |
Mohrig D, Ellis C, Parker G, et al. Hydroplaning of subaqueous debris flows[J]. GSA Bulletin, 1998, 110(3): 387-394. |
[104] |
Niu X B, Yang T, Cao Y C, et al. Characteristics and formation mechanisms of gravity-flow deposits in a lacustrine depression basin: Examples from the Late Triassic Chang 7 oil member of the Yanchang Formation, Ordos Basin, Central China[J]. Marine and Petroleum Geology, 2023, 148: 106048. |
[105] |
Mutti E, Tinterri R, Benevelli G, et al. Deltaic, mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 733-755. |
[106] |
张功成,屈红军,张凤廉,等. 全球深水油气重大新发现及启示[J]. 石油学报,2019,40(1):1-34,55.
Zhang Gongcheng, Qu Hongjun, Zhang Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment[J]. Acta Petrolei Sinica, 2019, 40(1): 1-34, 55. |
[107] |
Yang T, Cao Y C, Liu K Y, et al. Gravity-flow deposits caused by different initiation processes in a deep-lake system[J]. AAPG Bulletin, 2020, 104(7): 1463-1499. |
[108] |
Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels[J]. Marine and Petroleum Geology, 2013, 41: 48-61. |
[109] |
Amy L A, Peachey S A, Gardiner A A, et al. Prediction of hydrocarbon recovery from turbidite sandstones with linked-debrite facies: Numerical flow-simulation studies[J]. Marine and Petroleum Geology, 2009, 26(10): 2032-2043. |
[110] |
Yang T, Liu Y L. New progresses of fine-grained sediment gravity-flow deposits and their importance for unconventional shale oil and gas plays[J]. Petroleum Science, 2025, 22(1): 1-15. |
[111] |
Lu Y, Wetzler N, Waldmann N, et al. A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary[J]. Science Advances, 2020, 6(48): eaba4170. |
[112] |
Lu Y, Pope E L, Moernaut J, et al. Stratigraphic record reveals contrasting roles of overflows and underflows over glacial cycles in a hypersaline lake (Dead Sea)[J]. Earth and Planetary Science Letters, 2022, 594: 117723. |
[113] |
Kuenen P H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127. |
[114] |
Pickering K T, Hiscott R N. Deep marine systems: Processes, deposits, environments, tectonics and sedimentation[M]. Hoboken: John Wiley Sons, Ltd, 2016. |