[1] 王成善,王天天,陈曦,等. 深时古气候对未来气候变化的启示[J]. 地学前缘,2017,24(1):1-17.

Wang Chengshan, Wang Tiantian, Chen Xi, et al. Paleoclimate implications for future climate change[J]. Earth Science Frontiers, 2017, 24(1): 1-17.
[2] Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395.
[3] Gómez J J, Goy A, Canales M L. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in central and northern Spain. Comparison with other European sections[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 258(1/2): 28-58.
[4] Müller T, Jurikova H, Gutjahr M, et al. Ocean acidification during the Early Toarcian extinction event: Evidence from boron isotopes in brachiopods[J]. Geology, 2020, 48(12): 1184-1188.
[5] Cecca F, Macchioni F. The two Early Toarcian (Early Jurassic) extinction events in ammonoids[J]. Lethaia, 2004, 37(1): 35-56.
[6] Dera G, Neige P, Dommergues J L, et al. High-resolution dynamics of Early Jurassic marine extinctions: The case of Pliensbachian⁃Toarcian ammonites (Cephalopoda)[J]. Journal of the Geological Society, 2010, 167(1): 21-33.
[7] Gómez J J, Arias C. Rapid warming and ostracods mass extinction at the Lower Toarcian (Jurassic) of central Spain[J]. Marine Micropaleontology, 2010, 74(3/4): 119-135.
[8] 邓胜徽,卢远征,樊茹,等. 早侏罗世Toarcian期大洋缺氧事件及其在陆地生态系统中的响应[J]. 地球科学:中国地质大学学报,2012,37(增刊2):23-38.

Deng Shenghui, Lu Yuanzheng, Fan Ru, et al. Toarcian (Early Jurassic) oceanic anoxic event and the responses in terrestrial ecological system[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(Suppl.2): 23-38.
[9] 邓胜徽,卢远征,赵怡,等. 中国侏罗纪古气候分区与演变[J]. 地学前缘,2017,24(1):106-142.

Deng Shenghui, Lu Yuanzheng, Zhao Yi, et al. The Jurassic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers, 2017, 24(1): 106-142.
[10] Jenkyns H C, Clayton C J. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic[J]. Sedimentology, 1986, 33(1): 87-106.
[11] Jenkyns H C. The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence[J]. American Journal of Science, 1988, 288(2): 101-151.
[12] Jenkyns H C, Clayton C J. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: Chemostratigraphic signals and the Early Toarcian anoxic event[J]. Sedimentology, 1997, 44(4): 687-706.
[13] Xu W M, Ruhl M, Jenkyns H C, et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event[J]. Nature Geoscience, 2017, 10(2): 129-134.
[14] Jin X, Shi Z Q, Baranyi V, et al. The jenkyns event (Early Toarcian OAE) in the Ordos Basin, North China[J]. Global and Planetary Change, 2020, 193: 103273.
[15] Liu M, Sun P, Them II T R, et al. Organic geochemistry of a lacustrine shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China[J]. Global and Planetary Change, 2020, 191: 103214.
[16] 高瑞珍. 柴北缘早侏罗世古气候演化对Toarcian大洋缺氧事件的响应[D].河南:河南理工大学,2017:12-87.

Gao Ruizhen.Paleoclimatic evolution of the Early Jurassic in the northern Qaidam Basin and its response to the Toarcian ocean anoxic events[D],Henan: Henan Polytechnic University,2017:12-87
[17] 王招明,钟端,赵培荣,等. 库车前陆盆地露头区油气地质[M]. 北京:石油工业出版社,2004.

Wang Zhaoming, Zhong Duan, Zhao Peirong, et al. Petroleum geology of outcrops areas in Kuche Foreland Basin[M]. Beijing: Petroleum Industry Press, 2004.
[18] 罗正江,吴新莹,王睿,等. 库车孢型体Kuqaia研究的新认识[J]. 新疆石油地质,2003,24(5):424-426.

Luo Zhengjiang, Wu Xinying, Wang Rui, et al. New understanding of Kuqaia sporomorph[J]. Xinjiang Petroleum Geology, 2003, 24(5): 424-426.
[19] 刘兆生. 塔里木盆地北缘侏罗纪孢粉组合[J]. 微体古生物学报,1998,15(2):144-165.

Liu Zhaosheng. Jurassic palynological assemblages from the northern margin in the Tarim Basin of Xinjiang, NW China[J]. Acta Micropalaeontologica Sinica, 1998, 15(2): 144-165.
[20] 张望平,李永安. 新疆拜城阿合组、阳霞组及克孜勒努尔组的孢粉组合[J]. 新疆地质,1990,8(3):256-271.

Zhang Wangping, Li Yong’an. Sporopollen assemblage of Ahe, Yengisar and Kezilenur Formations in Beicheng county, Xinjiang[J]. Xinjiang Geology, 1990, 8(3): 256-271.
[21] 吴朝东,林畅松,申延平,等. 库车坳陷侏罗纪沉积环境和层序地层分析[J]. 沉积学报,2002,20(3):400-407.

Wu Chaodong, Lin Changsong, Shen Yanping, et al. Sequence stratigraphy and depositional environments of the Kuche Depression[J]. Acta Sedimentologica Sinica, 2002, 20(3): 400-407.
[22] Xu W M, Ruhl M, Jenkyns H C, et al. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)[J]. Earth and Planetary Science Letters, 2018, 484: 396-411.
[23] Fox C P, Cui X Q, Whiteside J H, et al. Molecular and isotopic evidence reveals the end-Triassic carbon isotope excursion is not from massive exogenous light carbon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30171-30178.
[24] Storm M S, Hesselbo S P, Jenkyns H C, et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 3974-3982.
[25] Moulin M, Fluteau F, Courtillot V, et al. Eruptive history of the Karoo lava flows and their impact on Early Jurassic environmental change[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 738-772.
[26] Percival L M E, Cohen A S, Davies M K, et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change[J]. Geology, 2016, 44(9): 759-762.
[27] Rodrigues B, Silva R L, Reolid M, et al. Sedimentary organic matter and δ13CKerogen variation on the southern Iberian palaeomargin (Betic Cordillera, SE Spain) during the Latest Pliensbachian⁃Early Toarcian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109342.
[28] Dera G, Donnadieu Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event[J]. Paleoceanography, 2012, 27(2): PA2211.
[29] Cohen A S, Coe A L, Harding S M, et al. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering[J]. Geology, 2004, 32(2): 157-160.
[30] Them T R, Gill B C, Selby D, et al. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event[J]. Scientific Reports, 2017, 7: 5003.
[31] Baker S J, Hesselbo S P, Lenton T M, et al. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia[J]. Nature Communications, 2017, 8: 15018.
[32] Hesselbo S P, Pieńkowski G. Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin)[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 365-372.
[33] De Lena L F, Taylor D, Guex J, et al. The driving mechanisms of the carbon cycle perturbations in the Late Pliensbachian (Early Jurassic)[J]. Scientific Reports, 2019, 9(1): 1-12.
[34] Krencker F N, Fantasia A, Danisch J, et al. Two-phased collapse of the shallow-water carbonate factory during the Late Pliensbachian⁃Toarcian driven by changing climate and enhanced continental weathering in the northwestern Gondwana Margin[J]. Earth-Science Reviews, 2020, 208: 103254.
[35] Remírez M N, Algeo T J. Carbon-cycle changes during the Toarcian (Early Jurassic) and implications for regional versus global drivers of the Toarcian oceanic anoxic event[J]. Earth-Science Reviews, 2020, 209: 103283.
[36] Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6): 965-971.
[37] Qi M H, Lidorikis E, Rakich P T, et al. A three-dimensional optical photonic crystal with designed point defects[J]. Nature, 2004, 429(6991): 538-542.
[38] Arens N C, Jahren A H, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J]. Paleobiolog, 2000, 26(1): 137-164.
[39] Rosales I, Robles S, Quesada S. Elemental and oxygen isotope composition of Early Jurassic belemnites: Salinity vs. temperature signals[J]. Journal of Sedimentary Research, 2004, 74(3): 342-354.