[1] Melim L A. Limitations on lowstand meteoric diagenesis in the Pliocene-Pleistocene of Florida and Great Bahama Bank: Implications for eustatic sea-level models[J]. Geology, 1996, 24(10): 893-896.
[2] Hajikazemi E, Al-Aasm I S, Coniglio M. Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran[J]. Geological Society, London, Special Publications, 2010, 330(1): 253-272.
[3] 刘健,韩春瑞,吴建政,等. 西沙更新世礁灰岩大气淡水成岩的地球化学证据[J]. 沉积学报,1998,16(4):71-77.

Liu Jian, Han Chunrui, Wu Jianzheng, et al. Geochemical evidence for the meteoric diagenesis in Pleistocene reef limestones of Xisha Islands[J]. Acta Sedimentologica Sinica, 1998, 16(4): 71-77.
[4] 罗珂,田元,傅亮,等. 三沙永乐龙洞洞内侧壁礁体矿物和元素组成及其晚更新世以来的形成演化[J]. 海洋与湖沼,2019,50(5):1014-1021.

Luo Ke, Tian Yuan, Fu Liang, et al. Mineral and elemental composition, fomation and evolution of the reefs in the inner wall of Sansha Yongle blue hole, South China Sea[J]. Oceanologia et Limnologia Sinica, 2019, 50(5): 1014-1021.
[5] 王振峰,张道军,刘新宇,等. 基于古地磁与230Th定年的西沙西科1井乐东组生物礁沉积年代的初步研究[J]. 地球物理学报,2017,60(3):1027-1038.

Wang Zhenfeng, Zhang Daojun, Liu Xinyu, et al. Magnetostratigraphy and 230Th dating of Pleistocene biogenic reefs in XK-1 borehole from Xisha Islands, South China Sea[J]. Chinese Journal of Geophysics, 2017, 60(3): 1027-1038.
[6] 王瑞,余克服,王英辉,等. 珊瑚礁的成岩作用[J]. 地球科学进展,2017,32(3):221-233.

Wang Rui, Yu Kefu, Wang Yinghui, et al. The diagenesis of coral reefs[J]. Advances in Earth Science, 2017, 32(3): 221-233.
[7] 魏喜,贾承造,孟卫工,等. 西沙群岛石岛根管石特征、成因及地质意义[J]. 岩石学报,2008,24(10):2415-2422.

Wei Xi, Jia Chengzao, Meng Weigong, et al. Characteristics, origin and geological significance of rhizolith in Shidao of Xisha Islands[J]. Acta Petrologica Sinica, 2008, 24(10): 2415-2422.
[8] 李晓,刘娜,吴仕玖,等. 南海西沙群岛西科1井上新统—全新统碳酸盐岩微相分析[J]. 科技导报,2016,34(7):103-110.

Li Xiao, Liu Na, Wu Shijiu, et al. Analysis of carbonate microfacies in Pliocene-Holocene, in well XK-1, the Xisha Island, South China Sea[J]. Science & Technology Review, 2016, 34(7): 103-110.
[9] 赵爽,张道军,刘立,等. 南海西沙海域西科1井第四系生物礁:碳酸盐岩成岩作用特征[J]. 地球科学——中国地质大学学报,2015,40(4):711-717.

Zhao Shuang, Zhang Daojun, Liu Li, et al. Diagenetic characteristics of Quaternary reef-Carbonates from well Xike-1, Xisha Islands, the South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(4): 711-717.
[10] Chave K E, Deffeyes K S, Weyl P K, et al. Observations on the solubility of skeletal carbonates in aqueous solutions[J]. Science, 1962, 137(3523): 33-34.
[11] Lohmann K C. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst[M]//James N P, Choquette P W. Paleokarst. New York: Springer, 1988.
[12] James N P, Choquette P W. Diagenesis 9. Limestones-the meteoric diagenetic environment[J]. Geoscience Canada, 1984, 11(4).
[13] 赵彦彦,李三忠,李达,等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学,2019,43(1):141-167.

Zhao Yanyan, Li Sanzhong, Li Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.
[14] 修淳,罗威,杨红君,等. 西沙石岛西科1井生物礁碳酸盐岩地球化学特征[J]. 地球科学——中国地质大学学报,2015,40(4):645-652.

Xiu Chun, Luo Wei, Yang Hongjun, et al. Geochemical characteristics of reef carbonate rocks in well Xike-1 of Shidao Island, Xisha area[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(4): 645-652.
[15] Gill B C, Lyons T W, Frank T D. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy[J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4699-4711.
[16] 田雯,陈刚,李文厚,等. 鄂尔多斯盆地巴汗淖地区马五6段碳酸盐岩C、O同位素特征及其成岩意义[J]. 矿物学报,2016,36(1):12-18.

Tian Wen, Chen Gang, Li Wenhou, et al. Characteristics of carbon and oxygen isotope of carbonatite and the diagenetic significance of the Ma56th member in Bahannao area, the Ordos Basin, China[J]. Acta Mineralogica Sinica, 2016, 36(1): 12-18.
[17] 乔培军,朱伟林,邵磊,等. 西沙群岛西科1井碳酸盐岩稳定同位素地层学[J]. 地球科学——中国地质大学学报,2015,40(4):725-732.

Qiao Peijun, Zhu Weilin, Shao Lei, et al. Carbonate stable Isotope stratigraphy of well Xike-1, Xisha Islands[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(4): 725-732.
[18] 王雪木,陈万利,薛玉龙,等. 西沙群岛宣德环礁晚第四纪灰砂岛沉积地层[J]. 海洋地质与第四纪地质,2018,38(6):37-45.

Wang Xuemu, Chen Wanli, Xue Yulong, et al. The Late Quaternary carbonate sand deposits at the Xuande atoll[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 37-45.
[19] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98(B4): 6299-6328.
[20] 吴时国,朱伟林,马永生. 南海半封闭边缘海碳酸盐台地兴衰史[J]. 海洋地质与第四纪地质,2018,38(6):1-17.

Wu Shiguo, Zhu Weilin, Ma Yongsheng. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 1-17.
[21] Li C F, Li J B, Ding W W, et al. Seismic stratigraphy of the central South China Sea Basin and implications for neotectonics[J]. Journal of Geophysical Research, 2015, 120(3): 1377-1399.
[22] 杨振,吴时国,吕福亮,等. 西沙海区晚新生代碳酸盐台地的发育模式及控制因素[J]. 海洋地质与第四纪地质,2014,34(5):47-55.

Yang Zhen, Wu Shiguo, Fuliang Lü, et al. Evolutionary model and control factors of Late Cenozoic carbonate platform in Xisha area[J]. Marine Geology & Quaternary Geology, 2014, 34(5): 47-55.
[23] 吴时国,张新元. 南海共轭陆缘新生代碳酸盐台地对海盆构造演化的响应[J]. 地球科学——中国地质大学学报,2015,40(2):234-248.

Wu Shiguo, Zhang Xinyuan. Response of Cenozoic carbonate platform on tectonic evolution in the conjugated margin of South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(2): 234-248.
[24] 杨朝云,韩孝辉,罗昆,等. 西沙群岛宣德环礁的地震层序发育特征[J]. 海洋地质与第四纪地质,2018,38(6):25-36.

Yang Chaoyun, Han Xiaohui, Luo Kun, et al. Seismic sequence stratigrahy of the Xuande atoll in the Xisha Islands[J]. Marine Geology & Quaternary Geology, 2018, 38(6): 25-36.
[25] Shao L, Cui Y C, Qiao P J, et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 504-516.
[26] Hu J Y, Kawamura H, Hong H S, et al. A review on the currents in the South China Sea: Seasonal circulation, South China Sea warm current and Kuroshio Intrusion[J]. Journal of Oceanography, 2000, 56(6): 607-624.
[27] Jiang W, Yu K F, Fan T L, et al. Coral reef carbonate record of the Pliocene-Pleistocene climate transition from an atoll in the South China Sea[J]. Marine Geology, 2019, 411: 88-97.
[28] Wu F, Xie X N, Betzler C, et al. The impact of eustatic sea-level fluctuations, temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands, South China Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514: 373-385.
[29] Wang R, Yu K, Jones B, et al. Evolution and development of Miocene “island dolostones” on Xisha Islands, South China Sea[J]. Marine Geology, 2018, 406: 142-158.
[30] Li R, Qiao P J, Cui Y C, et al. Composition and diagenesis of Pleistocene aeolianites at Shidao, Xisha Islands: Implications for palaeoceanography and palaeoclimate during the last glacial period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 604-616.
[31] Liu N, Wang Z F, Li X S, et al. Reef-carbonate diagenesis in the Pleistocene–Holocene of the well Xike#1, Xisha Islands, South China Sea: Implications on sea-level changes[J]. Carbonates and Evaporites, 2019, 34(4): 1669-1687.
[32] Embry A F, Klovan J E. A Late Devonian reef tract on northeastern Banks Island, N.W.T[J]. Bulletin of Canadian Petroleum Geology, 1971, 19(4): 730-781.
[33] Christl M, Lachner J, Vockenhuber C, et al. A depth profile of uranium-236 in the Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 2012, 77: 98-107.
[34] Ku T L, Knauss K G, Mathieu G G. Uranium in open ocean: Concentration and isotopic composition[J]. Deep Sea Research, 1977, 24(11): 1005-1017.
[35] Lei Y L, Li T G. Atlas of benthic foraminifera from China Seas: The Bohai Sea and the Yellow Sea[M]. Berlin Heidelberg: Springer, 2016.
[36] Weinmann A E, Goldstein S T, Triantaphyllou M V, et al. Effects of sampling site, season, and substrate on foraminiferal assemblages grown from propagule banks from lagoon sediments of Corfu Island (Greece, Ionian Sea)[J]. PLoS One, 2019, 14(6): e0219015.
[37] Kroeger K F, Reuter M, Brachert T C. Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete[J]. Facies, 2006, 52(3): 381-409.
[38] Coletti G, Basso D, Corselli C. Coralline algae as depth indicators in the Sommières Basin (Early Miocene, southern France)[J]. Geobios, 2018, 51(1): 15-30.
[39] 李银强,余克服,王英辉,等. 西沙群岛永乐环礁琛科2井的珊瑚藻组成及其水深指示意义[J]. 微体古生物学报,2017,34(3):268-278.

Li Yinqiang, Yu Kefu, Wang Yinghui, et al. The composition of coralline algae from well Chenke-2 in Xisha Islands South China Sea, China and its implication on the water depth[J]. Acta Micropalaeontologica Sinica, 2017, 34(3): 268-278.
[40] 韩春瑞,孟祥营. 西沙晚中新世以来礁相地层中有孔虫动物群的分布及其意义[J]. 海洋地质与第四纪地质,1990,10(2):65-81.

Han Chunrui, Meng Xiangying. Foraminiferal Fauna distribution in reef-facies beds since Late Miocene in Xisha Islands and its significance[J]. Marine Geology & Quaternary Geology, 1990, 10(2): 65-81.
[41] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. London: Blackwell Scientific Publications, 1985: 1-328.
[42] Saller A H, Moore Jr C H. Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands[J]. Sedimentary Geology, 1989, 63(3/4): 253-272.
[43] Swart P K. The geochemistry of carbonate diagenesis: The past, present and future[J]. Sedimentology, 2015, 62(5): 1233-1304.
[44] Derry L A, Kaufman A J, Jacobsen S B. Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317-1329.
[45] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
[46] Swart P K, Oehlert A M, Mackenzie G J, et al. The fertilization of the Bahamas by Saharan dust: A trigger for carbonate precipitation?[J]. Geology, 2014, 42(8): 671-674.
[47] Raymo M E, Oppo D W, Curry W. The Mid-Pleistocene climate transition: A deep sea carbon isotopic perspective[J]. Paleoceanography, 1997, 12(4): 546-559.
[48] Matthews R K. Carbonate diagenesis: Equilibration of sedimentary mineralogy to the subaerial environment; coral cap of Barbados, West Indies[J]. Journal of Sedimentary Research, 1968, 38(4): 1110-1119.