[1] 邵龙义,李猛,李永红,等. 柴达木盆地北缘侏罗系页岩气地质特征及控制因素[J]. 地学前缘,2014,21(4):311-322.

Shao Longyi, Li Meng, Li Yonghong, et al. Geological characteristics and controlling factors of shale gas in the Jurassic of the northern Qaidam Basin[J]. Earth Science Frontiers, 2014, 21(4): 311-322.
[2] 郭佳佳,孙国强,龙国徽,等. 柴达木盆地北缘冷湖五号构造下侏罗统沉积—成岩环境分析[J]. 天然气地球科学,2017,28(12):1839-1845.

Guo Jiajia, Sun Guoqiang, Long Guohui, et al. Sedimentary diagenesis environment of the Lower Jurassic in Lenghu V tectonic belt, northern Qaidam Basin[J]. Natural Gas Geoscience, 2017, 28(12): 1839-1845.
[3] 李明义,岳湘安,江青春,等. 柴达木盆地北缘主要构造带构造演化与油气成藏关系[J]. 天然气地球科学,2012,23(3):461-468.

Li Mingyi, Yue Xiang'an, Jiang Qingchun, et al. Relationship between hydrocarbon accumulation and tectonic evolution in main structural belt of the northern border of Qaidam Basin[J]. Natural Gas Geoscience, 2012, 23(3): 461-468.
[4] 方世虎,赵孟军,张水昌,等. 柴达木盆地北缘构造控藏特征与油气勘探方向[J]. 地学前缘,2013,20(5):132-138.

Fang Shihu, Zhao Mengjun, Zhang Shuichang, et al. Structural control on hydrocarbon accumulation and its implication for petroleum exploration in northern Qaidam Basin[J]. Earth Science Frontiers, 2013, 20(5): 132-138.
[5] 孙波,王金铎,王大华,等. 柴北缘东段中—新生代构造演化及其对油气的控制作用[J]. 中国石油勘探,2019,24(3):351-360.

Sun Bo, Wang Jinduo, Wang Dahua, et al. Mesozoic-Cenozoic structural evolution and its control over oil and gas in the eastern section of the northern margin of the Qaidam Basin[J]. China Petroleum Exploration, 2019, 24(3): 351-360.
[6]

Jian X, Guan P, Zhang D W, et al. Provenance of Tertiary sandstone in the northern Qaidam Basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry[J]. Sedimentary Geology, 2013, 290: 109-125.
[7]

Shu D G, Xu S M, Wu S, et al. Jurassic sedimentary provenances of the Hongshan and Huobuxun Sags in the eastern segment of the northern Qaidam Basin: Basin-mountain coupling[J]. Geological Journal, 2017, 52(Suppl.1): 380-393.
[8]

Yu L, Xiao A C, Wu L, et al. Provenance evolution of the Jurassic northern Qaidam Basin (West China) and its geological implications: Evidence from detrital zircon geochronology[J]. International Journal of Earth Sciences, 2017, 106(8): 2713-2726.
[9] 钱涛,王宗秀,柳永清,等. 柴达木盆地北缘侏罗纪沉积物源分析:地层序列及LA-ICP-MS年代学信息[J]. 中国科学(D辑):地球科学,2018,48(2):224-242.

Qian Tao, Wang Zongxiu, Liu Yongqing, et al. Provenance analysis of the Jurassic northern Qaidam Basin: Stratigraphicsuccession and LA-ICP-MS geochronology[J]. Science China (Seri. D): Earth Sciences, 2018, 48(2): 224-242.
[10]

Zhao J F, Zeng X, Tian J X, et al. Provenance and paleogeography of the Jurassic northwestern Qaidam Basin (NW China): Evidence from sedimentary records and detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 2020, 190: 104060.
[11]

Zhao X D, Zhao J F, Zeng X, et al. Early-Middle Jurassic paleogeography reconstruction in the western Qaidam Basin: Insights from sedimentology and detrital zircon geochronology[J]. Marine and Petroleum Geology, 2020, 118: 104445.
[12]

Qian T, Wang Z X, Wang Y, et al. Jurassic evolution of the Qaidam Basin in western China: Constrained by stratigraphic succession, detrital zircon U-Pb geochronology and Hf isotope analysis[J]. GSA Bulletin, 2021, 133(11/12): 2291-2318.
[13]

Hu J J, Ma Y S, Li Z X, et al. Jurassic sediments geochemical constraints on provenance, weathering process, and palaeoclimate variation of the north margin of Qaidam Basin, north-eastern Tibetan Plateau[J]. Geological Journal, 2020, 55(4): 3247-3257.
[14] 冯乔,付锁堂,张小莉,等. 柴达木盆地及邻区侏罗纪原型盆地恢复及油气勘探前景[J]. 地学前缘,2019,26(1):44-58.

Feng Qiao, Fu Suotang, Zhang Xiaoli, et al. Jurassic prototype basin restoration and hydrocarbon exploration prospect in the Qaidam Basin and its adjacent area[J]. Earth Science Frontiers, 2019, 26(1): 44-58.
[15] 李军亮,肖永军,王大华,等. 柴达木盆地东部侏罗纪原型盆地恢复[J]. 地学前缘,2016,23(5):11-22.

Li Junliang, Xiao Yongjun, Wang Dahua, et al. Jurassic prototype basin reconstruction in east part of Qaidam Basin[J]. Earth Science Frontiers, 2016, 23(5): 11-22.
[16] 孙昌. 柴北缘大煤沟地区侏罗系大煤沟组物源分析[D]. 西安:长安大学,2018.

Sun Chang. Provenance analysis of Jurassic Dameigou Formation in Dameigou area, northern margin of Qaidam Basin[D]. Xi’an: Chang'an University, 2018.
[17] 郭帅. 柴北缘东段侏罗纪沉积—构造演化[D]. 青岛:中国石油大学(华东),2012.

Guo Shuai. Research on Jurassic sedimentary and tectonic evolution of the east sector of northern Qaidam Basin[D]. Qingdao: China University of Petroleum (East China), 2012.
[18] 简星. 柴达木盆地北部中—新生代沉积演化及其构造、气候意义[D]. 北京:北京大学,2013.

Jian Xing. Controls on Mesozoic and Cenozoic sedimentary evolution of the northern Qaidam Basin: Tectonic and climatic implications[D]. Beijing: Peking University, 2013.
[19] Ritts B D, Biffi U, Hendrix M, et al. Mesozoic northeast Qaidam Basin: Response to contractional reactivation of the Qilian Shan, and implications for the extent of Mesozoic intracontinental deformation in Central Asia[M]//Hendrix M S, Davis G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation[M]. Boulder, Colorado: Geological Society of America, 2001: 293-316.
[20] 王成善,李祥辉. 沉积盆地分析原理与方法[M]. 北京:高等教育出版社,2003.

Wang Chengshan, Li Xianghui. Sedimentary basin: From principles to analyses[M]. Beijing: Higher Education Press, 2003.
[21]

Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1/2/3/4): 1-11.
[22] 李林林. 盆地沉积物源分析研究进展[J]. 地壳构造与地壳应力文集,2018(1),27-47.

Li Linlin. The development in sedimentary provenance studies[J]. Bulletin of the Institute of Crustal Dynamics, 2018(1), 27-47.
[23] 王轲,翟世奎. 沉积物源判别的地球化学方法[J]. 海洋科学,2020,44(12):132-143.

Wang Ke, Zhai Shikui. Geochemical methods for identification of sedimentary provenance[J]. Marine Sciences, 2020, 44(12): 132-143.
[24] 许苗苗,魏晓椿,杨蓉,等. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展,2021,36(2):154-171.

Xu Miaomiao, Wei Xiaochun, Yang Rong, et al. Research progress of provenance tracing method for heavy mineral analysis[J]. Advances in Earth Science, 2021, 36(2): 154-171.
[25] 刘宝珺,曾允孚. 岩相古地理基础和工作方法[M]. 北京:地质出版社,1985.

Liu Baojun, Zeng Yunfu. Lithofacies paleogeographic basis and working methods[M]. Beijing: Geological Publishing House, 1985.
[26] 李林林,郭召杰,管树巍,等. 柴达木盆地西南缘新生代碎屑重矿物组合特征及其古地理演化[J]. 中国科学(D辑):地球科学,2015,45(6):780-798.

Li Linlin, Guo Zhaojie, Guan Shuwei, et al. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin[J]. Science China (Seri. D): Earth Sciences, 2015, 45(6): 780-798.
[27] 余烨,张昌民,李少华,等. 多元统计分析在地质学中的应用:以惠州凹陷M层物源分析为例[J]. 地质科学,2014,49(1):191-201.

Yu Ye, Zhang Changmin, Li Shaohua, et al. Application of multivariate statistic analysis in geology: A case of provenance analysis in the M strata, Huizhou Depression[J]. Chinese Journal of Geology, 2014, 49(1): 191-201.
[28] 陈容涛,王清斌,王飞龙,等. 重矿物多元统计分析在物源研究中的应用:以黄河口凹陷为例[J]. 新疆石油天然气,2017,13(2):1-5.

Chen Rongtao, Wang Qingbin, Wang Feilong, et al. Application of heavy minerals multivariate statistic analysis to provenance studies: A case of Huanghekou Depression[J]. Xinjiang Oil & Gas, 2017, 13(2): 1-5.
[29] 陈波,王波,管斌,等. 柴北缘西段古近系优质储层孔隙成因类型及其控制因素[J]. 天然气地球科学,2016,27(8):1454-1465.

Chen Bo, Wang Bo, Guan Bin, et al. Pore genetic types and its controlling factors on Paleogene strata in the northern margin of the Qaidam Basin, China[J]. Natural Gas Geoscience, 2016, 27(8): 1454-1465.
[30] Mange M A, Maurer H F W. Heavy minerals in colour[M]. London: Chapman & Hall, 1992.
[31]

Jian X, Guan P, Zhang W, et al. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: Implications for provenance and weathering[J]. Chemical Geology, 2013, 360-361: 74-88.
[32]

Wang J L, Wu C D, Li Z, et al. Geochronology and geochemistry of volcanic rocks in the Arbasay Formation, Xinjiang province (Northwest China): Implications for the tectonic evolution of the North Tianshan[J]. International Geology Review, 2017, 59(10): 1324-1343.
[33]

Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[34]

Ludwig K R. Isoplot 3.75: A geochronological toolkit for Microsoft Excel[J]. Berkeley CA: Berkeley Geochronology Center Special Publication, 2012, 5: 1-75.
[35] Boggs Jr S. Petrology of sedimentary rocks[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.
[36]

Haskin M A, Haskin L A. Rare earths in European shales: A redetermination[J]. Science, 1966, 154(3748): 507-509.
[37] Taylor S R, McLennan S M. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific Publications, 1985.
[38] 毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

Mao Guangzhou, Liu Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348.
[39]

Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[40]

Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139.
[41] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Geological society of America[M]. Boulder, Colorado, 1993: 21-40.
[42]

Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[43]

Gu X X, Liu J M, Zheng M H, et al. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence[J]. Journal of Sedimentary Research, 2002, 72(3): 393-407.
[44]

Zhu W, Wu C D, Wang J L, et al. Heavy mineral compositions and zircon U-Pb ages of Cenozoic sandstones in the SW Qaidam Basin, northern Tibetan Plateau: Implications for provenance and tectonic setting[J]. Journal of Asian Earth Sciences, 2017, 146: 233-250.
[45]

Fu J G, Liang X Q, Zhou Y, et al. Geochemistry, zircon U-Pb geochronology and Hf isotopes of granitic rocks in the Xitieshan area, north Qaidam, Northwest China: Implications for Neoproterozoic geodynamic evolutions of north Qaidam[J]. Precambrian Research, 2015, 264: 11-29.
[46]

Yang J Z, Liu X C, Wu Y B, et al. Zircon record of ocean-continent subduction transition process of dulan UHPM Belt, north Qaidam[J]. Journal of Earth Science, 2015, 26(5): 617-625.
[47]

Yu S Y, Zhang J X, Sun D Y, et al. Petrology, geochemistry, zircon U-Pb dating and Lu-Hf isotope of granitic leucosomes within felsic gneiss from the north Qaidam UHP terrane: Constraints on the timing and nature of partial melting[J]. Lithos, 2015, 218-219: 1-21.
[48]

Song S G, Su, Li X H, et al. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim[J]. Precambrian Research, 2012, 220-221: 9-22.
[49] 朱小辉,陈丹玲,刘良,等. 柴北缘锡铁山地区镁铁质岩石的时代及地球化学特征[J]. 地质通报,2012,31(12):2079-2089.

Zhu Xiaohui, Chen Danling, Liu Liang, et al. Chronology and geochemistry of the mafic rocks in Xitieshan area, north Qaidam[J]. Geological Bulletin of China, 2012, 31(12): 2079-2089.
[50]

Song S G, Su L, Li X H, et al. Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the north Qaidam UHPM belt, NW China[J]. Precambrian Research, 2010, 183(4): 805-816.
[51]

Wu C L, Wooden J L, Robinson P T, et al. Geochemistry and zircon SHRIMP U-Pb dating of granitoids from the west segment of the North Qaidam[J]. Science in China Series D: Earth Sciences, 2009, 52(11): 1771-1790.
[52] 吴才来,郜源红,吴锁平,等. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报,2007,23(8):1861-1875.

Wu Cailai, Gao Yuanhong, Wu Suoping, et al. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam Basin, NW China[J]. Acta Petrologica Sinica, 2007, 23(8): 1861-1875.
[53] 孟繁聪,张建新,杨经绥. 柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件:花岗岩和片麻岩的同位素与岩石地球化学证据[J]. 岩石学报,2005,21(1):45-56.

Meng Fancong, Zhang Jianxin, Yang Jingsui. Tectono-thermal event of POST-HP/UHP metamorphism in the Xitieshan area of the north Qaidam mountains, western China: Isotopic and geochemical evidence of granite and gneiss[J]. Acta Petrologica Sinica, 2005, 21(1): 45-56.
[54]

Gehrels G E, Yin A, Wang X F. Detrital-zircon geochronology of the northeastern Tibetan Plateau[J]. GSA Bulletin, 2003, 115(7): 881-896.
[55] 杨明慧,宋建军. 柴达木盆地冷湖花岗岩体岩石学初步研究[J]. 西北地质,2002,35(3):94-98.

Yang Minghui, Song Jianjun. Petrology of the Lenghu granite mass, northwestern Qaidam Basin, China[J]. Northwestern Geology, 2002, 35(3): 94-98.
[56]

Wu C L, Yang J S, Wooden J, et al. Zircon SHRIMP dating of granite from Qaidamshan, NW China[J]. Chinese Science Bulletin, 2002, 47(5): 418-422.
[57]

Yu X J, Fu S T, Wang Z D, et al. The discovery of Early Paleoproterozoic high-Na trondhjemite in the northeastern Qaidam Basin: Evidence from the drilling core samples[J]. Precambrian Research, 2017, 298: 615-628.
[58]

Zhang L, Wang Q Y, Chen N S, et al. Geochemistry and detrital zircon U-Pb and Hf isotopes of the paragneiss suite from the Quanji massif, SE Tarim Craton: Implications for Paleoproterozoic tectonics in NW China[J]. Journal of Asian Earth Sciences, 2014, 95: 33-50.
[59]

Liao F X, Zhang L, Chen N S, et al. Geochronology and geochemistry of meta-mafic dykes in the Quanji massif, NW China: Paleoproterozoic evolution of the Tarim Craton and implications for the assembly of the Columbia supercontinent[J]. Precambrian Research, 2014, 249: 33-56.
[60]

Chen N S, Liao F X, Wang L, et al. Late Paleoproterozoic multiple metamorphic events in the Quanji massif: Links with Tarim and North China Cratons and implications for assembly of the Columbia supercontinent[J]. Precambrian Research, 2013, 228: 102-116.
[61]

Chen N S, Zhang L, Sun M, et al. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji massif, NW China: Implications for its early tectonic evolutionary history[J]. Journal of Asian Earth Sciences, 2012, 54-55: 110-130.
[62] 张璐,巴金,陈能松,等. 全吉群碎屑锆石的U-Pb年龄谱和微量元素:基底热事件信息和早期演化启示[J]. 地球科学:中国地质大学学报,2012,37(增刊1):28-42.

Zhang Lu, Ba Jin, Chen Nengsong, et al. U-Pb Age spectra and trace elements of detrital zircon from Quanji Group: Implications for thermal events and early evolution in the basement[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(Suppl.1): 28-42.
[63]

Chen N S, Gong S L, Sun M, et al. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 367-376.
[64] 崔加伟,郑有业,孙祥,等. 青海省赛支寺花岗闪长岩及其暗色包体成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约[J]. 地球科学,2016,41(7):1156-1170.

Cui Jiawei, Zheng Youye, Sun Xiang, et al. Origin of granodiorite and mafic microgranular enclave in Saizhisi, Qinghai province: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic constraints[J]. Earth Science, 2016, 41(7): 1156-1170.
[65] 刘娜,任二峰,张天继,等. 南祁连东段早古生代梁脊岩体岩浆岩锆石U-Pb年龄及地球化学特征研究[J]. 青海大学学报(自然科学版),2016,34(1):81-87.

Liu Na, Ren Erfeng, Zhang Tianji, et al. The dating of zircon U-Pb of igneous rock of Liangji rock in the eastern part of the South Qilian Mountains[J]. Journal of Qinghai University (Natural Science Edition), 2016, 34(1): 81-87.
[66] 胡万龙,贾志磊,王金荣,等. 南祁连化石沟花岗岩年代学、地球化学特征及其构造意义[J]. 高校地质学报,2016,22(2):242-253.

Hu Wanlong, Jia Zhilei, Wang Jinrong, et al. Geochronology and geochemistry characteristics of the granites from the Huashigou area, South Qilian and their tectonic significance[J]. Geological Journal of China Universities, 2016, 22(2): 242-253.
[67] 彭渊,马寅生,刘成林,等. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义[J]. 地学前缘,2016,23(2):206-221.

Peng Yuan, Ma Yinsheng, Liu Chenglin, et al. Geological characteristics and tectonic significance of the Indosinian granodiorites from the Zongwulong tectonic belt in north Qaidam[J]. Earth Science Frontiers, 2016, 23(2): 206-221.
[68] 罗志文,张志诚,李建锋,等. 中南祁连西缘肃北三个洼塘地区古生代两类花岗质侵入岩年代学及其地质意义[J]. 岩石学报,2015,31(1):176-188.

Luo Zhiwen, Zhang Zhicheng, Li Jianfeng, et al. Geochronology of two kinds of Paleozoic granitic plutons from Sangewatang in Subei, the western margin of central-south Qilian and their geological implications[J]. Acta Petrologica Sinica, 2015, 31(1): 176-188.
[69] 付长垒,闫臻,郭现轻,等. 拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄[J]. 岩石学报,2014,30(6):1695-1706.

Fu Changlei, Yan Zhen, Guo Xianqing, et al. Geochemistry and SHRIMP zircon U-Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane[J]. Acta Petrologica Sinica, 2014, 30(6): 1695-1706.
[70] 周宾,郑有业,许荣科,等. 青海柴达木山岩体LA-ICP-MS锆石U-Pb定年及Hf同位素特征[J]. 地质通报,2013,32(7):1027-1034.

Zhou Bin, Zheng Youye, Xu Rongke, et al. LA-ICP-MS zircon U-Pb dating and Hf isotope geochemical characteristics of Qaidamshan intrusive body[J]. Geological Bulletin of China, 2013, 32(7): 1027-1034.
[71] 张照伟,李文渊,高永宝,等. 南祁连裕龙沟岩体ID-TIMS锆石U-Pb年龄及其地质意义[J]. 地质通报,2012,31(2/3):455-462.

Zhang Zhaowei, Li Wenyuan, Gao Yongbao, et al. ID-TIMS zircon U-Pb age of Yulonggou intrusive rocks in southern Qilian Mountain and its geological significance[J]. Geological Bulletin of China, 2012, 31(2/3): 455-462.
[72]

Cowgill E, Yin A, Harrison T M, et al. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108(B7): 2346.
[73] 郭安林,张国伟,强娟,等. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报,2009,25(1):1-12.

Guo Anlin, Zhang Guowei, Qiang Juan, et al. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet Plateau[J]. Acta Petrologica Sinica, 2009, 25(1): 1-12.
[74] 张志刚,吴立新,陈金,等. 柴北缘牦牛山地区辉绿岩体锆石U-Pb年龄及地质意义[J]. 矿产勘查,2020,11(6):1085-1092.

Zhang Zhigang, Wu Lixin, Chen Jin, et al. Zircon U-Pb geochronology and geological significance of diabase rocks in Maoniushan area of north Qaidam Basin[J]. Mineral Exploration, 2020, 11(6): 1085-1092.