HTML
-
砾岩油气藏在我国陆相盆地广泛发育,如松辽盆地徐家围子坳陷、渤海湾盆地济阳坳陷、塔里木盆地库车坳陷[1-4],其中准噶尔盆地西北缘砾岩勘探历史悠久、效果显著[5-6]。长期的油气勘探开发实践证明,砾岩储层是决定其油气成藏和开发的关键,其质量可能受到沉积作用、成岩作用和后期构造活动的控制[7-11]。作为两个相对独立的控制因素,沉积作用和成岩作用对储层的影响已有大量的文献报道,但沉积作用是如何影响成岩作用并最终影响储层质量的研究较为薄弱。当母岩区岩性相同、组分相似(比如都为火山岩),储层的质量常被认为受控于成岩环境导致的成岩差异,而与母岩性质无关。
准噶尔盆地西北缘砾岩储层研究表明,自生绿泥石的发育程度、产状、分布对储层质量影响突出[12-14]。因此,加强该区目的层自生绿泥石发育规律及控制因素的研究是明确砾岩储层发育规律的核心。早在20世纪60年代,Heald[15]就在碎屑岩储集层中识别自生绿泥石的发育,并提出自生绿泥石的发育有助于原生孔隙的保存。随后,针对自生绿泥石微观赋存特征、成因机理、形成时期及对原生孔隙的保护机制开展了大量研究,取得了如下成果:1)根据赋存特征,自生绿泥石可分为颗粒包膜绿泥石、孔隙衬里绿泥石、孔隙充填绿泥石三种微观赋存特征[16-17];2)按照铁离子来源,自生绿泥石分为同沉积黏土膜转化型、富铁镁物质溶蚀再结晶型、转化与直接结晶混合型三种成因[18-19];3)自生绿泥石形成于早成岩期压实作用之前,并可一直持续至晚成岩期[20-21];4)自生绿泥石的发育可抑制石英次生加大、提高储层抗压实作用,对储层原生孔隙的保存、次生孔隙的发育都具有建设性作用[22-24]。
本文以火山岩为母岩成因的准噶尔盆地玛湖凹陷玛北地区下乌尔禾组砾岩为例,试图通过不同物源体系的母岩性质差异研究入手,研究以火山物质为主导的不同砾岩扇体中自生绿泥石发育程度、产状、成岩序列的差异性及其对储层质量的控制作用,深化母岩性质对成岩作用的认识,以期为研究区有利勘探目标优选提供地质预测模型。
-
玛湖凹陷位于准噶尔盆地西北缘,构造上属于盆地中央坳陷的一部分[25],总面积约为5 000 km2。晚石炭—早二叠世,受哈萨克斯坦板块的俯冲、碰撞,准噶尔盆地西北缘形成碰撞隆起带及相邻的大型陆内坳陷,玛湖凹陷初现雏形,其间伴随着大量火山岩的喷发和岩浆侵入[26]。二叠纪中后期,由于持续性的构造隆升,西北部哈拉阿拉特山、扎伊尔山和东北部陆梁隆起为玛湖凹陷提供了充足的物源,玛湖凹陷接受了巨厚的以火山物质为主的粗粒(砂)砾岩沉积。玛湖凹陷斜坡区现今构造较为简单,基本表现为南东—北西倾的平缓单斜[27],局部发育低幅度平台、背斜或鼻状构造。玛湖凹陷北部地区(玛北地区)下乌尔禾组(P2w)发育4大砾岩扇群,分别是玛西斜坡的黄羊泉扇和夏子街扇以及玛东斜坡的玛东扇和夏盐扇(图 1)。玛湖凹陷二叠系下乌尔禾组从下至上分为四段,分别是乌一段、乌二段、乌三段、乌四段,本次研究以乌四段为主。
-
玛湖凹陷玛北地区共34口井钻遇了下乌尔禾组,井深从3 008~5 600.86 m,观察岩芯共计516.2 m,采集岩芯样品230块,观察鉴定薄片214块。24块样品的显微结构观察通过中国石油大学(北京)能源材料微结构实验室Quanta200F场发射环境扫描电镜完成;11块样品电子探针测试分析由核工业北京地质研究院分析测试研究中心实验室IMS1280HR完成,共计41个样品点;9块样品X荧光光谱分析由山东省油藏地质重点实验室布鲁克M4 Tornado型X射线荧光光谱仪(以下简称XRF)完成,共计126个样品点(表 1)。
地区 扇体 井数/口 深度/m 岩芯/m 铸体薄片/个 扫描电镜/个 电子探针/个 X荧光光谱分析/个 玛东斜坡 夏盐扇 6 4 114~5 161 53.67 52 15 13 31 玛东扇 10 3 644~4 225 121.52 55 10 17 23 玛西斜坡 夏子街扇 12 3 008~3 641 240.4 81 12 7 36 黄阳泉扇 6 3 759~4 113 122.37 17 8 4 36 Table 1. Statistics of data used in this study
-
玛北地区乌四段储集层主要为灰色、灰绿色、褐灰色砾岩,其结构成熟度低,分选差—中等,砾石直径2~25 mm,最大可达40 mm,碎屑结构,颗粒多为次棱—次圆状,杂基支撑和颗粒支撑,具重力流、牵引流交互发育的沉积特点(图 2)。综合录井、测井和古地貌资料,可以将其解释为潮湿—陡坡背景下的扇三角洲—湖泊沉积体系。
Figure 2. Typical core and thin section photographs of the Lower Urhe Formation in the northern Mahu Depression
对研究区214块岩石薄片鉴定数据统计可知,研究区乌四段砾岩几乎全部为岩屑砾岩(图 3a),碎屑颗粒中石英和长石含量较低,平均含量仅为3.07%和2.91%,岩屑成分多达92.41%,其中沉积岩岩屑平均含量12.62%,变质岩平均含量6.41%,岩浆岩岩屑73.38%(图 3b),其中岩浆岩主要为喷出岩中的凝灰岩。X衍射结果显示,储层黏土矿物以不规则伊/蒙混层为主(平均47.21%),其次为绿泥石(平均35.55%),少量高岭石(平均8.91%)和伊利石(平均8.33%)。
-
由图 2和图 3可知,研究区下乌尔禾组的母岩以凝灰岩占绝对优势为特征。由于凝灰岩岩屑结晶程度差,未结晶的玻屑广泛发育,常规岩石薄片鉴定难以判别其母岩性质(化学组成或岩浆性质的差异)。为此,此次利用布鲁克M4 Tornado X荧光光谱仪对研究区岩石薄片进行X射线扫描,利用多导毛细管聚焦镜将微X射线聚焦到非常小的区域,通过X射线激发待测样品中的原子,使之产生次级的特征X光荧光,以获得极佳的空间分辨率,对样品中火山岩屑进行快速化学含量元素分析。
对玛北地区4个扇体砾岩颗粒的XRF测试结果表明,研究区4个扇体砾岩母岩性质存在较明显的差异性:夏盐扇31个岩屑中,中基性火山岩含量高,达到62.86%;其次为玛东扇,中基性火山喷出岩含量52.17%;黄羊泉扇和夏子街扇中基性岩屑比例明显偏低,其中黄羊泉扇中基性喷出岩含量39.56%,夏子街扇中基性火山喷出岩来源占比最低,中基性火山喷出岩含量30.56%(表 2)。
扇体 井号 深度/m 岩屑/个 岩屑性质 超基性 基性 中性 酸性 夏盐扇 夏盐2井 4718 31 5.71% 25.71% 31.43% 37.14% 玛东扇 盐北2井 4468.7 23 4.35% 8.70% 39.13% 47.83% 夏子街扇 玛009井 3730.2 36 2.78% 2.78% 25.00% 69.44% 黄羊泉扇 玛607井 4103.5 36 0 5.56% 25.00% 69.44% Table 2. Component analysis of 126 rock fragments from the Lower Urho Formation in the northern Mahu Depression
3.1岩石类型
3.2不同扇体母岩性质的差异
-
绿泥石颗粒细小,在束电流作用下容易发生破碎,电子探针所测氧化物很难达到标准值(85%~88%)。利用核工业北京地质研究院分析测试研究中心实验室IMS1280HR电子探针对玛湖凹陷二叠系下乌尔禾组乌四段砾岩储层中的绿泥石化学成分进行了分析,所挑选数据氧化物的总量大于80%,电子探针数据见表 3。
类型 点号 Na2O MgO FeO CaO Al2O3 SiO2 MnO K2O TiO2 Cr2O3 总量 自生绿泥石 孔隙衬里 1 0.1 19.78 20.95 0.31 16.43 30.69 0.48 0.07 0.14 0.03 89.07 2 0.13 18.04 21.88 0.39 17.74 29.27 0.58 0.06 ― 0.05 88.14 3 0.25 18.32 19.24 0.3 15.79 28.64 0.49 0.16 ― 0.14 83.33 4 0.39 19.23 19.36 0.31 14.96 29.74 0.48 0.19 0.08 0.03 84.07 孔隙充填 1 0.11 22.53 17.68 0.58 16.22 34.11 0.25 0.02 ― ― 91.5 2 ― 21.88 17.78 0.42 17.65 33.24 0.14 0.02 0.11 0.08 91.32 3 0.09 20.78 19.21 0.37 16.79 32.01 0.37 0.07 0.16 0.14 89.99 Table 3. Crystal chemistry (%) analyses of chlorites in the Lower Urho Formation, Mahu Depression
结果显示,自生绿泥石中铁氧化物(FeO)含量较高(17.68%~23.23%),平均为20.27%,氧化镁(MgO)含量较高(11.87%~22.53%),平均为19.03%。此外,绿泥石中SiO2/Al2O3比值1.65~2.1,平均为1.89,研究区自生绿泥石属于铁—镁过渡型中偏富铁绿泥石。自生绿泥石在成岩过程中持续的生长,其化学成分变化反映了成岩过程中地层孔隙流体的变化。相对早期铁离子处于过补偿状态,孔隙衬里绿泥石较为富铁(平均20.36%),而相对晚期铁离子处于欠补偿状态,孔隙充填绿泥石铁元素降低(平均18.22%),FeO/MgO比值也逐渐降低,常见晚期不含铁的浊沸石等其他矿物充填于绿泥石胶结剩余原生粒间孔中,形成绿泥石—浊沸石成岩矿物组合。
-
通过对研究区乌四段岩石铸体薄片、X衍射、扫描电镜和电子探针等综合分析,研究区砾岩储层中自生绿泥石主要以颗粒薄膜绿泥石、孔隙衬里绿泥石和孔隙充填(绒球状绿泥石和玫瑰花状绿泥石)形式产出。
(1)颗粒包膜绿泥石呈薄膜状包裹着碎屑颗粒,其内部发育一层不等厚的黏土矿物或钛铁质包膜(图 4a),厚度一般小于10 μm,在显微镜下很难识别。背散射下观察发现颗粒薄膜绿泥石较为致密,晶间孔不发育(图 4c)。颗粒包膜绿泥石晶体多呈不同角度斜切颗粒,晶体间杂乱排列,单个绿泥石结晶程度差,晶形不完整,呈不规则假六边形片状产出(图 4b)。
(2)孔隙衬里绿泥石是研究区自生绿泥石最常见产出形式,一般发育于较大孔隙处,而在碎屑颗粒接触处不发育(图 4a)。单个孔隙衬里绿泥石晶体具有相对充足的生长空间,呈自形的叶片状垂直或高角度斜切碎屑颗粒表面(图 4c),由碎屑颗粒边缘向孔隙中心方向绿泥石晶体自形程度逐渐变好,叶片增大变疏(图 4d),绿泥石晶体存在大量的晶间孔(图 4c),厚度一般为5~15 μm。
(3)按照孔隙充填绿泥石晶体的晶形可分为绒球状绿泥石和分散片状绿泥石。孔隙充填绿泥石晶形自形程度高,绿泥石晶体与碎屑颗粒无明显垂直或平行关系,以玫瑰花状(图 4e)和分散片状(图 4f)充填于剩余原生孔隙和次生溶孔中。
-
通过对研究区34口井214块铸体鉴定结果统计发现,研究区乌四段自生绿泥石含量一般在2%~8%,最大可达12%。研究区自生绿泥石在空间上具有明显的分带性:玛东斜坡夏盐扇的51块岩石薄片中,自生绿泥石的含量最高,其分布频率和绝对含量分别为65.4%和3.37%,多发育绿泥石—浊沸石共生矿物组合;其次为玛东扇,在53块岩石薄片中自生绿泥石的分布频率和绝对含量分别为60%和1.45%;玛西斜坡自生绿泥石较为少见,黄羊泉扇自生绿泥石分布频率和绝对含量分别为30.6%和1.00%;夏子街扇自生绿泥石分布频率和绝对含量最低,分别为24.6%和0.28%,常见浊沸石与凝灰质共生(图 5)。
4.1自生绿泥石的化学成分
4.2自生绿泥石产状
4.3自生绿泥石的平面分布
-
绿泥石发育需要充足的铁镁离子来源,沉积期河流的铁镁胶体物质[28]、成岩过程中富铁镁的暗色物质水解[29-30]和相邻泥岩压释水的灌入[31]是自生绿泥石铁镁离子的来源。研究区乌四段砾岩储层中发育大量的火山碎屑,中基性火山岩岩屑和凝灰质中富铁镁矿物是形成绿泥石包膜的物质基础。砾岩储层中自生绿泥石的分布与储层母岩性质具空间上的耦合性,玛东斜坡夏盐扇乌四段砾岩储层中自生绿泥石的含量和分布频率明显高于玛东斜坡的玛东扇和玛西斜坡的夏子街扇和黄羊泉扇。酸性成因凝灰质和火山岩屑在埋藏条件下较为稳定,多向硅质、磷石英、伊利石、蒙脱石等矿物蚀变,在缺乏铁镁离子的条件下早期蒙脱石等黏土矿物多向伊/蒙混层转化。中基性成因凝灰质及火山岩屑组分中含大量的铁镁质和长石晶屑,化学成分稳定性差,成岩演化过程水化水解程度强,释放出大量铁镁离子,在碱性成岩环境下析出大量的自生绿泥石。通过X荧光光谱扫描线上元素含量变化(图 6),在限定相同距离的条件下,玛东斜坡砾岩火山物质较玛西斜坡砾岩发育更多的铁元素,在成岩演化过程中更有利于自生绿泥石的发育。
-
(1)玛东斜坡区(夏盐扇、玛东扇)
乌四段沉积期,玛东斜坡陆梁隆起、夏盐凸起火山碎屑在搬运过程中风化水解产物为沉积水体带来了大量铁离子和碱金属离子,形成偏碱性的沉积环境。受物源区中基性母岩物质的影响,自生绿泥石的形成可分为以下四个阶段:1)富铁黏土包膜:同沉积期,中基性火山物质在碱性沉积环境下易蚀变形成蒙脱石等黏土矿物,在较强水动力条件下形成围绕颗粒表面的不等厚蒙脱石黏土包壳(图 7a,b);2)颗粒包膜绿泥石:同生成岩阶段,在开放的富铁镁离子地层流体环境下,蒙脱石等黏土矿物迅速转化为颗粒包膜绿泥石并保留围绕颗粒表面包壳的特征。由于同生成岩阶段持续时间短、温度低,绿泥石晶体间杂乱排列,结晶程度差,常呈蜂窝状集合体(图 7c);3)孔隙衬里绿泥石:随着埋藏深度的增加,地层温度升高。砾岩储层成岩环境开放性减弱,孔隙流体碱性增强,少量颗粒包膜绿泥石转化为孔隙衬里绿泥石。同时,火山岩岩屑和凝灰质中易溶组分在碱性环境下发生溶蚀作用,析出大量的铁镁离子。当孔隙流体中铁镁离子浓度达到一定浓度时,孔隙衬里绿泥石以针叶状晶体析出。此时,孔隙流体之间的流动性差,晶体数量明显减少,但绿泥石拥有相对充足的生长空间和时间,自形程度有所增加,孔隙衬里绿泥石持续增长。随着孔隙流体碱性环境增强和铁离子浓度降低,浊沸石等碱性成岩矿物充填剩余原生粒间孔;4)孔隙充填绿泥石:有机质成熟后期,孔隙流体环境逐渐由弱酸性转化为弱碱性。受酸性流体的影响,部分火山物质在酸性条件下溶蚀析出的铁镁离子为孔隙充填绿泥石的析出提供了物质来源,浊沸石等易溶矿物的溶蚀为孔隙充填绿泥石提供了空间基础,孔隙充填绿泥石以自形的玫瑰花状和绒球状充填于原生孔隙或次生溶孔中(图 7d)。
(2)玛西斜坡区(夏子街扇、黄羊泉扇)
乌四段沉积期,受准噶尔盆地西北缘逆冲断裂的影响,玛西斜坡沉积了大量近物源的砾岩。哈拉阿拉特山、扎伊尔山物源区主要为中酸性的火山岩屑、凝灰岩,火山物质在搬运和埋藏过程中水化水解释放出大量的K+、Na+、Ca2+和活化的SiO2等,同时析出少量的硅质、伊利石、蒙脱石等矿物。由于缺乏铁镁离子,蒙脱石、凝灰质等在富钾地层流体环境下蚀变为伊/蒙混层(图 7e,f)。随着地层温度增大和碱性成岩环境增强,位于扇三角洲前缘孔渗性较高的砾岩,大量自形的浊沸石从地层流体中直接析出。由于凝灰质密度大,前期析出的浊沸石夹杂着凝灰质,后期浊沸石以自形洁净的产状产出,在镜下常见似示顶底结构,且常见多期次性(图 7g)。
-
前期的研究表明,母岩性质决定了砾岩储层在成岩过程中的成岩演化序列和储层质量(图 8)。玛东斜坡夏盐扇物源区母岩发育大量的中基性成因火山物质,大量岩石铸体薄片观察发现砾岩储层胶结物以自生绿泥石和浊沸石为主,少见自生石英和晚期碳酸盐胶结。自生绿泥石的发育指示当时处于一个开放的碱性成岩环境,有利于后期浊沸石的析出。在自生绿泥石较为发育的层段,大多可见浊沸石胶结,以夏盐2井区最为典型。夏盐2井区夏盐2井、盐001井等砾岩储集层早期绿泥石和浊沸石的析出致密胶结储层,晚期孔隙充填绿泥石充填于浊沸石溶孔中,储层整体致密,仅发育少量绿泥石胶结残余粒间孔,试油结果显示较差。玛东斜坡玛东扇砾岩储层发育大量的浊沸石、绿泥石和片沸石等自生矿物,其中绿泥石胶结残余粒间孔—浊沸石溶孔是该扇体最为优质的储集空间类型。成藏期位于构造高部位的厚层砾岩储层裂缝较为发育(如盐北4井、玛218井等),有机质成熟后大量有机酸为浊沸石的溶蚀提供了充足酸性来源,镜下见大量浊沸石呈港湾状或镂空状,为最有利储层发育带,试油结果显示较好。
Figure 8. Diagenetic model of conglomerate reservoir for the Lower Urhe Formation in the northern Mahu Depression
玛西斜坡物源区母岩以中酸性火山物质为主,胶结物发育大量的伊/蒙混层和浊沸石。早期沸石的析出抵抗了储层的正常压实作用,加之杂基含量低,保留了部分原生孔隙,为后期溶蚀作用提供了物质基础。由于缺乏自生绿泥石包膜,砾岩储层孔隙流体流通性较好,处于古地貌高部位的砾岩储层是烃源岩产生有机酸的运移方向,有利于浊沸石等易溶矿物的溶蚀(图 7h,g),储层孔隙度多在8%以上,多为有效储层。位于扇三角洲平原砾岩储层中含大量的泥质杂基和少量的片沸石,压实作用导致储层孔隙损失殆尽,多为无效储层。
5.1母岩性质对自生绿泥石平面分布的控制
5.2母岩性质对自生绿泥石成因的影响
5.3母岩性质对储层特征及质量的影响
-
(1)玛湖凹陷玛北地区下乌尔禾组发育4个砾岩扇体,其物源区母岩性质差异较为明显。夏盐扇、玛东扇物源区母岩以中基性火山岩为主,黄羊泉扇以中酸性火山岩为主,夏子街扇中—基性火山岩来源占比最低。
(2)研究区自生绿泥石为铁—镁过渡型中的偏富铁绿泥石,物质主要来源于中基性火山物质。颗粒包膜绿泥石自形程度低,内部发育铁质包膜,主要来源于早期的富铁黏土包膜转化;孔隙衬里绿泥石晶间孔发育,由孔隙流体直接沉淀结晶形成;孔隙充填绿泥石自形程度高,与中基性火山物质在酸性条件下溶蚀有关。
(3)受物源区母岩性质的影响,研究区四个扇体砾岩体在埋藏成岩演化过程中储层成岩序列和储层质量出现了明显的差异性。玛东斜坡的夏盐扇、玛东扇物源区母岩发育大量中基性火山岩,砾岩储层以自生绿泥石和浊沸石胶结为主,储层整体较为致密,砾岩储层质量取决于后期裂缝的发育。玛西斜坡黄阳泉扇、夏子街扇砾岩储层以浊沸石胶结为主,浊沸石析出抵抗了储层正常的压实作用,保留了部分原生孔隙,为后期酸性流体的注入提供了运移通道,处于构造高部位的砾岩储层中浊沸石溶蚀程度高,多发育有效储层。