[1] |
孟飞,刘敏. 高强度人类活动下河网水系时空变化驱动机制分析:以浦东新区为例[J]. 兰州大学学报(自然科学版),2006,42(4):15-20.
Meng Fei, Liu Min. Analysis of driving forces and changes in river network under intensive human activity: A case study of Pudong New Area, Shanghai[J]. Journal of Lanzhou University (Natural Sciences), 2006, 42(4): 15-20. |
[2] |
许炯心,李炳元,杨小平,等. 中国地貌与第四纪研究的近今进展与未来展望[J]. 地理学报,2009,64(11):1375-1393.
Xu Jiongxin, Li Bingyuan, Yang Xiaoping, et al. Recent progress in geomorphology and Quaternary geology in China and some perspectives[J]. Acta Geographica Sinica, 2009, 64(11): 1375-1393. |
[3] |
Seybold H, Berghuijs W R, Prancevic J P, et al. Global dominance of tectonics over climate in shaping river longitudinal profiles[J]. Nature Geoscience, 2021, 14(7): 503-507. |
[4] |
Seybold H, Rothman D H, Kirchner J W. Climate's watermark in the geometry of stream networks[J]. Geophysical Research Letters, 2017, 44(5): 2272-2280. |
[5] |
孙家惠,张昌民,王浩楠,等. 分支河流体系河道弯度沿程变化规律:以格尔木河流扇为例[J]. 沉积学报,2024,42(3):981-993.
Sun Jiahui, Zhang Changmin, Wang Haonan, et al. Downstream river channel sinuosity variation of the distributive fluvial system: A case study from the Golmud fluvial fan[J]. Acta Sedimentologica Sinica, 2024, 42(3): 981-993. |
[6] |
杨斐,鹿化煜,吴会娟,等. 毛乌素沙地年均水蚀量估算[J]. 地理学报,2024,79(3):635-653.
Yang Fei, Lu Huayu, Wu Huijuan, et al. Estimation of annual water erosion sediments in Mu Us sandy land based on remote sensing images and coupled water-energy balance equation[J]. Acta Geographica Sinica, 2024, 79(3): 635-653. |
[7] |
李小根,段小芳,付景保,等. 基于GIS的丹江口水库土地利用/覆被动态变化特征分析[J]. 华北水利水电大学学报(自然科学版),2022,43(3):90-98.
Li Xiaogen, Duan Xiaofang, Fu Jingbao, et al. Analysis of land use and land cover dynamic change characteristics of Danjiangkou reservoir based on GIS[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2022, 43(3): 90-98. |
[8] |
段金龙,张戈,任圆圆,等. 土壤与地表水体空间分布格局的交互关系研究[J]. 土壤,2021,53(5):1072-1080.
Duan Jinlong, Zhang Ge, Ren Yuanyuan, et al. Study on interactive relationship between spatial distribution pattern of soil and surface water[J]. Soils, 2021, 53(5): 1072-1080. |
[9] |
黄莉,徐凤凰,张晨钰,等. 粤港澳大湾区复合灾害系统敏感性评估[J]. 水土保持学报,2024,38(1):167-175.
Huang Li, Xu Fenghuang, Zhang Chenyu, et al. Sensitivity assessment of complex disaster system in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Journal of Soil and Water Conservation, 2024, 38(1): 167-175. |
[10] |
李敏慧,吴保生,陈毅. 黄河源区典型河网平面形态特征及影响因素[J]. 地理学报,2022,77(11):2878-2889.
Li Minhui, Wu Baosheng, Chen Yi. Planform geometry and controlling factors of river networks in the Yellow River source zone[J]. Acta Geographica Sinica, 2022, 77(11): 2878-2889. |
[11] |
余逸凡,戴胜群,尹太举,等. 鄂尔多斯盆地下寺湾油区延长组浅水三角洲沉积研究[J]. 特种油气藏,2009,16(5):28-31.
Yu Yifan, Dai Shengqun, Yin Taiju, et al. Study on shallow-water delta deposition in Yanchang Formation of Xiasiwan, Ordos Basin[J]. Special Oil & Gas Reservoirs, 2009, 16(5): 28-31. |
[12] |
张昌民,胡威,朱锐,等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏,2017,29(3):1-9.
Zhang Changmin, Hu Wei, Zhu Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3): 1-9. |
[13] |
张为民,裘怿楠,田昌炳. 重新认识河道砂体储层层内非均质性:从注水开发高含水阶段挖掘层内剩余油潜力谈起[J]. 大庆石油地质与开发,2008,27(5):45-48.
Zhang Weimin, Qiu Yinan, Tian Changbing. Recognition of reservoir intraformational heterogeneity in channel sandbodies: To tap potential of remaining oil at high water-cut stage of waterflooding oilfields[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(5): 45-48. |
[14] |
何幼斌,王文广. 沉积岩与沉积相[M]. 2版. 北京:石油工业出版社,2017:1-378.
He Youbin, Wang Wenguang. Sedimentary rock and sedimentary facies[M]. 2nd ed. Beijing: Petroleum Industry Press, 2017: 1-378. |
[15] |
陈恭洋. 油气田地下地质学[M]. 北京:石油工业出版社,2007:1-449.
Chen Gongyang. Undergorund geology of oil and gas fields[M]. Beijing: Petroleum Industry Press, 2007: 1-449. |
[16] |
王健,徐守余,仲维苹. 河流相储层隔夹层成因及其分布特征[J]. 地质科技情报,2010,29(4):84-88.
Wang Jian, Xu Shouyu, Zhong Weiping. Genesis and distribution of the interlayer in fluvial reservoir[J]. Geological Science and Technology Information, 2010, 29(4): 84-88. |
[17] |
双棋,张昌民,赵康,等. 准噶尔盆地南缘托斯台沟剖面三工河组河道砂体建筑结构[J]. 新疆石油地质,2019,40(3):298-306.
Shuang Qi, Zhang Changmin, Zhao Kang, et al. Architectural element analysis of channel sand body in Sangonghe Formation on Tuositai gully section in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(3): 298-306. |
[18] |
张昌民,尹太举,李少华,等. 基准面旋回对河道砂体几何形态的控制作用:以枣园油田孔一段枣Ⅱ—Ⅲ油组为例[J]. 岩性油气藏,2007,19(4):9-12,74.
Zhang Changmin, Yin Taiju, Li Shaohua, et al. Control of base level cycles on channel sand geometry: A case study on Zao Ⅱ-Ⅲ reservoirs, Zaoyuan oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 9-12, 74. |
[19] |
马东烨,陈宇航,赵靖舟,等. 鄂尔多斯盆地东部二叠系下石盒子组8段河流相砂体构型要素[J]. 岩性油气藏,2023,35(1):63-73.
Ma Dongye, Chen Yuhang, Zhao Jingzhou, et al. Architectural elements of fluvial sand bodies of the Eighth member of Permian Xiashihezi Formation in eastern Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(1): 63-73. |
[20] |
李相博,刘化清,黄军平,等. 干湿气候交替与内陆湖盆河流扇砂体的形成与分布:以鄂尔多斯盆地延长组为例[J]. 地质学报,2023,97(3):822-838.
Li Xiangbo, Liu Huaqing, Huang Junping, et al. Alternation of arid-humid climate, and formation and distribution of fluvial fan sand in the central area of inland lake basin: A case study of the Yanchang Formation in Ordos Basin[J]. Acta Geologica Sinica, 2023, 97(3): 822-838. |
[21] |
朱筱敏,董艳蕾,刘成林,等. 中国含油气盆地沉积研究主要科学问题与发展分析[J]. 地学前缘,2021,28(1):1-11.
Zhu Xiaomin, Dong Yanlei, Liu Chenglin, et al. Major challenges and development in Chinese sedimentological research on petroliferous basins[J]. Earth Science Frontiers, 2021, 28(1): 1-11. |
[22] |
印森林,高阳,胡张明,等. 基于无人机倾斜摄影的露头多点地质统计模拟:以山西吕梁坪头乡石盒子组为例[J]. 石油学报,2021,42(2):198-216.
Yin Senlin, Gao Yang, Hu Zhangming, et al. Multiple-point geostatistical simulation of outcrop based on UAV oblique photographic data: A case study of Shihezi Formation in Pingtou township, Lvliang city, Shanxi[J]. Acta Petrolei Sinica, 2021, 42(2): 198-216. |
[23] |
李少华,史敬华,于金彪,等. 基于单一图像生成对抗神经网络方法在沉积相建模中的应用[J]. 油气地质与采收率,2022,29(1):37-45.
Li Shaohua, Shi Jinghua, Yu Jinbiao, et al. Application of SinGAN method in sedimentary facies modeling[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 37-45. |
[24] |
陈程,孙义梅,贾爱林. 扇三角洲前缘地质知识库的建立及应用[J]. 石油学报,2006,27(2):53-57.
Chen Cheng, Sun Yimei, Jia Ailin. Development and application of geological knowledge database for fan-delta front in the dense spacing area[J]. Acta Petrolei Sinica, 2006, 27(2): 53-57. |
[25] |
李君,李少华,昌伦杰,等. 河流相储层建模算法Fluvsim的改进[J]. 西北大学学报(自然科学版),2018,48(5):729-733.
Li Jun, Li Shaohua, Chang Lunjie, et al. An improved Fluvsim algorithm about fluvial reservoir modeling[J]. Journal of Northwest University (Natural Science Edition), 2018, 48(5): 729-733. |
[26] |
杨特波,王继平,王一,等. 基于地质知识库的致密砂岩气藏储层建模:以苏里格气田苏X区块为例[J]. 岩性油气藏,2017,29(4):138-145.
Yang Tebo, Wang Jiping, Wang Yi, et al. Reservoir modeling of tight sandstone gas reservoir based on geological knowledge database: A case from Su X block in Sulige gas field[J]. Lithologic Reservoirs, 2017, 29(4): 138-145. |
[27] |
黄勇,徐立恒,杨会东,等. 反演约束的多点地质统计学建模:以大庆长垣陆相油田为例[J]. 石油地球物理勘探,2022,57(6):1445-1452.
Huang Yong, Xu Liheng, Yang Huidong, et al. Multi-point geostatistical modeling with inversion constraints: A case study of continental oil fields in Daqing placanticline[J]. Oil Geophysical Prospecting, 2022, 57(6): 1445-1452. |
[28] |
祁泽学,汪生斌,王强民,等. 青海省格尔木冲洪积扇地下水资源评价及其开发利用价值[J]. 中国地质,2022,49(3):967-978.
Qi Zexue, Wang Shengbin, Wang Qiangmin, et al. Evaluation and utilization value of groundwater resources in the alluvial pluvial fan of Golmud, Qinghai province[J]. Geology in China, 2022, 49(3): 967-978. |
[29] |
马日新,黄金廷,田华,等. 格尔木河流域近60 a降水、蒸发及温度变化特征分析[J]. 干旱区地理,2017,40(5):1005-1012.
Ma Rixin, Huang Jinting, Tian Hua, et al. Characteristics of precipitation, evaporation and temperature at the Golmud River catchment in recent 60 years[J]. Arid Land Geography, 2017, 40(5): 1005-1012. |
[30] |
张昌民,张祥辉, Hartley A J,等. 分支河流体系分类初探[J]. 岩性油气藏,2023,35(4):1-15.
Zhang Changmin, Zhang Xianghui, Hartley A J, et al. On classification of distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(4): 1-15. |
[31] |
尹太举,张昌民,赵红静. 双河油田剩余油分布地质预测[J]. 大庆石油地质与开发,2006,25(4):42-45.
Yin Taiju, Zhang Changmin, Zhao Hongjing. Geology prediction for remaining oil distribution in Shuanghe oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(4): 42-45. |
[32] |
张昌民,尹太举,张尚锋,等. 泥质隔层的层次分析:以双河油田为例[J]. 石油学报,2004,25(3):48-52.
Zhang Changmin, Yin Taiju, Zhang Shangfeng, et al. Hierarchy analysis of mudstone barriers in Shuanghe oilfield[J]. Acta Petrolei Sinica, 2004, 25(3): 48-52. |
[33] |
韩继超,王夕宾,孙致学,等. 利用多点地质统计学模拟河流相沉积微相[J]. 特种油气藏,2011,18(6):48-51.
Han Jichao, Wang Xibin, Sun Zhixue, et al. Simulation of fluvial sedimentary microfacies using multiple-point geostatistics[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 48-51. |
[34] |
焦养泉,李思田. 陆相盆地露头储层地质建模研究与概念体系[J]. 石油实验地质,1998,20(4):38-45.
Jiao Yangquan, Li Sitan. Geologic modeling for outcrop reservoir of continental basin and the conceptual systems[J]. Experimental Petroleum Geology, 1998, 20(4): 38-45. |
[35] |
王喜鑫,倪雪儿,李少华,等. 基于深度学习地震多属性融合的海上少井条件下河道型砂体构型解释:以西湖凹陷X气田为例[J]. 海相油气地质,2023,28(3):261-268.
Wang Xixin, Ni Xueer, Li Shaohua, et al. Architecture interpretation of channel sand body under offshore few well conditions based on deep learning seismic multi-attributes fusion: A case of X gas field in Xihu Sag, Donghai Shelf Basin[J]. Marine Origin Petroleum Geology, 2023, 28(3): 261-268. |
[36] |
Hartley A J, Weissmann G S, Nichols G J, et al. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183. |
[37] |
Gordon I, Heller P L. Evaluating major controls on basinal stratigraphy, Pine Valley, Nevada: Implications for syntectonic deposition[J]. GSA Bulletin, 1993, 105(1): 47-55. |
[38] |
Stanistreet I G, Mccarthy T S. The Okavango Fan and the classification of subaerial fan systems[J]. Sedimentary Geology, 1993, 85(1/2/3/4): 115-133. |
[39] |
Whipple K X, Trayler C R. Tectonic control of fan size: The importance of spatially variable subsidence rates[J]. Basin Research, 1996, 8(3): 351-366. |
[40] |
Dade W B, Verdeyen M E. Tectonic and climatic controls of alluvial-fan size and source-catchment relief[J]. Journal of the Geological Society, 2007, 164(2): 353-358. |
[41] |
赵芸,张昌民,朱锐,等. 分支河流体系(DFS)研究进展[J]. 大庆石油地质与开发,2021,40(6):1-11.
Zhao Yun, Zhang Changmin, Zhu Rui, et al. Research progress of the distributive fluvial system (DFS)[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(6): 1-11. |
[42] |
李胜利,马水平,周练武,等. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示[J]. 地球科学,2022,47(11):3960-3976.
Li Shengli, Ma Shuiping, Zhou Lianwu, et al. Main influencing factors of braided-meander transition and coexistence characteristics and implications of ancient fluvial sedimentary environment reconstruction[J]. Earth Science, 2022, 47(11): 3960-3976. |
[43] |
唐武,王英民,赵志刚,等. 河型转化研究进展综述[J]. 地质论评,2016,62(1):138-152.
Tang Wu, Wang Yingmin, Zhao Zhigang, et al. A review of fluvial pattern transformation[J]. Geological Review, 2016, 62(1): 138-152. |
[44] |
张昌民,张祥辉,朱锐,等. 分支河流体系研究进展及应用前景展望[J]. 岩性油气藏,2023,35(5):11-25.
Zhang Changmin, Zhang Xianghui, Zhu Rui, et al. Research progress and application prospect of distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(5): 11-25. |
[45] |
张昌民,张祥辉,王庆,等. 分支河流体系沉积学工作框架与流程[J]. 岩性油气藏,2024,36(1):1-13.
Zhang Changmin, Zhang Xianghui, Wang Qing, et al. Research framework for distributive fluvial system[J]. Lithologic Reservoirs, 2024, 36(1): 1-13. |
[46] |
张昌民,宋新民,支东明,等. 陆相含油气盆地沉积体系再思考:来自分支河流体系的启示[J]. 石油学报,2020,41(2):127-153.
Zhang Changmin, Song Xinmin, Zhi Dongming, et al. Rethinking on the sedimentary system of terrestrial petroliferous basins: Insights from distributive fluvial system[J]. Acta Petrolei Sinica, 2020, 41(2): 127-153. |
[47] |
陈仕臻,林承焰,任丽华. 构型模式控制下的曲流河多尺度地质建模研究:以胜利油田史南区块为例[J]. 中国矿业大学学报,2020,49(3):552-562.
Chen Shizhen, Lin Chengyan, Ren Lihua. Multi-scale geological modeling of meandering river under the control of architectural pattern: Taking Shinan block of Shengli oilfield as an example[J]. Journal of China University of Mining & Technology, 2020, 49(3): 552-562. |