[1] Hülse D, Vervoort P, van de Velde S J, et al. Assessing the impact of bioturbation on sedimentary isotopic records through numerical models[J]. Earth-Science Reviews, 2022, 234: 104213.
[2] Dey J, Sen S. Impact of bioturbation on reservoir quality and production: A review[J]. Journal of the Geological Society of India, 2017, 89(4): 460-470.
[3] Niu Y B, Marshall J D, Song H B, et al. Ichnofabrics and their roles in the modification of petrophysical properties: A case study of the Ordovician Majiagou Formation, northwest Henan province, China[J]. Sedimentary Geology, 2020, 409: 105773.
[4] Dorador J, Rodríguez-Tovar F J, Miguez-Salas O. The complex case of Macaronichnus trace fossil affecting rock porosity[J]. Scientific Reports, 2021, 11(1): 1975.
[5] Taylor A, Goldring R, Gowland S. Analysis and application of ichnofabrics[J]. Earth-Science Reviews, 2003, 60(3/4): 227-259.
[6] Moore D M. Impact of super permeability on completion and production strategies[C]//Proceedings of the SPE Middle East oil and gas show and conference. Bahrain: SPE, 1989: SPE-17974-MS.
[7] 龚紫娟,张青田. 生物扰动影响沉积物理化特征的研究进展[J]. 海洋湖沼通报,2022,44(2):166-172.

Gong Zijuan, Zhang Qingtian. Influence of macrobenthic bioturbation on the physic-chemical characteristics of sediment: A review[J]. Transactions of Oceanology and Limnology, 2022, 44(2): 166-172.
[8] 杨伟芳,王波,张惠良. 塔里木盆地东河砂岩段中的生物扰动作用[J]. 新疆石油地质,2010,31(5):493-496.

Yang Weifang, Wang Bo, Zhang Huiliang. Bioturbation of Donghe sandstone member in Tarim Basin[J]. Xinjiang Petroleum Geology, 2010, 31(5): 493-496.
[9] 纪友亮,赵澂林,刘孟慧. 生物扰动构造对碎屑岩储层储集性能的影响[J]. 石油大学学报(自然科学版),1990,14(6):1-8.

Ji Youliang, Zhao Chenglin, Liu Menghui. The effect of bioturbate structure on the petrophysical properties of sandstone reservoir[J]. Journal of the University of Petroleum, China, 1990, 14(6): 1-8.
[10] Hsieh A I, Allen D M, MacEachern J A. Statistical modeling of biogenically enhanced permeability in tight reservoir rock[J]. Marine and Petroleum Geology, 2015, 65: 114-125.
[11] Quaye J A, Jiang Z X, Zhou X W. Bioturbation influence on reservoir rock quality: A case study of well Bian-5 from the Second member Paleocene Funing Formation in the Jinhu Sag, Subei Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1165-1173.
[12] Singh A, Jha N K, Mandal P P, et al. Pore throat characterization of bioturbated heterogeneous sandstone, Bhuj Formation, Kachchh India: An integrated analysis using NMR and HPMI studies[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110221.
[13] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
[14] Chalmers G R, Bustin R M, Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119.
[15] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
[16] Miguez-Salas O, Dorador J, Rodríguez-Tovar F J, et al. X-ray microtomography analysis to approach bioturbation's influence on minor-scale porosity distribution: A novel approach in contourite deposits[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109251.
[17] Baniak G M, Gingras M K, Pemberton S G. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group, Pine Creek gas field, central Alberta, Canada[J]. Marine and Petroleum Geology, 2013, 48: 275-292.
[18] 牛永斌,崔胜利,胡亚洲,等. 塔河油田奥陶系生物扰动型储集层的三维重构及启示意义[J]. 古地理学报,2018,20(4):691-702.

Niu Yongbin, Cui Shengli, Hu Yazhou, et al. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe oilfield[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(4): 691-702.
[19] 牛永斌,徐资璐,刘圣鑫,等. 塔河油田奥陶系生物扰动碳酸盐岩储集层微观孔隙结构的数字化表征与连通性分析[J]. 古地理学报,2020,20(4):785-798.

Niu Yongbin, Xu Zilu, Liu Shengxin, et al. Digital characterization and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate rock reservoirs in Tahe oilfield[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(4): 785-798.
[20] 牛永斌,崔胜利,胡亚洲,等. 塔里木盆地塔河油田奥陶系数字岩心图像中生物扰动的定量表征[J]. 古地理学报,2017,19(2):353-363.

Niu Yongbin, Cui Shengli, Hu Yazhou, et al. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe oilfield of Tarim Basin[J]. Journal of Palaeogeography, 2017, 19(2): 353-363.
[21] de Araújo O M O, Aguilera O, Coletti G, et al. X-ray micro-computed tomography of burrow-related porosity and permeability in shallow-marine equatorial carbonates: A case study from the Miocene Pirabas Formation, Brazil[J]. Marine and Petroleum Geology, 2021, 127: 104966.
[22] 牛永斌,程梦园,程怡高,等. 琼东南盆地北部新近系三亚组Ophiomorpha-Thalassinoides遗迹组构的储层改造效应[J]. 古地理学报, 2023,25(6):1407-1420.

Niu Yongbin, Cheng Mengyuan, Cheng Yigao, et al. Reservoir modification effect of Ophiomorpha-Thalassinoides ichnofabric in the Neogene Sanya Formation in northern Qiongdongnan Basin[J]. Journal of Palaeogeography, 2023, 25(6): 1407-1420.
[23] 赵佳如,牛永斌,王敏,等. 塔河油田奥陶系生物扰动型碳酸盐岩储集层特征及其孔隙度计算样本检验模型[J]. 沉积学报,2021,39(2):482-492.

Zhao Jiaru, Niu Yongbin, Wang Min, et al. Reservoir characteristics and porosity calculation sample inspection model of Ordovician bioturbated carbonate reservoirs in Tahe oilfield[J]. Acta Sedimentologica Sinica, 2021, 39(2): 482-492.
[24] Meadows P S, Tait J. Modification of sediment permeability and shear strength by two burrowing invertebrates[J]. Marine Biology, 1989, 101(1): 75-82.
[25] Perret J, Prasher S O, Kantzas A, et al. Three‐dimensional quantification of macropore networks in undisturbed soil cores[J]. Soil Science Society of America Journal, 1999, 63(6): 1530-1543.
[26] Pierret A, Capowiez Y, Belzunces L, et al. 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J]. Geoderma, 2002, 106(3/4): 247-271.
[27] Bastardie F, Capowiez Y, de Dreuzy J R, et al. X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores[J]. Applied Soil Ecology, 2003, 24(1): 3-16.
[28] Tonkin N S, McIlroy D, Meyer R, et al. Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation, Jeanne d'Arc Basin, offshore Newfoundland, Canada[J]. AAPG Bulletin, 2010, 94(7): 1059-1078.
[29] Qi Y A, Wang M, Zheng W, et al. Calcite cements in burrows and their influence on reservoir property of the Donghe sandstone, Tarim Basin, China[J]. Journal of Earth Science, 2012, 23(2): 129-141.
[30] Adepehin E J, Bankole O M, Arifin M H. Poro-perm evolution in Oligo-Miocene coastal sandstones: Constraining the relative influence of sedimentary facies, mineralogy, and diagenesis on analogue reservoir quality of the Nyalau Formation, Borneo[J]. Marine and Petroleum Geology, 2022, 139: 105589.
[31] Adam A, Swennen R, Abdulghani W, et al. Reservoir heterogeneity and quality of Khuff carbonates in outcrops of central Saudi Arabia[J]. Marine and Petroleum Geology, 2018, 89: 721-751.
[32] 牛永斌,钟建华,钟福平,等. 柴达木盆地南缘石炭系Chondrites遗迹化石的发现及其地质意义[J]. 古地理学报,2008,10(5):529-535.

Niu Yongbin, Zhong Jianhua, Zhong Fuping, et al. Discovery of trace fossil Chondrites in the Carboniferous in south margin of Qaidam Basin and its geological significance[J]. Journal of Palaeogeography, 2008, 10(5): 529-535.
[33] 董小波,牛永斌. 成岩作用对豫西北马家沟组三段遗迹化石充填物孔隙发育的影响[J]. 海相油气地质,2015,20(3):17-27.

Dong Xiaobo, Niu Yongbin. Diagenesis and effect of trace fossil fillings on pore development in Lower Ordovician Majiagou member-3 limestone in the northwest of Henan[J]. Marine Origin Petroleum Geology, 2015, 20(3): 17-27.
[34] 张文凯,施泽进,田亚铭,等. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏,2021,33(4):10-19.

Zhang Wenkai, Shi Zejin, Tian Yaming, et al. Pore types and genesis of tight sandstone of Silurian Xiaoheba Formation in southeastern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(4): 10-19.
[35] Baniak G M, La Croix A D, Polo C A, et al. Associating X-ray microtomography with permeability contrasts in bioturbated media[J]. Ichnos, 2014, 21(4): 234-250.
[36] Corlett H J, Jones B. Petrographic and geochemical contrasts between calcite-and dolomite-filled burrows in the Middle Devonian Lonely Bay Formation, Northwest Territories, Canada: Implications for dolomite formation in Paleozoic burrows[J]. Journal of Sedimentary Research, 2012, 82(9): 648-663.
[37] 胡亚洲,牛永斌,崔胜利,等. 碳酸盐岩中生物潜穴充填特征及其诱导孔隙演化规律:以豫西奥陶系马家沟组三段为例[J]. 沉积学报,2019,37(4):690-701.

Hu Yazhou, Niu Yongbin, Cui Shengli, et al. Characteristics of filled burrows in carbonates and the evolution of burrow-mediated pores: A case study from the Third member of the Ordovician Majiagou Formation, western Henan province[J]. Acta Sedimentologica Sinica, 2019, 37(4): 690-701.
[38] 李峰峰,郭睿,刘立峰,等. 伊拉克M油田白垩系Mishrif组生物碎屑灰岩储集层非均质性成因[J]. 地球科学与环境学报,2020,42(3):297-312.

Li Fengfeng, Guo Rui, Liu Lifeng, et al. Heterogeneity genesis of bioclastic limestone reservoirs of Cretaceous Mishrif Formation in M oilfield, Iraq[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 297-312.
[39] James N P, Choquette P W. Paleokarst[M]. New York: Springer Science & Business Media, 2012.
[40] Loucks R G. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999, 83(11): 1795-1834.
[41] Li J, Zhang W Z, Luo X, et al. Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin[J]. Marine and Petroleum Geology, 2008, 25(4/5): 401-415.
[42] Rahimpour-Bonab H, Mehrabi H, Navidtalab A, et al. Palaeo-exposure surfaces in Cenomanian-Santonian carbonate reservoirs in the Dezful embayment, SW Iran[J]. Journal of Petroleum Geology, 2013, 36(4): 335-362.
[43] Yang X F, Wang X Z, Tang H, et al. The Early Hercynian paleo-karstification in the Block 12 of Tahe oilfield, northern Tarim Basin, China[J]. Carbonates and Evaporites, 2014, 29(3): 251-261.
[44] Tian F, Jin Q, Lu X B, et al. Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A case study in the Tahe oilfield, Tarim Basin, western China[J]. Marine and Petroleum Geology, 2016, 69: 53-73.
[45] 孙瑞,陈曦,明爽,等. 鄂尔多斯盆地西北部奥陶系马家沟组斑状白云岩成因机理及储集特征[J]. 新疆地质,2012,30(4):442-446.

Sun Rui, Chen Xi, Ming Shuang, et al. Formation mechanism and its reservoir characteristics of Ordovician Majiagou Formation mottled dolomite in northwestern Ordos Basin[J]. Xinjiang Geology, 2012, 30(4): 442-446.
[46] Moore C H, Wade W J. Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework[M]. 2nd ed. Amsterdam: Elsevier Science, 2013.
[47] Rameil N. Early diagenetic dolomitization and dedolomitization of Late Jurassic and Earliest Cretaceous platform carbonates: A case study from the Jura Mountains (NW Switzerland, E France)[J]. Sedimentary Geology, 2008, 212(1/2/3/4): 70-85.
[48] 沈瑛楚,宋新民,刘波,等. 伊拉克AD油田上白垩统Kh2段生物扰动与储层非均质性[J]. 天然气地球科学,2019,30(12):1755-1770.

Shen Yingchu, Song Xinmin, Liu Bo, et al. Bioturbation and reservoir heterogeneity study of Upper Cretaceous Kh2 member, AD oilfield, Iraq[J]. Natural Gas Geoscience, 2019, 30(12): 1755-1770.
[49] Alibrahim A, Duane M J, Dittrich M. Dolomite genesis in bioturbated marine zones of an Early-Middle Miocene coastal mud volcano outcrop (Kuwait)[J]. Scientific Reports, 2021, 11(1): 6636.
[50] Rashid F, Glover P W J, Lorinczi P, et al. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq[J]. Journal of Petroleum Science and Engineering, 2015, 133: 147-161.
[51] 许晴旸,范若颖,龚一鸣. 海相遗迹化石对显生宙生物大辐射事件的响应[J]. 古地理学报,2023,25(2):431-450.

Xu Qingyang, Fan Ruoying, Gong Yiming. Marine ichnofossils as a record of major biodiversification events in the Phanerozoic[J]. Journal of Palaeogeography, 2023, 25(2): 431-450.
[52] Ben-Awuah J, Eswaran P. Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta, offshore Sarawak, Malaysia[J]. Petroleum Exploration and Development, 2015, 42(2): 223-231.
[53] 李慧敏,赵振宇,宋微,等. 鄂尔多斯盆地西部奥陶系克里摩里组有效储层发育控制因素[J]. 石油实验地质,2023,45(3):434-442.

Li Huimin, Zhao Zhenyu, Song Wei, et al. Controlling factors for effective reservoir development of Ordovician Kelimoli Formation in western Ordos Basin[J]. Petroleum Geology & Experiment, 2023, 45(3): 434-442.
[54] Pemberton S G, Gingras M K. Classification and characterizations of biogenically enhanced permeability[J]. AAPG Bulletin, 2005, 89(11): 1493-1517.
[55] Gingras M K, Pemberton S G, Henk F, et al. Applications of ichnology to fluid and gas production in hydrocarbon reservoirs[M]//MacEachern J A, Bann K L, Gingras M K, et al. Applied ichnology. SEPM Society for Sedimentary Geology, 2007.
[56] Gingras M K, Baniak G, Gordon J, et al. Porosity and permeability in bioturbated sediments[J]. Developments in Sedimentology, 2012, 64: 837-868.
[57] Gingras M K, Mendoza C A, Pemberton S G. Fossilized worm burrows influence the resource quality of porous media[J]. AAPG Bulletin, 2004, 88(7): 875-883.
[58] Knaust D, Dorador J, Rodríguez-Tovar F J. Burrowed matrix powering dual porosity systems: A case study from the Maastrichtian chalk of the Gullfaks Field, Norwegian North Sea[J]. Marine and Petroleum Geology, 2020, 113: 104158.
[59] Bednarz M, McIlroy D. Effect of phycosiphoniform burrows on shale hydrocarbon reservoir quality[J]. AAPG Bulletin, 2012, 96(10): 1957-1980.
[60] Gilman J R, Kazemi H. Improved calculations for viscous and gravity displacement in matrix blocks in dual-porosity simulators (includes associated papers 17851, 17921, 18017, 18018, 18939, 19038, 19361 and 20174)[J]. Journal of Petroleum Technology, 1988, 40(1): 60-70.
[61] Eltom H A, Alqubalee A, Yassin M A. Potential overlooked bioturbated reservoir zones in the shallow marine strata of the Hanifa Formation in central Saudi Arabia[J]. Marine and Petroleum Geology, 2021, 124: 104798.
[62] Dorador J, Rodríguez-Tovar F J. High-resolution image treatment in ichnological core analysis: Initial steps, advances and prospects[J]. Earth-Science Reviews, 2018, 177: 226-237.
[63] Dreyer T, Scheie Å, Walderhaug O. Minipermeameter-based study of permeability trends in channel sand bodies[J]. AAPG Bulletin, 1990, 74(4): 359-374.
[64] Golab J A, Smith J J, Clark A K, et al. Effects of Thalassinoides ichnofabrics on the petrophysical properties of the Lower Cretaceous Lower Glen Rose Limestone, Middle Trinity Aquifer, northern Bexar County, Texas[J]. Sedimentary Geology, 2017, 351: 1-10.
[65] Alqubalee A, Muharrag J, Salisu A M, et al. The negative impact of Ophiomorpha on reservoir quality of channelized deposits in mixed carbonate siliciclastic setting: The case study of the Dam Formation, Saudi Arabia[J]. Marine and Petroleum Geology, 2022, 140: 105666.
[66] Eltom H A, Yassin M A, Cline J, et al. Incorporating outcrop observations and laboratory measurements in 3D reservoir models: An integrated study to enhance the workflow of modeling bioturbated carbonate reservoirs[J]. Marine and Petroleum Geology, 2023, 152: 106259.
[67] Eltom H A, Rankey E C, Hasiotis S T, et al. Effect of bioturbation on petrophysical properties: Insights from geostatistical and flow simulation modeling[J]. Marine and Petroleum Geology, 2019, 104: 259-269.
[68] La Croix A D, Gingras M K, Dashtgard S E, et al. Computer modeling bioturbation: The creation of porous and permeable fluid-flow pathways[J]. AAPG Bulletin, 2012, 96(3): 545-556.
[69] Eltom H A, Goldstein R H. Use of geostatistical modeling to improve the understanding of permeability upscaling in isotropic and anisotropic burrowed reservoirs[J]. Marine and Petroleum Geology, 2021, 129: 105067.
[70] Cunningham K J, Sukop M C, Curran H A. Carbonate aquifers[J]. Developments in Sedimentology, 2012, 64: 869-896.
[71] Hsieh A I, Allen D M, MacEachern J A. Upscaling permeability for reservoir-scale modeling in bioturbated, heterogeneous tight siliciclastic reservoirs: Lower Cretaceous Viking Formation, Provost Field, Alberta, Canada[J]. Marine and Petroleum Geology, 2017, 88: 1032-1046.
[72] Cunningham K J, Sukop M C, Huang H B, et al. Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform “super-K” zones[J]. GSA Bulletin, 2009, 121(1/2): 164-180.
[73] Eltom H A, Alqubalee A M, Sultan A S, et al. Understanding the permeability of burrow-related gas reservoirs through integrated laboratory techniques[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103917.
[74] Baniak G M, La Croix A D, Gingras M K. Recent advancements in characterizing permeability and porosity distributions in bioturbated flow media[J]. Earth-Science Reviews, 2022, 232: 104162.
[75] La Croix A D, Gingras M K, Pemberton S G, et al. Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada[J]. Marine and Petroleum Geology, 2013, 43: 464-477.
[76] Webber K J, van Geuns L C. Framework for constructing clastic reservoir simulation models[J]. Journal of Petroleum Technology, 1990, 42(10): 1248-1297.
[77] Muskat M. The flow of homogeneous fluids through porous media[J]. Soil Science, 1938, 46(2): 169.
[78] Freeze R A, Cherry J A. Groundwater[M]. Englewood Cliffs: Prentice-Hall, 1979: 262-265.
[79] Gingras M K, Pemberton S G, Mendoza C A, et al. Assessing the anisotropic permeability of Glossifungites surfaces[J]. Petroleum Geoscience, 1999, 5(4): 349-357.
[80] Baniak G M, Gingras M K, Burns B A, et al. Petrophysical characterization of bioturbated sandstone reservoir facies in the Upper Jurassic Ula Formation, Norwegian North Sea, Europe[J]. Journal of Sedimentary Research, 2015, 85(1): 62-81.
[81] MacEachern J A, Raychaudhuri I, Pemberton S G. Stratigraphic applications of the Glossifungites ichnofacies: Delineating discontinuities in the rock record[M]//Pemberton S G. Applications of ichnology to petroleum exploration: A core workshop. Tulsa: SEPM Core Workshop, 1992.
[82] Pemberton S G, Frey R W. The Glossifungites ichnofacies: Modern examples from the Georgia coast, U.S.A.[M]//Curran H A. Biogenic structures: Their use in interpreting depositional environments. Tulsa: SEPM Special Publication, 1985.
[83] Gingras M K, Pemberton S G, Saunders T. Bathymetry, sediment texture, and substrate cohesiveness; their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(1/2): 1-21.
[84] King M R, Botterill S E, Gingras M K, et al. Freshwater to low salinity expression of Cretaceous Glossifungites-demarcated autogenic stratigraphic surfaces, central Utah[J]. Ichnos, 2022, 29(1): 1-10.
[85] Eltom H A, Syahputra M R N, El-Husseiny A, et al. Spatial complexity of burrow attributes and their impact on porosity and permeability distributions in bioturbated reservoirs[J]. Sedimentary Geology, 2023, 450: 106395.
[86] Ingram M F. Basin analysis and hydrocarbon potential of the Bali Basin with expanded geothermal heat flow map of Indonesia[D]. Muncie: Ball State University, 2018.
[87] Noble R A, Henk Jr F H. Hydrocarbon charge of a bacterial gas field by prolonged methanogenesis: An example from the East Java Sea, Indonesia[J]. Organic Geochemistry, 1998, 29(1/2/3): 301-314.
[88] Lemiski R T, Hovikoski J, Pemberton S G, et al. Sedimentological ichnological and reservoir characteristics of the low-permeability, gas-charged Alderson member (Hatton gas field, southwest Saskatchewan): Implications for resource development[J]. Bulletin of Canadian Petroleum Geology, 2011, 59(1): 27-53.
[89] Gingras M K, MacMillan B, Balcom B J, et al. Using magnetic resonance imaging and petrographic techniques to understand the textural attributes and porosity distribution in Macaronichnus-burrowed sandstone[J]. Journal of Sedimentary Research, 2002, 72(4): 552-558.
[90] Dafoe L T, Gingras M K, Pemberton S G. Determining Euzonus mucronata burrowing rates with application to ancient Macaronichnus segregatis trace-makers[J]. Ichnos, 2008, 15(2): 78-90.
[91] Ali S, Gingras M K, Wilson B, et al. The influence of bioturbation on reservoir quality: Insights from the Columbus Basin, offshore Trinidad[J]. Marine and Petroleum Geology, 2023, 147: 105983.
[92] Gordon J B, Pemberton S G, Gingras M K, et al. Biogenically enhanced permeability: A petrographic analysis of Macaronichnus segregatus in the Lower Cretaceous Bluesky Formation, Alberta, Canada[J]. AAPG Bulletin, 2010, 94(11): 1779-1795.
[93] Pemberton S G, MacEachern J A, Gingras M K, et al. Biogenic chaos: Cryptobioturbation and the work of sedimentologically friendly organisms[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(3/4): 273-279.
[94] Abdel-Fattah Z A, Gingras M K, Pemberton S G. Significance of hypoburrow nodule formation associated with large biogenic sedimentary structures in open-marine bay siliciclastics of the Upper Eocene Birket Qarun Formation, Wadi El-Hitan, Fayum, Egypt[J]. Sedimentary Geology, 2011, 233(1/2/3/4): 111-128.
[95] Trabelsi A, Beg M A. Characterization and mapping of burrowed and microporous intervals in the Arab D Reservoir, Dukhan Field, Qatar[C]//Proceedings of the Abu Dhabi international petroleum exhibition and conference. Abu Dhabi: SPE, 2000.
[96] Niu Y B, Cheng M Y, Zhang L J, et al. Bioturbation enhanced petrophysical properties in the Ordovician carbonate reservoir of the Tahe oilfield, Tarim Basin, NW China[J]. Journal of Palaeogeography, 2022, 11(1): 31-51.
[97] Eltom H A, González L A, Alqubalee A, et al. Evidence for the development of a superpermeability flow zone by bioturbation in shallow marine strata, Upper Jubaila Formation, central Saudi Arabia[J]. Marine and Petroleum Geology, 2020, 120: 104512.
[98] Kendall A C. Origin of dolomite mottling in Ordovician limestones from Saskatchewan and Manitoba[J]. Bulletin of Canadian Petroleum Geology, 1977, 25(3): 480-504.
[99] Kendall A C. Anhydrite replacements of gypsum (satin-spar) veins in the Mississippian caprocks of southeastern Saskatchewan[J]. Canadian Journal of Earth Sciences, 1975, 12(7): 1190-1195.
[100] Jin J S, Harper D A T, Rasmussen J A, et al. Late Ordovician massive-bedded Thalassinoides ichnofacies along the palaeoequator of Laurentia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 367-368: 73-88.
[101] 刘航宇,田中元,刘波,等. 中东地区巨厚强非均质碳酸盐岩储层分类与预测:以伊拉克W油田中白垩统Mishrif组为例[J]. 石油学报,2019,40(6):677-691.

Liu Hangyu, Tian Zhongyuan, Liu Bo, et al. Classification and prediction of giant thick strongly heterogeneous carbonate reservoirs in the Middle East area: A case study of Mid-Cretaceous Mishrif Formation in the W oilfield of Iraq[J]. Acta Petrolei Sinica, 2019, 40(6): 677-691.
[102] 胡斌,齐永安,宋慧波,等. 中国遗迹学研究十年进展[J]. 古地理学报,2021,23(2):284-320.

Hu Bin, Qi Yong’an, Song Huibo, et al. Research progress of Chinese ichnology in recent ten years[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(2): 284-320.
[103] 牛永斌,齐永安,胡斌,等. 遗迹组构的精细分析功能及其应用:第15届国际遗迹组构专题研讨会综述[J]. 古地理学报,2019,21(5):767-782.

Niu Yongbin, Qi Yong’an, Hu Bin, et al. Fine analysis functions and their application of ichnofabric: Outline of the 15th International Ichnofabric Workshop[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(5): 767-782.
[104] Knaust D. Characterisation of a Campanian deep-sea fan system in the Norwegian Sea by means of ichnofabrics[J]. Marine and Petroleum Geology, 2009, 26(7): 1199-1211.
[105] Reolid J, Betzler C. Ichnofabric logs for the characterization of the organic content in carbonates[J]. Marine and Petroleum Geology, 2018, 95: 246-254.