[1] Yuan G H, Cao Y C, Gluyas J, et al. Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin, East China[J]. AAPG Bulletin, 2015, 99(11): 2121-2154.
[2] 金之钧,杨雷,曾溅辉,等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发,2002,29(2):42-44.

Jin Zhijun, Yang Lei, Zeng Jianhui, et al. Deep fluid activities and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development, 2002, 29(2): 42-44.
[3] 李忠,李蕙生. 东濮凹陷深部次生孔隙成因与储层演化研究[J]. 地质科学,1994,29(3):267-275.

Li Zhong, Li Huisheng. An approach to genesis and evolution of secondary porosity in deeply buried sandstone reservoirs, Dongpu Depression[J]. Scientia Geologica Sinica, 1994, 29(3): 267-275.
[4] Pye K, Krinsley D H. Formation of secondary porosity in sandstones by quartz framework grain dissolution[J]. Nature, 1985, 317(6032): 54-56.
[5] Schmidt V, McDonald D A. Role of secondary porosity in sandstone diagenesis[J]. AAPG Bulletin, 1977, 61(8): 1390-1391.
[6] 远光辉,操应长,贾珍臻,等. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学,2015,26(1):28-42.

Yuan Guanghui, Cao Yingchang, Jia Zhenzhen, et al. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience, 2015, 26(1): 28-42.
[7] Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2193-2214.
[8] Cain S A, Mountney N P. Spatial and temporal evolution of a terminal fluvial fan system: The Permian Organ Rock Formation, south-east Utah, USA[J]. Sedimentology, 2009, 56(6): 1774-1800.
[9] 朱筱敏,王英国,钟大康,等. 济阳坳陷古近系储层孔隙类型与次生孔隙成因[J]. 地质学报,2007,81(2):197-204.

Zhu Xiaomin, Wang Yingguo, Zhong Dakang, et al. Pore types and secondary pore evolution of Paleogene reservoir in the Jiyang Sag[J]. Acta Geologica Sinica, 2007, 81(2): 197-204.
[10] Hutcheon I, Shevalier M, Abercrombie H J. PH buffering by metastable mineral-fluid equilibria and evolution of carbon dioxide fugacity during burial diagenesis[J]. Geochimica et Cosmochimica Acta, 1993, 57(5): 1017-1027.
[11] Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity[M]//McDonald D A, Surdam R C. Clastic diagenesis. Tulsa: American Association of Petroleum Geologists, 1984: 127-150.
[12] Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction: Model, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132.
[13] 张昌民,尹太举,唐勇,等. 准噶尔盆地西北缘及玛湖凹陷沉积储集层研究进展[J]. 古地理学报,2020,22(1):129-146.

Zhang Changmin, Yin Taiju, Tang Yong, et al. Advances in sedimentological reservoir research in Mahu Sag and northwest margin of Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(1): 129-146.
[14] 肖萌,袁选俊,吴松涛,等. 准噶尔盆地玛湖凹陷百口泉组砾岩储层特征及其主控因素[J]. 地学前缘,2019,26(1):212-224.

Xiao Meng, Yuan Xuanjun, Wu Songtao, et al. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu Sag, Junggar Basin[J]. Earth Science Frontiers, 2019, 26(1): 212-224.
[15] 操应长,燕苗苗,葸克来,等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素[J]. 沉积学报,2019,37(5):945-956.

Cao Yingchang, Yan Miaomiao, Xi Kelai, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019, 37(5): 945-956.
[16] 于兴河,李顺利,谭程鹏,等. 粗粒沉积及其储层表征的发展历程与热点问题探讨[J]. 古地理学报,2018,20(5):713-736.

Yu Xinghe, Li Shunli, Tan Chengpeng, et al. Coarse-grained deposits and their reservoir characterizations: A look back to see forward and hot issues[J]. Journal of Palaeogeography, 2018, 20(5): 713-736.
[17] 唐勇,徐洋,李亚哲,等. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义[J]. 新疆石油地质,2018,39(1):16-22.

Tang Yong, Xu Yang, Li Yazhe, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 16-22.
[18] 黄丁杰,于兴河,谭程鹏,等. 玛西斜坡区百口泉组储层孔隙结构特征及控制因素分析[J]. 东北石油大学学报,2015,39(2):9-18,41.

Huang Dingjie, Yu Xinghe, Tan Chengpeng, et al. Pore structure features and its controlling factor analysis of reservoirs in Baikouquan Formation, Maxi slope area[J]. Journal of Northeast Petroleum University, 2015, 39(2): 9-18, 41.
[19] 孟祥超,陈能贵,王海明,等. 砂砾岩沉积特征分析及有利储集相带确定:以玛北斜坡区百口泉组为例[J]. 沉积学报,2015,33(6):1235-1246.

Meng Xiangchao, Chen Nenggui, Wang Haiming, et al. Sedimentary characteristics of glutenite and its favourable accumulation facies: A case study from T1 b, Mabei slope, Junggar Basin[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1235-1246.
[20] Cronin B T, Kidd R B. Heterogeneity and lithotype distribution in ancient deep-sea canyons: Point Lobos deep-sea canyon as a reservoir analogue[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 315-349.
[21] Xiao M, Yuan X J, Cheng D W, et al. Feldspar dissolution and its influence on reservoirs: A case study of the Lower Triassic Baikouquan Formation in the northwest margin of the Junggar Basin, China[J]. Geofluids, 2018, 2018: 6536419.
[22] 齐雯,潘建国,王国栋,等. 准噶尔盆地玛湖凹陷斜坡区百口泉组储层流体包裹体特征及油气充注史[J]. 天然气地球科学,2015,26(增刊1):64-71.

Qi Wen, Pan Jianguo, Wang Guodong, et al. Fluid inclusion and hydrocarbon charge history for the reservoir of Baikouquan Formation in the Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(Suppl.1): 64-71.
[23] 曲永强,王国栋,谭开俊,等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组次生孔隙储层的控制因素及分布特征[J]. 天然气地球科学,2015,26(增刊1):50-63.

Qu Yongqiang, Wang Guodong, Tan Kaijun, et al. Controlling factors and distribution characteristics of the secondary pore reservoirs of the Triassic Baikouquan Formation in the Mahu slope area, Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(Suppl.1): 50-63.
[24] 牛海青,陈世悦,鄢继华,等. 准噶尔盆地乌夏断裂带三叠系沉积相研究[J]. 新疆石油地质,2007,28(4):425-427.

Niu Haiqing, Chen Shiyue, Yan Jihua, et al. Sedimentary facies of Triassic in Wu-Xia fault belt, Junggar Basin[J]. Xinjiang Petroleum Geology, 2007, 28(4): 425-427.
[25] 何登发,张磊,吴松涛,等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质,2018,39(5):845-861.

He Dengfa, Zhang Lei, Wu Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861.
[26] 匡立春,唐勇,雷德文,等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践[J]. 中国石油勘探,2014,19(6):14-23.

Kuang Lichun, Tang Yong, Lei Dewen, et al. Exploration of fan-controlled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin[J]. China Petroleum Exploration, 2014, 19(6): 14-23.
[27] 于兴河,瞿建华,谭程鹏,等. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式[J]. 新疆石油地质,2014,35(6):619-627.

Yu Xinghe, Qu Jianhua, Tan Chengpeng, et al. Conglomerate lithofacies and origin models of fan deltas of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 619-627.
[28] 李兴,张立强,施辉,等. 准噶尔盆地玛湖凹陷百口泉组沉积古环境分析:以玛18井为例[J]. 岩性油气藏,2016,28(2):80-85.

Li Xing, Zhang Liqiang, Shi Hui, et al. Sedimentary environment of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin: A case study from Ma 18 well[J]. Lithologic Reservoirs, 2016, 28(2): 80-85.
[29] 黄云飞,张昌民,朱锐,等. 准噶尔盆地玛湖凹陷下三叠统百口泉组古盐度恢复[J]. 新疆石油地质,2017,38(3):269-275.

Huang Yunfei, Zhang Changmin, Zhu Rui, et al. Paleosalinity restoration of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017, 38(3): 269-275.
[30] Xiao M, Wu S T, Yuan X J, et al. Conglomerate reservoir pore evolution characteristics and favorable area prediction: A case study of the Lower Triassic Baikouquan Formation in the northwest margin of the Junggar Basin, China[J]. Journal of Earth Science, 2021, 32(4): 998-1010.
[31] Kang X, Hu W X, Cao J, et al. Selective dissolution of alkali feldspars and its effect on Lower Triassic sandy conglomerate reservoirs in the Junggar Basin, northwestern China[J]. Geological Journal, 2018, 53(2): 475-499.
[32] 陈哲龙. 环玛湖凹陷三叠系百口泉组油藏混源特征及成藏机理[D]. 北京:中国石油大学(北京),2016:40-42.

Chen Zhelong. The mixed-sources characteristics and mechanism of oil accumulation in Triassic Baikouquan Formation from circum-Mahu Depression[D]. Beijing: China University of Petroleum (Beijing), 2016: 40-42.
[33] 楼章华. 松辽盆地储层成岩反应与孔隙流体地球化学性质及成因[J]. 地质学报,1998,72(2):144-152.

Lou Zhanghua. Diagenetic reactions, geochemical properties and origin of pore fluid in reservoirs of the Songliao Basin[J]. Acta Geologica Sinica, 1998, 72(2): 144-152.
[34] 张顺存,黄立良,冯右伦,等. 准噶尔盆地玛北地区三叠系百口泉组储层成岩相特征[J]. 沉积学报,2018,36(2):354-365.

Zhang Shuncun, Huang Liliang, Feng Youlun, et al. Diagenetic facies of Triassic Baikouquan Formation in Mabei area, Junggar Basin[J]. Acta Sedimentologica Sinica, 2018, 36(2): 354-365.
[35] Do Campo M, Del Papa C, Nieto F, et al. Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, northwestern Argentina)[J]. Sedimentary Geology, 2010, 228(3/4): 98-122.
[36] Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150.
[37] Xiao M, Wu S T, Yuan X J, et al. Diagenesis effects on the conglomerate reservoir quality of the Baikouquan Formation, Junggar Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107599.
[38] Xi K L, Cao Y C, Jahren J, et al. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China[J]. Sedimentary Geology, 2015, 330: 90-107.
[39] Peltonen C, Marcussen Ø, Bjørlykke K, et al. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898.
[40] Dove P M. The dissolution kinetics of quartz in sodium chloride solutions at 25 ℃ to 300 ℃[J]. American Journal of Science, 1994, 294(6): 665-712.
[41] Molenaar N, Cyziene J, Sliaupa S. Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstones[J]. Sedimentary Geology, 2007, 195(3/4): 135-159.
[42] Marcussen Ø, Maast T E, Mondol N H, et al. Changes in physical properties of a reservoir sandstone as a function of burial depth: The Etive Formation, northern North Sea[J]. Marine and Petroleum Geology, 2010, 27(8): 1725-1735.
[43] Lee M, Aronson J L, Savin S M. K/Ar dating of time of gas emplacement in Rotliegendes Sandstone, Netherlands[J]. AAPG Bulletin, 1985, 69(9): 1381-1385.
[44] 李阳,李树同,牟炜卫,等. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学,2017,28(7):1043-1053.

Li Yang, Li Shutong, Mou Weiwei, et al. Influences of clay minerals on physical properties of Chang 6 tight sandstone reservoir in Jiyuan area, Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1043-1053.
[45] Grigsby J D. Origin and growth mechanism of authigenic chlorite in sandstones of the Lower Vicksburg Formation, South Texas[J]. Journal of Sedimentary Research, 2001, 71(1): 27-36.
[46] 朱如凯,邹才能,张鼐,等. 致密砂岩气藏储层成岩流体演化与致密成因机理:以四川盆地上三叠统须家河组为例[J]. 中国科学(D辑):地球科学,2009,39(3):327-339.

Zhu Rukai, Zou Caineng, Zhang Nai, et al. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science China (Seri. D): Earth Sciences, 2009, 39(3): 327-339.
[47] Giles M R, de Boer R B. Origin and significance of redistributional secondary porosity[J]. Marine & Petroleum Geology, 1990, 7(4):378-397.
[48] 远光辉,操应长,葸克来,等. 东营凹陷北带古近系碎屑岩储层长石溶蚀作用及其物性响应[J]. 石油学报,2013,34(5):853-866.

Yuan Guanghui, Cao Yingchang, Xi Kelai, et al. Feldspar dissolution and its impact on physical properties of Paleogene clastic reservoirs in the northern slope zone of the Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(5): 853-866.
[49] 远光辉,操应长,杨田,等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘,2013,20(5):207-219.

Yuan Guanghui, Cao Yingchang, Yang Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20(5): 207-219.
[50] 韩登林,李忠,韩银学,等. 库车坳陷克拉苏构造带白垩系砂岩埋藏成岩环境的封闭性及其胶结作用分异特征[J]. 岩石学报,2009,25(10):2351-2362.

Han Denglin, Li Zhong, Han Yinxue, et al. Sealing feature of burial diagenesis environment and its controls on differentiation of cementation in Cretaceous sandstone reservoir in Kelasu structure zone, Kuqa Depression[J]. Acta Petrologica Sinica, 2009, 25(10): 2351-2362.