[1] Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19691-19695.
[2] Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5738-5743.
[3] Stein R A, Sheldon N D, Smith S Y. Soil carbon isotope values and paleoprecipitation reconstruction[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004158.
[4] Schubert B A, Jahren A H. Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by increase in atmospheric pCO2 [J]. Geology, 2015, 43(5): 435-438.
[5] Cui Y, Schubert B A. Quantifying uncertainty of past pCO2 determined from changes in C3 plant carbon isotope fractionation[J]. Geochimica et Cosmochimica Acta, 2016, 172: 127-138.
[6] 张成君,孙柏年,王云鹏,等. 甘肃窑街中侏罗世化石角质层有机质及其碳同位素组成与古环境的关系[J]. 西北地质,2004,37(2):42-47.

Zhang Chengjun, Sun Bainian, Wang Yunpeng, et al. The relation between fossil cuticle organic matter, their carbon isotopic compositions and paleoenvironment in Middle Jurassic series, Yaojie, Gansu[J]. Northwestern Geology, 2004, 37(2): 42-47.
[7] 肖良,漆亚玲,马文忠,等. 吐哈盆地北缘中侏罗世植物化石稳定碳同位素的古环境意义[J]. 沉积学报,2017,35(3):489-498.

Xiao Liang, Qi Yaling, Ma Wenzhong, et al. Stable carbon isotope of Middle Jurassic plant fossils in the north edge of Turpan-Hami Basin, Xinjiang and their palaeoenvironmental implications[J]. Acta Sedimentologica Sinica, 2017, 35(3): 489-498.
[8]

Tu T T N, Derenne S, Largeau C, et al. Diagenesis effects on specific carbon isotope composition of plant n-alkanes[J]. Organic Geochemistry, 2004, 35(3): 317-329.
[9]

Tu T T N, Kürschner W M, Schouten S, et al. Leaf carbon isotope composition of fossil and extant oaks grown under differing atmospheric CO2 levels[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 199-213.
[10]

Chakraborty S, Jana B N, Bhattacharya S K, et al. Carbon isotopic composition of fossil leaves from the Early Cretaceous sediments of western India[J]. Journal of Earth System Science, 2011, 120(4): 703-711.
[11]

Sikes E L, Uhle M E, Nodder S D, et al. Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand[J]. Marine Chemistry, 2009, 113(3/4): 149-163.
[12]

Tipple B J, Pagani M. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics[J]. Earth and Planetary Science Letters, 2010, 299(1/2): 250-262.
[13]

Wei Z F, Wang Y L, Wu B X, et al. Paleovegetation inferred from the carbon isotope composition of long-chain n-alkanes in lacustrine sediments from the Song-nen Plain, northeast China[J]. Journal of Paleolimnology, 2015, 54(4): 345-358.
[14]

Bliedtner M, Zech R, Kühn P, et al. The potential of leaf wax biomarkers from fluvial soil-sediment sequences for paleovegetation reconstructions: Upper Alazani River, central southern Greater Caucasus (Georgia)[J]. Quaternary science reviews, 2018, 196(1): 62-79.
[15]

Liu J Z, Zhao J J, He D, et al. Effects of plant types on terrestrial leaf wax long-chain n-alkane biomarkers: Implications and paleoapplications[J]. Earth-Science Reviews, 2022, 235: 104248.
[16] 青海省地质科学研究所,中国科学院南京地质古生物研究所. 青海柴达木盆地东北缘早、中侏罗世地层及植物群[M]. 南京:南京大学出版社,1988.

Qinghai Institute of Geological Sciences, Nanjing Institute of Geology and Palaeontology, CAS. Early and Middle Jurassic strata and their floras from northeastern border of Qaidam Basin, Qinghai[M]. Nanjing: Nanjing University Press, 1988.
[17] 宋博文. 柴达木盆地北缘早始新世—上新世环境演变及生物群研究[D]. 武汉:中国地质大学,2013.

Song Bowen. The Early Eocene to Pliocene palaeoenvironment evolution and biota in the northern Qaidam Basin[D]. Wuhan: China University of Geosciences, 2013.
[18] 杨宗彩,徐学敏,杨佳佳,等. 沉积岩有机碳同位素组成测定的前处理方法研究[J]. 岩矿测试,2024,43(6):847-857.

Yang Zongcai, Xu Xuemin, Yang Jiajia, et al. A pre-treatment method for the determination of organic carbon isotope composition in sedimentary rocks[J]. Rock and Mineral Analysis, 2024, 43(6): 847-857.
[19]

Richey J D, Nordt L, White J D, et al. ISOORG23: An updated compilation of stable carbon isotope data of terrestrial organic materials for the Cenozoic and Mesozoic[J]. Earth-Science Reviews, 2023, 241: 104439.
[20]

Fang J D, Wu F C, Xiong Y Q, et al. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China[J]. Science of the Total Environment, 2014, 473-474: 410-421.
[21]

Zhang Y D, Su Y L, Liu Z W, et al. Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, eastern China[J]. Ecological Indicators, 2017, 77: 397-408.
[22] 杨明生,张虎才,邹长伟,等. 鄱阳湖沉积物正构烷烃特征及其生物源[J]. 福建师范大学学报(自然科学版),2014,30(3):111-118.

Yang Mingsheng, Zhang Hucai, Zou Changwei, et al. Characteristics of n-alkanes in modern sediments of Poyang Lake and its biological origins[J]. Journal of Fujian Normal University (Natural Science Edition), 2014, 30(3): 111-118.
[23] 刘虎,刘卫国. 植物叶蜡正构烷烃分子分布特征与植被类型的关系[J]. 地球环境学报,2015,6(3):168-179.

Liu Hu, Liu Weiguo. Relationship of plant leaf wax n-alkanes molecular distribution characteristics and vegetation types[J]. Journal of Earth Environment, 2015, 6(3): 168-179.
[24] 郭金春,刘清浩,马海州,等. 察尔汗盐湖正构烷烃和单体碳同位素分布特征及其古植被意义[J]. 地球化学,2010,39(6):566-573.

Guo Jinchun, Liu Qinghao, Ma Haizhou, et al. Chemical and compound-specific carbon isotopic characteristics of n-alkanes in the Qarhan Salt Lake sediments and their paleovegetation significance[J]. Geochimica, 2010, 39(6): 566-573.
[25] 段毅,夏嘉,何金先,等. 茶卡盐湖沉积物和周围地区植物中正构烷烃及其氢同位素组成特征[J]. 地质学报,2011,85(12):2084-2092.

Duan Yi, Xia Jia, He Jinxian, et al. n-alkanes and their hydrogen isotopic compositions of sediments in Chaka Salt Lake and terrestrial plants in adjacent areas[J]. Acta Geologica Sinica, 2011, 85(12): 2084-2092.
[26]

ten Haven H L, de Leeuw J W, Schenck P A. Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I: Hydrocarbon biological markers for a hypersaline environment[J]. Geochimica et Cosmochimica Acta, 1985, 49(10): 2181-2191.
[27]

Gely J P, Blanc-Valleron M M, Fache-Dany F, et al. Character-ization of organic-rich material in an evaporitic environment: The Lower Oligocene of the Mulhouse Basin (Alsace, France)[J]. Geologische Rundschau, 1993, 82(4): 718-725.
[28] 妥进才,邵宏舜,黄杏珍. 柴达木盆地大柴旦盐湖现代沉积物中的生物标志化合物分布特征[J]. 沉积学报,1993,11(2):118-123.

Jincai Tuo, Shao Hongshun, Huang Xingzhen. Distributive characteristics of bio-markers in modern sediments of Dachaidan Lake, Qaidam Basin[J]. Acta Sedimentologica Sinica, 1993, 11(2): 118-123.
[29] 朱扬明,苏爱国,梁狄刚,等. 柴达木盆地咸湖相生油岩正构烷烃分布特征及其成因[J]. 地球化学,2003,32(2):117-123.

Zhu Yangming, Su Aiguo, Liang Digang, et al. Distribution characterization and origin of n-alkanes in saline lacustrine source rocks of Qaidam Basin[J]. Geochimica, 2003, 32(2): 117-123.
[30] 宋振响,周世新,穆亚蓬,等. 正构烷烃分布模式判断柴西主力烃源岩[J]. 石油实验地质,2011,33(2):182-187,192.

Song Zhenxiang, Zhou Shixin, Mu Yapeng, et al. Identification of chief hydrocarbon source rocks based on n-alkane distribution patterns in western Qaidam Basin[J]. Petroleum Geology and Experiment, 2011, 33(2): 182-187, 192.
[31]

Yi H, Chen L, Jenkyns H C, et al. The Early Jurassic oil shales in the Qiangtang Basin, northern Tibet: Biomarkers and Toarcian oceanic anoxic events[J]. Oil Shale, 2013, 30(3): 441-455.
[32]

Yi F, Yi H S, Mu C L, et al. Organic geochemical characteristics and organic matter accumulation of the Eocene lacustrine source rock in the Yingxi area, western Qaidam Basin, China[J]. International Journal of Earth Sciences, 2023, 112(4): 1277-1292.
[33]

Grimalt J, Albaigés J, Al-Saad H T, et al. n-Alkane distributions in surface sediments from the Arabian Gulf[J]. Naturwissenschaften, 1985, 72(1): 35-37.
[34]

Ekpo B O, Oyo-Ita O E, Wehner H. Even-n-alkane/alkene predominances in surface sediments from the Calabar River, SE Niger Delta, Nigeria[J]. Naturwissenschaften, 2005, 92(7): 341-346.
[35]

Aloulou F, Kallel M, Dammak M, et al. Even-numbered n-alkanes/n-alkenes predominance in surface sediments of Gabes Gulf in Tunisia[J]. Environmental Earth Sciences, 2010, 61(1): 1-10.
[36]

Wang Y L, Fang X M, Zhang T W, et al. Predominance of even carbon-numbered n-alkanes from lacustrine sediments in Linxia Basin, NE Tibetan Plateau: Implications for climate change[J]. Applied Geochemistry, 2010, 25(10): 1478-1486.
[37]

ten Haven H L, de Leeuw J W, Sinninghe Damsté J S, et al. Application of biological markers in the recognition of palaeohypersaline environments[J]. Geological Society, London, Special Publications, 1988, 40(1): 123-130.
[38] 伊海生,林金辉,王成善,等. 藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常[J]. 成都理工学院学报,2002,29(5):473-480.

Yi Haisheng, Lin Jinhui, Wang Chengshan, et al. Biomarkers and carbon isotopic anomaly from the Miocene lacustrine oil shales in Hoh Xil Basin of northern Tibetan Plateau[J]. Journal of Chengdu University of Technology, 2002, 29(5): 473-480.
[39] 黄亮,吴莹,张经,等. 长江中游若干湖泊水生植物体内C、N、P及δ 13C分布[J]. 地球学报,2003,24(6):515-518.

Huang Liang, Wu Ying, Zhang Jing, et al. Distribution of C, N, P and δ13C in aquatic plants of some lakes in the middle Yangtze valley[J]. Acta Geoscientica Sinica, 2003, 24(6): 515-518.
[40] 温周瑞,徐军,谢平. 太湖高等水生植物稳定碳、氮同位素特征[J]. 湖泊科学,2016,28(1):163-169.

Wen Zhourui, Xu Jun, Xie Ping. Carbon and nitrogen stable isotopes of macrophytes from Lake Taihu[J]. Journal of Lake Sciences, 2016, 28(1): 163-169.
[41]

Liu J Z, An Z S. Leaf wax n-alkane carbon isotope values vary among major terrestrial plant groups: Different responses to precipitation amount and temperature, and implications for paleoenvironmental reconstruction[J]. Earth-Science Reviews, 2020, 202: 103081.
[42]

Gong X S, Xu Z Y, Peng Q T, et al. Spatial patterns of leaf δ13C and δ15N of aquatic macrophytes in the arid zone of northwestern China[J]. Ecology and Evolution, 2021, 11(7): 3110-3119.
[43]

Nordt L, Tubbs J, Dworkin S. Stable carbon isotope record of terrestrial organic materials for the last 450 Mayr[J]. Earth-Science Reviews, 2016, 159: 103-117.
[44] 刘虎,柳中晖,赵成,等. 水生植物烷基脂类含量和分布特征及其单体氢同位素组成[J]. 中国科学:地球科学,2019,49(9):1439-1451.

Liu Hu, Liu Zhonghui, Zhao Cheng, et al. n-alkyl lipid concentrations and distributions in aquatic plants and their individual δD variations[J]. Science China Earth Sciences, 2019, 49(9): 1439-1451.
[45]

Rao Z G, Guo W K, Cao J T, et al. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 2017, 165: 110-119.
[46]

Li M X, Peng C H, Wang M, et al. Spatial patterns of leaf δ13C and its relationship with plant functional groups and environmental factors in China[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(7): 1564-1575.
[47]

Rao Z G, Jia G D, Zhu Z Y, et al. Comparison of the carbon isotope composition of total organic carbon and long-chain n-alkanes from surface soils in eastern China and their significance[J]. Chinese Science Bulletin, 2008, 53(24): 3921-3927.
[48]

Rao Z G, Zhu Z Y, Jia G D, et al. Compound-specific hydrogen isotopes of long-chain n-alkanes extracted from topsoil under a grassland ecosystem in northern China[J]. Science China Earth Sciences, 2011, 54(12): 1902-1911.
[49]

Smith F A, Wing S L, Freeman K H. Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change[J]. Earth and Planetary Science Letters, 2007, 262(1/2): 50-65.
[50]

Diefendorf A F, Freeman K H, Wing S L, et al. Paleogene plants fractionated carbon isotopes similar to modern plants[J]. Earth and Planetary Science Letters, 2015, 429: 33-44.
[51]

Bush R T, McInerney F A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 2013, 117: 161-179.
[52]

Fang Y, Yang J, Zhao S J, et al. Shorter average chain length of n-alkanes from flowers than leaves of modern plants: Implications for the use of n-alkane-derived proxies in soils[J]. Geochemical Journal, 2021, 55(5): e19-e23.
[53]

Liu J Z, An Z S, Wu H W, et al. Comparison of n-alkane concentrations and δD values between leaves and roots in modern plants on the Chinese Loess Plateau[J]. Organic Geochemistry, 2019, 138: 103913.
[54]

Gamarra B, Kahmen A. Concentrations and δ2H values of cuticular n-alkanes vary significantly among plant organs, species and habitats in grasses from an alpine and a temperate European grassland[J]. Oecologia, 2015, 178(4): 981-998.
[55]

Badeck F W, Tcherkez G, Nogués S, et al. Post‐photosynthetic fractionation of stable carbon isotopes between plant organs: A widespread phenomenon[J]. Rapid Communications in Mass Spectrometry, 2005, 19(11): 1381-1391.
[56]

Cernusak L A, Tcherkez G, Keitel C, et al. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses[J]. Functional Plant Biology, 2009, 36(3): 199-213.
[57]

Buggle B, Wiesenberg G L B, Glaser B. Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects?[J]. Applied Geochemistry, 2010, 25(7): 947-957.
[58] 刘舵,谢春勤,陈治军,等. 正构烷烃分布在确定烃源岩生源构成中的有效性[J]. 断块油气田,2019,26(1):42-47.

Liu Duo, Xie Chunqin, Chen Zhijun, et al. Effectiveness of n-alkanes distribution on determining parent material composition of hydrocarbon source rock[J]. Fault-Block Oil Gas Field, 2019, 26(1): 42-47.
[59]

Tian C T, Xia Y Q, Song C H, et al. Changes in the carbon isotope composition of pristane and phytane with increasing maturity[J]. Petroleum Science and Technology, 2017, 35(12): 1270-1276.
[60]

Hesselbo S P, Jenkyns H C, Duarte L V, et al. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal)[J]. Earth and Planetary Science Letters, 2007, 253(3/4): 455-470.
[61]

Bocherens H, Friis E M, Mariotti A, et al. Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants: Palaeoecological implications[J]. Lethaia, 1993, 26(4): 347-358.
[62]

Strauss H, Peters‐Kottig W. The Paleozoic to Mesozoic carbon cycle revisited: The carbon isotopic composition of terrestrial organic matter[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 1083.
[63]

Schweizer M, Fear J, Cadisch G. Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies[J]. Rapid Communications in Mass Spectrometry, 1999, 13(13): 1284-1290.
[64]

Loader N J, Robertson I, McCarroll D. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 196(3/4): 395-407.
[65]

Whiticar M J. Stable isotope geochemistry of coals, humic kerogens and related natural gases[J]. International Journal of Coal Geology, 1996, 32(1/2/3/4): 191-215.
[66] 柳益群,袁明生,周立发,等. 新疆吐—哈盆地前侏罗系烛藻煤的发现及其地质意义[J]. 沉积学报,2000,18(4):595-599.

Liu Yiqun, Yuan Mingsheng, Zhou Lifa, et al. Discovery of pre-Jurassic cannel-boghead with its geological significance in Turpan-Hami Basin, Xinjiang[J]. Acta Sedimentologica Sinica, 2000, 18(4): 595-599.
[67] 解光新,李小彦,庄军. 中国菌藻类煤的成因分类形成条件及其特征[J]. 煤田地质与勘探,2001,29(3):10-13.

Xie Guang-xin, Li Xiaoyan, Zhuang Jun. Classification, forming conditions and characteristic of sclerotia-algal coals, China[J]. Coal Ge-ology Exploration, 2001, 29(3): 10-13.
[68]

Diefendorf A F, Freimuth E J. Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: A review[J]. Organic Geochemistry, 2017, 103: 1-21.
[69] 钟建华,郭泽清,杨树锋,等. 柴达木盆地茫崖坳陷古近系—新近系Ro分布特征及地质意义[J]. 地质学报,2004,78(3):407-415.

Zhong Jianhua, Guo Zeqing, Yang Shufeng, et al. Vertical distribution of the tertiary vitrinite reflectivity (Ro) and its geological significance in the western Qaidam Basin[J]. Acta Geologica Sinica, 2004, 78(3): 407-415.
[70] 舒豫川,胡广,庞谦,等. 柴达木盆地咸湖相烃源岩特征:以英西地区下干柴沟组上段为例[J]. 断块油气田,2021,28(2):179-186.

Shu Yuchuan, Hu Guang, Pang Qian, et al. Character-istics of source rocks of salt lake facies in Qaidam Basin: Taking Upper member of Xiaganchaigou Formation in Yingxi region as an example[J]. Fault-Block Oil Gas Field, 2021, 28(2): 179-186.
[71] 秦婧. 柴达木盆地中侏罗世湖—沼相沉积有机地球化学研究:鱼卡凹陷大煤沟组为例[D]. 北京:中国石油大学(北京),2020.

Qin Jing. Organic geochemistry of the Middle Jurassic lacustrine-swamp facies sediments in the Qaidam Basin: A case study of the Dameigou Formation in Yuqia Depression[D]. Beijing: China University of Petroleum (Beijing), 2020.
[72] 付小东,邱楠生,饶丹,等. 柴达木盆地北缘侏罗系页岩油气成藏条件地质地球化学分析[J]. 地球化学,2014,43(5):437-452.

Fu Xiaodong, Qiu Nansheng, Rao Dan, et al. Geological and geochemical analyses on accumulation conditions of shale oil and gas in Jurassic strata of the north margin of the Qaidam Basin[J]. Geochimica, 2014, 43(5): 437-452.
[73]

Bourque R D, Douglas P M J, Larsson H C E. Changes in terrestrial ecosystems across the Cretaceous-Paleogene boundary in western Canada inferred from plant wax lipid distributions and isotopic measurements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110081.
[74]

Chikaraishi Y, Naraoka H. Compound-specific δD-δ 13C analyses of n-alkanes extracted from terrestrial and aquatic plants[J]. Phytochemistry, 2003, 63(3): 361-371.
[75]

Schlanser K, Diefendorf A F, Greenwood D R, et al. On geologic timescales, plant carbon isotope fractionation responds to precipitation similarly to modern plants and has a small negative correlation with pCO2 [J]. Geochimica et Cosmochimica Acta, 2020, 270: 264-281.