[1] 王成善,刘志飞,王国芝,等. 新生代青藏高原三维古地形再造[J]. 成都理工学院学报,2000,27(1):4-10.

Wang Chengshan, Liu Zhifei, Wang Guozhi, et al. Three dimension paleotopographic reconstruction in Cenozoic Tibet Plateau[J]. Journal of Chengdu University of Technology, 2000, 27(1): 4-10.
[2] 邵龙义,王学天,李雅楠,等. 深时源—汇系统古地理重建方法评述[J]. 古地理学报,2019,21(1):67-81.

Shao Longyi, Wang Xuetian, Li Yanan, et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. Journal of Palaeogeography, 2019, 21(1): 67-81.
[3] 王成善,戴紧根,刘志飞,等. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘,2009,16(3):1-30.

Wang Chengshan, Dai Jingen, Liu Zhifei, et al. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review[J]. Earth Science Frontiers, 2009, 16(3): 1-30.
[4] Garzione C N, Quade J, Decelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Planetary Science Letters, 2000, 183(1/2): 215-229.
[5] 杨红梅,王成善. 古高程计:氢氧同位素的新应用[J]. 地球科学进展,2007,22(9):960-968.

Yang Hongmei, Wang Chengshan. Paleohypsometry: New application of hydrogen isotope and oxygen isotope[J]. Advances in Earth Science, 2007, 22(9): 960-968.
[6] Rowley D B, Garzione C N. Stable isotope-based paleoaltimetry[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 463-508.
[7] Forest C E, Wolfe J A, Molnar P, et al. Paleoaltimetry incorporating atmospheric physics and botanical estimates of paleoclimate[J]. GSA Bulletin, 1999, 111(4): 497-511.
[8] Sahagian D, Proussevitch A. Paleoelevation measurement on the basis of vesicular basalts[J]. Reviews in Mineralogy and Geochemistry, 2007, 66(1): 195-213.
[9] 戴紧根,丁文君,王成善. 气孔玄武岩古高程计:原理、方法及应用[J]. 地质通报,2010,29(2/3):268-277.

Dai Jingen, Ding Wenjun, Wang Chengshan. Vesicular basalt paleoaltimeter: Principles, methods and its applications[J]. Geological Bulletin of China, 2010, 29(2/3): 268-277.
[10] Tang M, Chu X, Hao J H, et al. Orogenic quiescence in Earth's Middle age[J]. Science, 2021, 371(6530): 728-731.
[11] 张旗,焦守涛,吴浩若,等. 中国三叠纪古地势图[J]. 古地理学报,2013,15(2):181-202.

Zhang Qi, Jiao Shoutao, Wu Haoruo, et al. Palaeotopographic map of the Triassic of China[J]. Journal of Palaeogeography, 2013, 15(2): 181-202.
[12] Hay W W, Shaw C A, Wold C N. Mass-balanced paleogeographic reconstructions[J]. Geologische Rundschau, 1989, 78(1): 207-242.
[13] Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1-19.
[14] Nyberg B, Helland-Hansen W, Gawthorpe R, et al. Assessing first‐order BQART estimates for ancient source‐to‐sink mass budget calculations[J]. Basin Research, 2021, 33(4): 2435-2452.
[15] Brewer C J, Hampson G J, Whittaker A C, et al. Comparison of methods to estimate sediment flux in ancient sediment routing systems[J]. Earth-Science Reviews, 2020, 207: 103217.
[16] Carvajal C, Steel R. Source-to-sink sediment volumes within a tectono-stratigraphic model for a Laramide shelf-to-deep-water basin: Methods and results[M]//Busby C, Azor A. Tectonics of sedimentary basins: recent advances. Chichester: Blackwell Publishing Ltd, 2011: 131-151.
[17] Sømme T O, Martinsen O J, Lunt I. Linking offshore stratigraphy to onshore paleotopography: The Late Jurassic-Paleocene evolution of the South Norwegian margin[J]. GSA Bulletin, 2013, 125(7/8): 1164-1186.
[18] He B, Xu Y G, Chung S L, et al. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 391-405.
[19] He B, Xu Y G, Wang Y M, et al. Sedimentation and lithofacies paleogeography in southwestern China before and after the Emeishan flood volcanism: New insights into surface response to mantle plume activity[J]. The Journal of Geology, 2006, 114(1): 117-132.
[20] He B, Xu Y G, Guan J P, et al. Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism[J]. Lithos, 2010, 119(1/2): 1-9.
[21] Wang X T, Shao L Y, Eriksson K A, et al. Evolution of a plume-influenced source-to-sink system: An example from the coupled central Emeishan Large Igneous Province and adjacent western Yangtze cratonic basin in the Late Permian, SW China[J]. Earth-Science Reviews, 2020, 207: 103224.
[22] Guillocheau F, Rouby D, Robin C, et al. Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia-South Africa margin[J]. Basin Research, 2012, 24(1): 3-30.
[23] Allen P A, Armitage J J, Carter A, et al. The Qs problem: Sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130.
[24] Mitchum R M, Van Wagoner J C. High-frequency sequences and their stacking patterns: Sequence-stratigraphic evidence of high-frequency eustatic cycles[J]. Sedimentary Geology, 1991, 70(2/3/4): 131-160.
[25] Van Wagoner J C, Mitchum R M, Campion K M, et al. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high-resolution correlation of time and facies[M]. Tulsa: The American Association of Petroleum Geologists, 1990: 55.
[26] Diessel C F K. Utility of coal petrology for sequence-stratigraphic analysis[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 3-34.
[27] Catuneanu O. Model-independent sequence stratigraphy[J]. Earth-Science Reviews, 2019, 188: 312-388.
[28] Hinnov L A. Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences[J]. GSA Bulletin, 2013, 125(11/12): 1703-1734.
[29] Wu H C, Zhang S H, Hinnov L A, et al. Time-calibrated Milankovitch cycles for the Late Permian[J]. Nature Communications, 2013, 4(1): 2452.
[30] Li M S, Hinnov L, Kump L. Acycle: Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22.
[31] 刘宝珺,许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京:科学出版社,1994:188.

Liu Baojun, Xu Xiaosong. Atlas of the lithofacies palaeogeography in southern China (Sinian-Triassic)[M]. Beijing: Science Press, 1994: 188.
[32] 冯增昭. 单因素分析多因素综合作图法:定量岩相古地理重建[J]. 古地理学报,2004,6(1):3-19.

Feng Zengzhao. Single factor analysis and multifactor comprehensive mapping method: Reconstruction of quantitative lithofacies palaeogeography[J]. Journal of Palaeogeography, 2004, 6(1): 3-19.
[33] Galloway W E, Whiteaker T L, Ganey-Curry P. History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico Basin[J]. Geosphere, 2011, 7(4): 938-973.
[34] Elez J, Silva P G, Huerta P, et al. Quantitative paleotopography and paleogeography around the Gibraltar Arc (South Spain) during the Messinian Salinity Crisis[J]. Geomorphology, 2016, 275: 26-45.
[35] 王学天. ELIP内带—上扬子克拉通盆地源—汇系统古地理重建[D]. 北京:中国矿业大学(北京),2021.

Wang Xuetian. Source-to-sink paleogeographic reconstruction of the coupled inner zone of Emeishan Large Igneous Province and adjacent Upper Yangtze cratonic basin[D]. Beijing: China University of Mining and Technology (Beijing), 2021.
[36] Hovius N. Regular spacing of drainage outlets from linear mountain belts[J]. Basin Research, 1996, 8(1): 29-44.
[37] Walcott R C, Summerfield M A. Universality and variability in basin outlet spacing: Implications for the two-dimensional form of drainage basins[J]. Basin Research, 2009, 21(2): 147-155.
[38] Bridge J S, Tye R S. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores[J]. AAPG Bulletin, 2000, 84(8): 1205-1228.
[39] Holbrook J, Wanas H. A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the Cretaceous of Egypt[J]. Journal of Sedimentary Research, 2014, 84(5): 349-372.
[40] Davidson S K, Hartley A J. Towards a quantitative method for estimating paleohydrology from clast Size and comparison with modern rivers[J]. Journal of Sedimentary Research, 2010, 80(7): 688-702.
[41] Long D G F. Trickling down the paleoslope: An empirical approach to paleohydrology[J]. Earth-Science Reviews, 2021, 220: 103740.
[42] Davidson S K, North C P. Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record[J]. Journal of Sedimentary Research, 2009, 79(10): 773-792.
[43] Glasspool I J, Hilton J, Collinson M E, et al. Foliar physiognomy in Cathaysian Gigantopterids and the potential to track Palaeozoic climates using an extinct plant group[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 205(1/2): 69-110.
[44] Royer D L. Climate reconstruction from leaf size and shape: New developments and challenges[M]//Ivany L C, Huber B T. Reconstructing Earth’s deep-time climate-the state of the art. The Paleontological Society, 2012.
[45] Yang J H, Cawood P A, Du Y S, et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. GSA Bulletin, 2016, 128(5/6): 739-751.
[46] Zhang L M, Wang C S, Li X H, et al. A new paleoclimate classification for deep time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 98-106.
[47] Chen B, Joachimski M M, Shen S Z, et al. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited[J]. Gondwana Research, 2013, 24(1): 77-89.
[48] Walford H L, White N J, Sydow J C. Solid sediment load history of the Zambezi delta[J]. Earth and Planetary Science Letters, 2005, 238(1/2): 49-63.
[49] Ukstins Peate I, Bryan S E, Wignall P B, et al. Comment on’Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism'[J]. Lithos, 2011, 125(3/4): 1006-1008.
[50] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[51] 张云湘,骆耀南,杨崇喜. 攀西裂谷[M]. 北京:地质出版社,1988:415.

Zhang Yunxiang, Luo Yaonan, Yang Chongxi. The Panzhihua-Xichang rift[M]. Beijing: Geological Publishing House, 1988: 415.
[52] Xiao L, Xu Y G, Chung S L, et al. Chemostratigraphic correlation of Upper Permian lavas from Yunnan province, China: Extent of the Emeishan Large Igneous Province[J]. International Geology Review, 2003, 45(8): 753-766.
[53] Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58(3/4): 145-168.
[54] Zhang Z C, Mahoney J J, Mao J W, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China[J]. Journal of Petrology, 2006, 47(10): 1997-2019.
[55] Li H B, Zhang Z C, Ernst R, et al. Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: Identifying the mantle plume centre[J]. Terra Nova, 2015, 27(4): 247-257.
[56] 中国煤田地质局. 黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M]. 重庆:重庆大学出版社,1996:277.

China National Administration of Coal Geology. Sedimentary environments and coal accumulation of Late Permian coal formation in western Guizhou, southern Sichuan and eastern Yunnan, China[M]. Chongqing: Chongqing University Press, 1996: 277.
[57] Yang J H, Cawood P A, Du Y S. Voluminous silicic eruptions during Late Permian Emeishan igneous province and link to climate cooling[J]. Earth and Planetary Science Letters, 2015, 432: 116-175.
[58] Yang J H, Cawood P A, Du Y S, et al. A sedimentary archive of tectonic switching from Emeishan plume to Indosinian orogenic sources in SW China[J]. Journal of the Geological Society, 2014, 171(2): 269-280.
[59] 邵龙义,高彩霞,张超,等. 西南地区晚二叠世层序:古地理及聚煤特征[J]. 沉积学报,2013,31(5):856-866.

Shao Longyi, Gao Caixia, Zhang Chao, et al. Sequence-palaeogeography and coal aaccumulation of Late Permian in southwestern China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 856-866.
[60] 邵龙义,张鹏飞,陈代钊,等. 滇东黔西晚二叠世早期辫状河三角洲沉积体系及其聚煤特征[J]. 沉积学报,1994,12(4):132-139.

Shao Longyi, Zhang Pengfei, Chen Daizhao, et al. Braided delta depositional system and coal accumulation during early Late Permian Period in eastern Yunnan and western Guizhou, Southwest China[J]. Acta Sedimentologica Sinica, 1994, 12(4): 132-139.
[61] Wang Y, Jin Y G. Permian palaeogeographic evolution of the Jiangnan Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(1/2): 35-44.
[62] Wang H, Shao L Y, Hao L M, et al. Sedimentology and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China[J]. International Journal of Coal Geology, 2011, 85(1): 168-183.
[63] Wignall P B, Védrine S, Bond D P G, et al. Facies analysis and sea-level change at the Guadalupian-Lopingian global stratotype (Laibin, South China), and its bearing on the end-Guadalupian Mass Extinction[J]. Journal of the Geological Society, 2009, 166(4): 655-666.
[64] Shao L, Hao L, Yang L, et al. High resolution sequence stratigraphy of the Late Permian coal measures in southwestern China[M]//Xie H P, Golosinski T S. Mining science and technology’99. Balkema Rotterdam, 1999: 239-242.
[65] Shao L Y, Zhang P F, Ren D Y, et al. Late Permian coal-bearing carbonate successions in southern China: Coal accumulation on carbonate platforms[J]. International Journal of Coal Geology, 1998, 37(3/4): 235-256.
[66] Boulila S, Haq B U, Hara N, et al. Potential encoding of coupling between Milankovitch forcing and Earth’s interior processes in the Phanerozoic eustatic sea-level record[J]. Earth-Science Reviews, 2021, 220: 103727.
[67] Yuan X X, Guo Y H, Yu J F, et al. Correlation and analysis of well-log sequence with Milankovitch cycles as rulers: A case study of coal-bearing strata of Late Permian in western Guizhou[J]. International Journal of Mining Science and Technology, 2013, 23(4): 563-568.
[68] 沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):160-193.

Shen Shuzhong, Zhang Hua, Zhang Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 160-193.
[69] Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan Large Igneous Province[J]. Lithos, 2014, 204: 14-19.
[70] Yang J H, Cawood P A, Du Y S, et al. Early Wuchiapingian cooling linked to Emeishan basaltic weathering?[J]. Earth and Planetary Science Letters, 2018, 492: 102-111.
[71] Vail P R, Mitchum R M, Jr, Todd R G, et al. Seismic stratigraphy and global changes of sea level[M]//Payton C E. Seismic stratigraphy—applications to hydrocarbon exploration. American Association of Petroleum Geologists, 1977: 49-211.
[72] Burov E, Gerya T. Asymmetric three-dimensional topography over mantle plumes[J]. Nature, 2014, 513(7516): 85-89.
[73] 李宏博,张招崇,吕林素. 峨眉山大火成岩省基性墙群几何学研究及对地幔柱中心的指示意义[J]. 岩石学报,2010,26(10):3143-3152.

Li Hongbo, Zhang Zhaochong, Linsu Lü. Geometry of the mafic dyke swarms in Emeishan Large Igneous Province: Implications for mantle plume[J]. Acta Petrologica Sinica, 2010, 26(10): 3143-3152.
[74] Peel M C, Finlayson B L, Mcmahon T A. Updated world map of the Köppen-Geiger climate classification[J]. Hydrology and Earth System Sciences, 2007, 11(5): 1633-1644.
[75] Lehrmann D J, Donghong P, Enos P, et al. Impact of differential tectonic subsidence on isolated carbonate-platform evolution: Triassic of the Nanpanjiang Basin, South China[J]. AAPG Bulletin, 2007, 91(3): 287-320.
[76] 吴浩若. 晚古生代—三叠纪南盘江海的构造古地理问题[J]. 古地理学报,2003,5(1):63-76.

Wu Haoruo. Discussion on tectonic palaeogeography of Nanpanjiang Sea in the Late Palaeozoic and Triassic[J]. Journal of Palaeogeography, 2003, 5(1): 63-76.
[77] Harris P T, Baker E K, Cole A R, et al. A preliminary study of sedimentation in the tidally dominated fly river delta, gulf of Papua[J]. Continental Shelf Research, 1993, 13(4): 441-472.
[78] Harris P T, Hughes M G, Baker E K, et al. Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally dominated delta: Fly River, Papua New Guinea[J]. Continental Shelf Research, 2004, 24(19): 2431-2454.
[79] Walsh J P, Nittrouer C A. Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, gulf of Papua[J]. Marine Geology, 2004, 208(2/3/4): 225-248.
[80] Walsh J P, Nittrouer C A, Palinkas C M, et al. Clinoform mechanics in the gulf of Papua, New Guinea[J]. Continental Shelf Research, 2004, 24(19): 2487-2510.
[81] Tcherepanov E N, Droxler A W, Lapointe P, et al. Neogene evolution of the mixed carbonate-siliciclastic system in the gulf of Papua, Papua New Guinea[J]. Journal of Geophysical Research, 2008, 113(F1): F01S21.
[82] Montanez I P, Tabor N J, Niemeier D, et al. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation[J]. Science, 2007, 315(5808): 87-91.
[83] Ukstins Peate I, Bryan S E. Re-evaluating plume-induced uplift in the Emeishan Large Igneous Province[J]. Nature Geoscience, 2008, 1(9): 625-629.
[84] Jerram D A, Widdowson M, Wignall P B, et al. Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume-lithosphere interaction during the Capitanian, Middle Permian ('End Guadalupian') Extinction Event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 65-73.
[85] Sun Y D, Lai X L, Wignall P B, et al. Dating the onset and nature of the Middle Permian Emeishan Large Igneous Province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift Models[J]. Lithos, 2010, 119(1/2): 20-33.
[86] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth and Planetary Science Letters, 1990, 99(1/2): 79-93.
[87] Leng W, Zhong S J. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 207-214.
[88] 岳海凤,汪洋. 峨眉山大火成岩省地壳密度结构及岩浆规模约束[J]. 岩石矿物学杂志,2018,37(3):395-403.

Yue Haifeng, Wang Yang. A constraint on the magma magnitude of Emeishan Large Igneous Province from the crustal density structure[J]. Acta Petrologica et Mineralogica, 2018, 37(3): 395-403.
[89] Deng Y F, Zhang Z J, Mooney W, et al. Mantle origin of the Emeishan Large Igneous Province (South China) from the analysis of residual gravity anomalies[J]. Lithos, 2014, 204: 4-13.
[90] Hales T C, Abt D L, Humphreys E D, et al. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in Northeast Oregon[J]. Nature, 2005, 438(7069): 842-845.
[91] Li J, Hu X M, Garzanti E, et al. Late Cretaceous topographic doming caused by initial upwelling of Deccan magmas: Stratigraphic and sedimentological evidence[J]. GSA Bulletin, 2020, 132(3/4): 835-849.
[92] Wang J, Wang Q, Zhang C F, et al. Late Permian bimodal volcanic rocks in the northern Qiangtang Terrane, central Tibet: Evidence for interaction between the Emeishan plume and the Paleo‐Tethyan Subduction System[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6540-6561.
[93] Liu Y D, Li L, van Wijk J, et al. Surface-wave tomography of the Emeishan Large Igneous Province (China): Magma storage system, hidden hotspot track, and its impact on the Capitanian Mass Extinction[J]. Geology, 2021, 49(9): 1032-1037.
[94] Korup O. Earth’s Portfolio of extreme sediment transport events[J]. Earth-Science Reviews, 2012, 112(3/4): 115-125.
[95] Covault J A, Romans B W, Fildani A, et al. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system[J]. The Journal of Geology, 2010, 118(3): 247-259.
[96] Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
[97] Clift P D, Giosan L. Sediment fluxes and buffering in the post-glacial Indus Basin[J]. Basin Research, 2014, 26(3): 369-386.
[98] Castelltort S, Van Den Driessche J. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?[J]. Sedimentary Geology, 2003, 157(1/2): 3-13.
[99] Talling P J, Stewart M D, Stark C P, et al. Regular spacing of drainage outlets from linear fault blocks[J]. Basin Research, 1997, 9(4): 275-302.
[100] Eide C H, Müller R, Helland-Hansen W. Using climate to relate water discharge and area in modern and ancient catchments[J]. Sedimentology, 2018, 65(4): 1378-1389.
[101] Armstrong H A, Wagner T, Herringshaw L G, et al. Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic boreal seaway[J]. Paleoceanography, 2016, 31(8): 1041-1053.
[102] Romano M. Reviewing the term uniformitarianism in modern earth sciences[J]. Earth-Science Reviews, 2015, 148: 65-76.
[103] Petter A L, Steel R J, Mohrig D, et al. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. GSA Bulletin, 2013, 125(3/4): 578-593.
[104] Sømme T O, Piper D J W, Deptuck M E, et al. Linking onshore-offshore sediment dispersal in the Golo source-to-sink system (Corsica, France) during the Late Quaternary[J]. Journal of Sedimentary Research, 2011, 81(2): 118-137.
[105] Zhou Y P, Ren Y L, Tang D Z, et al. Characteristics of zircons from volcanic ash-derived tonsteins in Late Permian coal fields of eastern Yunnan, China[J]. International Journal of Coal Geology, 1994, 25(3/4): 243-264.
[106] Blum M D, Hattier-Womack J. Climate change, sea-level change, and fluvial sediment supply to deepwater depositional systems[M]//Kneller B, Martinsen O J, McCaffrey B. External controls on deep-water depositional systems. Society for Sedimentary Geology, 2009: 15-39.
[107] 李文华,何永涛,杨丽韫. 森林对径流影响研究的回顾与展望[J]. 自然资源学报,2001,16(5):398-406.

Li Wenhua, He Yongtao, Yang Liyun. A summary and perspective of forest vegetation impacts on water yield[J]. Journal of Natural Resources, 2001, 16(5): 398-406.
[108] 陈代钊,张鹏飞. 三角洲平原上网结河的发育与聚煤作用[J]. 沉积学报,1996,14(3):105-114.

Chen Daizhao, Zhang Pengfei. Development of anastomosed fluvial systems and coal accumulation on the deltaic plain[J]. Acta Sedimentologica Sinica, 1996, 14(3): 105-114.
[109] Feng Z, Wei H B, Guo Y, et al. From rainforest to herbland: New insights into land plant responses to the end-Permian Mass Extinction[J]. Earth-Science Reviews, 2020, 204: 103153.