[1] 徐鸿儒. 高瞻方向清远瞩路线明——《中国至2050年海洋科技发展路线图》出版[J]. 海洋科学,2010,34(2):101.

Xu Hongru. Looking ahead with clear direction — Publication of China’s Marine Science and Technology Development Roadmap to 2050[J]. Marine Sciences, 2010, 34(2): 101.
[2]

Becker K, Austin J A, Exon N, et al. Fifty years of scientific ocean drilling[J]. Oceanography, 2019, 32(1): 17-21.
[3]

Kim G Y. Fifty years of scientific ocean drilling (1968-2018): Achievements and future direction of K-IODP[J]. The Sea: Journal of the Korean Society of Oceanography, 2019, 24(1): 30-48.
[4] 徐晶晶,张涛,吴林强,等. 大洋科学钻探特点与发展趋势:基于国际大洋发现计划科学框架的对比分析[J]. 海洋开发与管理,2023,40(3):30-38.

Xu Jingjing, Zhang Tao, Wu Linqiang, et al. Characteristics and development trends of ocean scientific drilling: Comparative analysis based on the scientific framework of international ocean discovery plan[J]. Ocean Development and Management, 2023, 40(3): 30-38.
[5]

Inagaki F, Taira A. Future opportunities in scientific ocean drilling: Illuminating planetary habitability[J]. Oceanography, 2019, 32(1): 212-216.
[6]

Exon N F, Arculus R J. Scientific ocean drilling in the Australasian region: A review[J]. Australian Journal of Earth Sciences, 2022, 69(3): 305-382.
[7] 汪品先. 大洋钻探五十年:回顾与前瞻[J]. 科学通报,2018,63(36):3868-3876.

Wang Pinxian. Fifty years of scientific ocean drilling: Review and prospect[J]. Chinese Science Bulletin, 2018, 63(36): 3868-3876.
[8] 拓守廷,温廷宇,张钊,等. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展,2021,36(6):632-642.

Shouting Tuo, Wen Tingyu, Zhang Zhao, et al. The experience of scientific ocean drilling operation and its enlightenment to China[J]. Advances in Earth Science, 2021, 36(6): 632-642.
[9] 马鹏飞,刘志飞,拓守廷,等. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展,2021,36(6):643-662.

Ma Pengfei, Liu Zhifei, Shouting Tuo, et al. Present status, characteristics, and compilation significance for the data of scientific ocean drilling[J]. Advances in Earth Science, 2021, 36(6): 643-662.
[10] 鲁铮博,史宇坤,华洪,等. 国际大洋科学钻探的数据资源与共享现状[J]. 高校地质学报,2020,26(4):472-480.

Lu Zhengbo, Shi Yukun, Hua Hong, et al. Current data administration and sharing of international scientific ocean drilling[J]. Geological Journal of China Universities, 2020, 26(4): 472-480.
[11] 翦知湣,党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展,2017,32(12):1267-1276.

Jian Zhimin, Dang Haowen. Reading the past, informing the future: Progress and prospective of the recent ocean drilling researches on climate and ocean change[J]. Advances in Earth Science, 2017, 32(12): 1267-1276.
[12] 宋翠玉,吕大炜. 米兰科维奇旋回时间序列分析法研究进展[J]. 沉积学报,2022,40(2):380-395.

Song Cuiyu, Dawei Lü. Advances in time series analysis methods for milankovitch cycles[J]. Acta Sedimentologica Sinica, 2022, 40(2): 380-395.
[13]

Rubanik N K. Deep sea drilling in the oceans: History and potentials (to 40th anniversary of the International Ocean Drilling Program)[J]. Stratigraphy and Geological Correlation, 2008, 16(6): 678-682.
[14]

Berger W H. Geologist at sea: Aspects of ocean history[J]. Annual Review of Marine Science, 2011, 3: 1-34.
[15]

Heegaard E, Birks H J B, Telford R J. Relationships between calibrated ages and depth in stratigraphical sequences: An estimation procedure by mixed-effect regression[J]. The Holocene, 2005, 15(4): 612-618.
[16]

Lacourse T, Gajewski K. Current practices in building and reporting age-depth models[J]. Quaternary Research, 2020, 96: 28-38.
[17]

Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474.
[18]

Haslett J, Parnell A. A simple monotone process with application to radiocarbon-dated depth chronologies[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 2008, 57(4): 399-418.
[19]

Lougheed B C, Obrochta S P. A rapid, deterministic age‐depth modeling routine for geological sequences with inherent depth uncertainty[J]. Paleoceanography and Paleoclimatology, 2019, 34(1): 122-133.
[20] Blaauw M, Heegaard E. Estimation of age-depth relationships[M]//Birks H J B, Lotter A F, Juggins S, et al. Tracking environmental change using lake sediments: Data handling and numerical techniques. Dordrecht: Springer, 2012: 379-413.
[21] 翟明国,杨树锋,陈宁华,等. 大数据时代:地质学的挑战与机遇[J]. 中国科学院院刊,2018,33(8):825-831.

Zhai Mingguo, Yang Shufeng, Chen Ninghua, et al. Big data epoch: Challenges and opportunities for geology[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 825-831.
[22]

Signor P W. The geologic history of diversity[J]. Annual Review of Ecology, Evolution, and Systematics, 1990, 21: 509-539.
[23] 陈兵,赵秉元. 数据要素市场高质量发展的竞争法治推进[J]. 上海财经大学学报,2021,23(2):3-16,33.

Chen Bing, Zhao Bingyuan. Promotion of the high-quality development of data element markets by competition law[J]. Journal of Shanghai University of Finance and Economics, 2021, 23(2): 3-16, 33.
[24]

Smith D K, Exon N, Barriga F J A S, et al. Ocean drilling: Forty years of international collaboration[J]. Eos, Transactions American Geophysical Union, 2010, 91(43): 393-394.
[25] 拓守廷,王文涛. 国际大洋钻探2050科学框架及其对未来大洋钻探发展的启示[J]. 地球科学进展,2022,37(10):1049-1053.

Shouting Tuo, Wang Wentao. International scientific ocean drilling 2050 science framework and its implications for future scientific ocean drilling development[J]. Advances in Earth Science, 2022, 37(10): 1049-1053.
[26]

Wang C S, Hazen R M, Cheng Q M, et al. The Deep-Time Digital Earth program: Data-driven discovery in geosciences[J]. National Science Review, 2021, 8(9): nwab027.
[27] 徐钰麟. 大洋钻探与地层学:高分辨率磁性生物年代地层格架[J]. 地球科学进展,1995,10(3):258-262.

Xu Yulin. Ocean drilling prigram and stratigraphy: High resolution magnetobiochronology scheme[J]. Advances in Earth Sciences, 1995, 10(3): 258-262.
[28] 赵泉鸿, 汪品先. 南海第四纪古海洋学研究进展[J]. 第四纪研究, 1999, 19(6): 481-501.

Zhao Quanhong, Wang Pinxian. Progress in Quaternary paleoceanography of the South China Sea: A review[J]. Quaternary Sciences, 1999, 19(6): 481-501.
[29] 田军,汪品先,成鑫荣,等. 南海ODP1143站上新世至更新世天文年代标尺的建立[J]. 地球科学:中国地质大学学报,2005,30(1):31-39.

Tian Jun, Wang Pinxian, Cheng Xinrong, et al. Establishment of the Plio-Pleistocene astronomical timescale of ODP site 1143, southern South China Sea[J]. Earth Science: Journal of China University of Geosciences, 2005, 30(1): 31-39.
[30] 田军,吴怀春,黄春菊,等. 从40万年长偏心率周期看米兰科维奇理论[J]. 地球科学,2022,47(10):3543-3568.

Tian Jun, Wu Huaichun, Huang Chunju, et al. Revisiting the Milankovitch theory from the perspective of the 405 ka long eccentricity cycle[J]. Earth Science, 2022, 47(10): 3543-3568.
[31]

Lindsay E H. Chronostratigraphy, biochronology, datum events, land mammal ages, stage of evolution, and appearance event ordination[J]. Bulletin of the American Museum of Natural History, 2003(279): 212-230.
[32] 刘传联,成鑫荣. 从超微化石看南沙海区近2 Ma海水上层结构的变化[J]. 中国科学:地球科学,2001,31(10):834-839.

Liu Chuanlian, Cheng Xinrong. Exploring variations in upper ocean structure for the last 2 Ma of the Nansha area by means of calcareous nannofossils[J]. Science China Earth Sciences, 2001, 31(10): 834-839.
[33]

Mortyn P G, Martínez-Botí M A. Planktonic foraminifera and their proxies for the reconstruction of surface-ocean climate parameters[J]. Contributions to Science, 2007, 3(3): 371-383.
[34]

Cortese G, Giuseppe, Feng Q L. Session 4 reconstruction of paleoenvironmental conditions and detection of climate changes through time using radiolarians[J]. Radi Laria, 2015: 134.
[35] 蒋辉,吕厚远,支崇远,等. 硅藻分析与第四纪定量古地理和古气候研究[J]. 第四纪研究,2002,22(2):113-122.

Jiang Hui, Houyuan Lü, Zhi Chongyuan, et al. Diatom analysis in quantitative reconstruction of Quaternary paleogeography and paleoclimate[J]. Quaternary Sciences, 2002, 22(2): 113-122.
[36] 蓝先洪,申顺喜. 南黄海中部沉积岩芯的微体古生物组合特征及古环境演化[J]. 海洋湖沼通报,2004(3):16-21.

Lan Xianhong, Shen Shunxi. Micropaleontological assemblage characteristics of sediment cores from the centre of the southern Yellow Sea and palaeoenvironmental evolvement[J]. Transaction of Oceanology and Limnology, 2004(3): 16-21.
[37] 王玉净,勾韵娴,章炳高,等. 西沙群岛西琛一井中新世地层、古生物群和古环境研究[J]. 微体古生物学报,1996,13(3):215-223.

Wang Yujing, Gou Yunxian, Zhang Binggao, et al. Studies of Miocene strata, biota and palaeoenvironment from Xi-Chen no.1 hole in Xisha islands[J]. Acta Micropalaeontologica Sinica, 1996, 13(3): 215-223.
[38] 程振波,石学法,刘东升,等. 南黄海B10岩芯的微体古生物组合特征及古环境演化[J]. 科学通报,2001,46(增刊1):45-51.

Cheng Zhenbo, Shi Xuefa, Liu Dongsheng, et al. Microfossil assemblage characteristics in core B10 and implication for paleoenvironmental evolution in the southern Yellow Sea[J]. Chinese Science Bulletin, 2001, 46(Suppl.1): 45-51.
[39] 刘健,段宗奇,梅西,等. 南黄海中部隆起晚新近纪:第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质,2021,41(5):25-43.

Liu Jian, Duan Zongqi, Mei Xi, et al. Stratigraphic classification and sedimentary evolution of the Late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea[J]. Marine Geology Quaternary Geology, 2021, 41(5): 25-43.
[40]

Zein H, Tran V, Abdelmotaleb Ghazy A, et al. How to extract data from graphs using PlotDigitizer or Getdata Graph Digitizer[J]. 2015, doi: 10.13140/RG.2.2.17070.72002 .
[41]

Hernández M A, Stolfo S J. Real-world data is dirty: Data cleansing and the merge/purge problem[J]. Data Mining and Knowledge Discovery, 1998, 2(1): 9-37.
[42]

Kim W, Choi B J, Hong E K, et al. A taxonomy of dirty data[J]. Data Mining and Knowledge Discovery, 2003, 7(1): 81-99.
[43] Geyh M A, Schleicher H. Absolute age determination: Physical and chemical dating methods and their application[M]. Berlin, Heidelberg: Springer, 1990.
[44] 杨莉,袁万明,王珂. 热年代学方法、技术手段及其在矿床地质中的研究进展[J]. 地球科学,2018,43(6):1887-1902.

Yang Li, Yuan Wanming, Wang Ke. Research advances of thermochronology in mineral deposits[J]. Earth Science, 2018, 43(6): 1887-1902.
[45] Agterberg F P. Autocorrelation functions in geology[M]//Merriam D F. Geostatistics: A colloquium. Boston: Springer, 1970: 113-141.
[46]

Mahon K I. The New “York” regression: Application of an improved statistical method to geochemistry[J]. International Geology Review, 1996, 38(4): 293-303.
[47]

Buckland S T. Fitting density functions with polynomials[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1992, 41(1): 63-76.
[48]

Blaauw M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5): 512-518.
[49]

Blaauw M. CLAM: Classical age-depth modelling of cores from deposits[J]. 2022.
[50] 赵晋军,徐利强,吴礼彬,等. 西沙赵述岛和北岛海鸟遗迹14C年代模型及意义[J]. 地球环境学报,2018,9(1):28-37.

Zhao Jinjun, Xu Liqiang, Wu Libin, et al. Age models of seabird remains from Zhaoshu and Beidao islands in the Xisha Archipelago and its implications[J]. Journal of Earth Environment, 2018, 9(1): 28-37.
[51]

Parnell A C, Buck C E, Doan T K. A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction[J]. Quaternary Science Reviews, 2011, 30(21/22): 2948-2960.
[52]

Pfalz G, Diekmann B, Freytag J C, et al. Improving age-depth relationships by using the LANDO (“Linked age and depth modeling”) model ensemble[J]. Geochronology, 2022, 4(1): 269-295.
[53]

Parnell A C, Haslett J, Allen J R M, et al. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history[J]. Quaternary Science Reviews, 2008, 27(19/20): 1872-1885.
[54]

Parnell, Bchron A. : dating Radiocarbon, modelling age-depth, relative sea level rate estimation, and non-parametric phase modelling. (No Title), 2008.
[55]

Ericson D B, Wollin G. Pleistocene climates and chronology in deep-sea sediments: Magnetic reversals give a time scale of 2 million years for a complete Pleistocene with four glaciations[J]. Science, 1986, 162(3859): 1227-1234.
[56] Harland W B. A geologic time scale 1989[M]. Cambridge: Cambridge University Press, 1990.
[57]

Miller B V. Introduction to radiometric dating[J]. The Paleontological Society Papers, 2006, 12: 1-23.
[58]

Zhou W J, Cheng P, Jull A J T, et al. 14C chronostratigraphy for Qinghai Lake in China[J]. Radiocarbon, 2014, 56(1): 143-155.
[59]

Li Z Y, Zhang Y G, Torres M, et al. Neogene burial of organic carbon in the global ocean[J]. Nature, 2023, 613(7942): 90-95.
[60]

Gallagher K, Charvin K, Nielsen S, et al. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for Earth Science problems[J]. Marine and Petroleum Geology, 2009, 26(4): 525-535.
[61]

D'Hondt S, Jørgensen B B, Miller D J, et al. Distributions of microbial activities in deep subseafloor sediments[J]. Science, 2004, 306(5705): 2216-2221.
[62] Pälike H, Moore T, Backman J, et al. Integrated stratigraphic correlation and improved composite depth scales for ODP Sites 1218 and 1219[M]//Wilson P A, Lyle M, Firth J V. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, 2005: 1-41.
[63] Westerhold T, Röhl U, Wilkens R, et al. Revised composite depth scales and integration of IODP Sites U1331-U1334 and ODP Sites 1218-1220[M]//PälikeH, LyleM, NishiH, alet. Proceedings of the IODP, 320/321. Tokyo: Integrated Ocean Drilling Program Management International, Inc., 2012: 321.
[64] Gradstein F M, Ogg J G. The chronostratigraphic scale[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic time scale 2020. Amsterdam: Elsevier, 2020: 21-32.
[65]

Petersen M, Glöckler F, Kiessling W, et al. History and development of ABCDEFG: A data standard for geosciences[J]. Fossil Record, 2018, 21(1): 47-53.
[66] 袁满,李盛锐,刘小野. 地质知识图谱标准化模型研究[J]. 吉林大学学报(信息科学版),2021,39(2):215-222.

Yuan Man, Li Shengrui, Liu Xiaoye. Research on standardized model of geological knowledge graph[J]. Journal of Jilin University (Information Science Edition), 2021, 39(2): 215-222.
[67]

Norris R D, Wilson P A, Blum P, et al. Paleogene Newfoundland sediment drifts and MDHDS test. In Proceedings of the Integrated Ocean Drilling Program, 2014, 342.
[68]

Renaudie J, Lazarus D B, Diver P. NSB (Neptune Sandbox Berlin): An expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy[J]. Palaeontologia Electronica, 2020, 23(1): 1-28.
[69]

Williams J W, Grimm E C, Blois J L, et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource[J]. Quaternary Research, 2018, 89(1): 156-177.
[70] 崔佳旭,杨博. 贝叶斯优化方法和应用综述[J]. 软件学报,2018,29(10):3068-3090.

Cui Jiaxu, Yang Bo. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068-3090.
[71] 周永章,陈烁,张旗,等. 大数据与数学地球科学研究进展:大数据与数学地球科学专题代序[J]. 岩石学报,2018,34(2):255-263.

Zhou Yongzhang, Chen Shuo, Zhang Qi, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255-263.
[72] 张沥今,陆嘉琦,魏夏琰,等. 贝叶斯结构方程模型及其研究现状[J]. 心理科学进展,2019,27(11):1812-1825.

Zhang Lijin, Lu Jiaqi, Wei Xiayan, et al. Bayesian structural equation modeling and its current researches[J]. Advances in Psychological Science, 2019, 27(11): 1812-1825.
[73]

Crann C A, Patterson R T, Macumber A L, et al. Sediment accumulation rates in subarctic lakes: Insights into age-depth modeling from 22 dated lake records from the Northwest Territories, Canada[J]. Quaternary Geochronology, 2015, 27: 131-144.
[74]

Yang H P, Wang W P, Sun J G. Control point adjustment for B-spline curve approximation[J]. Computer-Aided Design, 2004, 36(7): 639-652.
[75]

Trachsel M, Telford R J. All age-depth models are wrong, but are getting better[J]. The Holocene, 2017, 27(6): 860-869.
[76]

Harris E C. The laws of archaeological stratigraphy[J]. World Archaeology, 1979, 11(1): 111-117.
[77]

Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 92(1/2): 1-33.
[78]

Willmott C J. Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society, 1982, 63(11): 1309-1313.
[79]

Hsu K L, Moradkhani H, Sorooshian S. A sequential Bayesian approach for hydrologic model selection and prediction[J]. Water Resources Research, 2009, 45(12): W00B12.
[80]

Permai S D, Tanty H. Linear regression model using Bayesian approach for energy performance of residential building[J]. Procedia Computer Science, 2018, 135: 671-677.
[81]

Hagen C J. Sediment accumulation rates and high-resolution age-depth models[J]. The Sedimentary Record, 2024, 22(1).
[82] 郭栋山,韩喜球,范维佳,等. 大洋铁锰结壳年代框架模型的天文调谐校正:方法与应用[J]. 地球科学进展,2023,38(2):125-136.

Guo Dongshan, Han Xiqiu, Fan Weijia, et al. Astronomical tuning and calibration for age model of pelagic Fe-Mn crust: Methods and application[J]. Advances in Earth Science, 2023, 38(2): 125-136.
[83] 吴瑞棠. 重要的发现:深海沉积间断[J]. 地质科技情报,1985,4(4):51-57.

Wu Ruitang. Important discovery:Hiatuses in deep-sea sediments[J]. Geological Science and Technology Information, 1985, 4(4): 51-57.
[84] 陈芳,周洋,庄畅,等. 南海东北部冷泉区末次冰期沉积间断及其成因[J]. 海洋地质与第四纪地质,2016,36(2):19-27.

Chen Fang, Zhou Yang, Zhuang Chang, et al. Origin of the hiatus of Last Glacial Period in cold seep area of northeastern South China Sea[J]. Marine Geology Quaternary Geology, 2016, 36(2): 19-27.
[85] 刘季花. 大洋中的沉积间断[J]. 海洋地质动态,1990(8):4-6.

Liu Jihua. Hiatuses in oceanic sediments[J]. Marine Geology Dynamics, 1990(8): 4-6.
[86] Keller G, Barron J A. 中新世深海沉积间断的古海洋学意义(上)[J]. 芮荷凤,译. 海洋地质动态,1984(4):45-56.

Keller G, Barron J A. Paleooceanographic significance of Miocene deep-sea hiatuses (Part I)[J]. Rui Hefeng,trans. Marine Geology Frontiers, 1984(4): 45-56.
[87] 井田喜明. 海平面变化与沉积间断[J]. 李杰,译. 海洋地质译丛,1982(1):62-66.

Ida Y. Sea-level changes and sedimentary hiatuses[J]. Li Jie,trans. Marine Geology Translations, 1982(1): 62-66.
[88] Bralower T J, Premoli Silva I, Malone M J, et al. New evidence for abrupt climate change in the Cretaceous and Paleogene: Ocean Drilling Program leg 198 to shatsky rise, northwest pacific[C]//Proceedings of the AGU fall meeting abstracts. 2002.
[89] 许志峰. 南海中北部海域晚更新世以来沉积速率及其变化机制[J]. 台湾海峡,1995,14(4):356-360.

Xu Zhifeng. Sedimentary rates and changing mechanism in northern and middle South China Sea since Late Pleistocene[J]. Journal of Oceanography in Taiwan Strait, 1995, 14(4): 356-360.
[90] 李凤业,高抒,贾建军,等. 黄、渤海泥质沉积区现代沉积速率[J]. 海洋与湖沼,2002,33(4):364-369.

Li Fengye, Gao Shu, Jia Jianjun, et al. Contemporary deposition rates of fine-grained sediment in the Bohai and Yellow Seas[J]. Oceanologia et Limnologia Sinica, 2002, 33(4): 364-369.
[91]

Huang T Y, Ma C, Jin S D, et al. Quaternary sedimentation rate revealed by semi-quantitative analysis in global ocean[J]. Marine and Petroleum Geology, 2024, 166: 106900.
[92]

Hubay K, Molnár M, Orbán I, et al. Age-depth relationship and accumulation rates in four sediment sequences from the Retezat Mts, South Carpathians (Romania)[J]. Quaternary International, 2018, 477: 7-18.
[93] Stein R. 有机碳与沉积速率的关系:大西洋森诺曼阶与土仑阶深海缺氧环境的实例[J]. 芮荷凤,周平,译. 海洋地质译丛,1987(2):5-9.

Stein R. Relationship between organic carbon and sedimentation rate: Examples from deep-sea anoxic environments of the Cenomanian-Turonian in the Atlantic[J]. Rui Hefeng, Zhou Ping, trans. Marine Geology Translations, 1987(2): 5-9.
[94] 齐君,李凤业,宋金明,等. 北黄海沉积速率及其沉积通量[J]. 海洋地质与第四纪地质,2004,24(2):9-14.

Qi Jun, Li Fengye, Song Jinming, et al. Sedimentation rate and flux of the North Yellow Sea[J]. Marine Geology Quaternary Geology, 2004, 24(2): 9-14.
[95] 王永红,沈焕庭. 河口海岸环境沉积速率研究方法[J]. 海洋地质与第四纪地质,2002,22(2):115-120.

Wang Yonghong, Shen Huanting. The study methods of sedimentation rates in the estuarine and coastal environments[J]. Marine Geology Quaternary Geology, 2002, 22(2): 115-120.
[96] Sugisaki R. 中白垩世以来太平洋底沉积物的化学成分与沉积速率的关系:古代沉积物沉积环境的化学限制的基本证据[J]. 傅友忠,译. 地质地球化学,1986(3):36-41,35.

Sugisaki R. Relationship between chemical composition and sedimentation rate of Pacific floor sediments since the mid-Cretaceous: Basic evidence of chemical constraints on depositional environment of ancient sediments[J]. Fu Youzhong,trans. Geology-Geochemistry, 1986(3): 36-41, 35.
[97] 庄丽华,常凤鸣,李铁刚,等. 南黄海EY02-2孔底栖有孔虫群落特征与全新世沉积速率[J]. 海洋地质与第四纪地质,2002,22(4):7-14.

Zhuang Lihua, Chang Fengming, Li Tiegang, et al. Foraminiferal faunas and Holocene sedimentation rates of core EY02-2 in the South Yellow Sea[J]. Marine Geology Quaternary Geology, 2002, 22(4): 7-14.
[98] 陈荣华,徐建,孟翊,等. 南海东北部表层沉积中微体化石与碳酸盐溶跃面和补偿深度[J]. 海洋学报,2003,25(2):48-56.

Chen Ronghua, Xu Jian, Meng Yi, et al. Microorganisms and carbonate lysoclme depth and CCD in surface sediment of the northeastern South China Sea[J]. Acta Oceanologica Sinica, 2003, 25(2): 48-56.
[99] 刘振尤,葛晨东,石学法,等. 中印度洋海盆南部中新世以来碳酸盐补偿深度的演变:来自微体化石组合和元素地球化学的证据[J]. 南京大学学报(自然科学),2020,56(5):702-709.

Liu Zhenyou, Ge Chendong, Shi Xuefa, et al. CCD evolution since the Miocene: Evidence from nannofossils assemblage and element geochemistry in the south part of Central Indian Ocean Basin[J]. Journal of Nanjing University (Natural Science), 2020, 56(5): 702-709.
[100] 王家昊,胡修棉,蒋璟鑫,等. 重建南海27Ma以来高分辨率碳酸盐补偿深度[J]. 地学前缘,2024,31(1):500-510.

Wang Jiahao, Hu Xiumian, Jiang Jingxin, et al. High-resolution reconstruction of carbonate compensation depth in the South China Sea since 27 Ma[J]. Earth Science Frontiers, 2024, 31(1): 500-510.
[101] 肖开迅,胡修棉,蒋璟鑫,等. 碳酸盐补偿深度(CCD)是解密新生代表层碳循环的潜在钥匙[J]. 中国科学:地球科学,2024,54(6):1769-1785.

Xiao Kaixun, Hu Xiumian, Jiang Jingxin, et al. Unraveling the Cenozoic carbon cycle by reconstructing carbonate compensation depth (CCD)[J]. Science China Earth Sciences, 2024, 54(6): 1769-1785.
[102]

Cai C, Ma C, Hu B, et al. SedST: An updated chronological database for ocean sediments[J/OL]. GSA Bulletin. https://doi.org/10.1130/B37957.1. doi:  10.1130/B37957.1