Advanced Search
Volume 38 Issue 4
Sep.  2020
Turn off MathJax
Article Contents

HOU YangHong, KANG ZhiHong, ZHAO ChenJun, YU XuDong, WANG EnBo. Geochemical Characteristics and Geological Significance of the Black Rock Series at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2020, 38(4): 886-897. doi: 10.14027/j.issn.1000-0550.2019.076
Citation: HOU YangHong, KANG ZhiHong, ZHAO ChenJun, YU XuDong, WANG EnBo. Geochemical Characteristics and Geological Significance of the Black Rock Series at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2020, 38(4): 886-897. doi: 10.14027/j.issn.1000-0550.2019.076

Geochemical Characteristics and Geological Significance of the Black Rock Series at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Area

doi: 10.14027/j.issn.1000-0550.2019.076
Funds:

Petroleum Geological Survey Project of China Geological Survey DD20160183

Investigation of Tectonic Systems and Control Conditions of Oil and Gas and Shale Gas in Key Areas DD20190085

  • Received Date: 2019-05-15
  • Publish Date: 2020-09-02
  • In order to investigate the provenance and tectonic setting for the source of the organic⁃rich black rock series from the Lower Cambrian Mufushan Formation in the Lower Yangtze area, samples were collected systematically from the bottom of the Mufushan Formation in the Mufushan section in Nanjing, and geochemical tests and analysis were conducted on the samples. The chemical alteration index (CIA) and Th/U values are important chemical parameters for judging the degree of weathering in the source region. The CIA and Th/U values of the sample indicate that the source rock has experienced weak⁃medium intensity weathering, and the Th/Sc⁃Zr/Sc diagram shows that the black rock series in the area has not experienced sedimentary recirculation. By analyzing the ratio characteristics of the major elements, the distribution patterns of rare earth elements (REE), δEu, (La/Yb)N, La/Th⁃Hf, and the La/Yb⁃∑REE diagrams, we find that the source rock of the Mufushan Formation black rock series is mainly upper crust felsic rocks such as granite and sedimentary rocks rich in felsic minerals, and there are mixed rocks of basic rocks. Considering the source property, geological age, and tectonic evolution process of the South China continent, the granite composition in the source rocks is mainly composed of magmatic rocks that formed during the Neoproterozoic period, and the source area is Ghiangnania. By analyzing the diagrams of K2O+Na2O⁃SiO2, K2O/Na2O⁃SiO2/Al2O3, La⁃Th⁃Sc, Th⁃Co⁃Zr/10, and Th⁃Sc⁃Zr/10, we determine that the tectonic setting of the black rock source area of the Mufushan Formation is the passive continental margin.
  • [1] 张爱云. 海相黑色页岩建造地球化学与成矿意义[M]. 北京:科学出版社,1987:1-98.

    Zhang Aiyun. Geochemistry and metall-ogenic significance of marine black shale[M]. Beijing: Science Press, 1987: 1-98.
    [2] 薛耀松,俞从流. 浙西、赣东北寒武系下统荷塘组岩石特征及沉积环境分析[J]. 地层学杂志,1979,3(4):283-293.

    Xue Yaosong, Yu Congliu. Analysis of rock characteristics and sedimentary environment of the Hetang Formation in the Cambrian in the northwestern Zhejiang and eastern Jiangxi[J]. Acta Stratigraphica Sinica, 1979, 3(4): 283-293.
    [3] 王浩,凌文黎,段瑞春,等. 扬子克拉通峡东地区新元古代—寒武纪黑色岩系Os同位素地球化学特征及其地质意义[J]. 地球科学——中国地质大学学报,2012,37(3):451-462.

    Wang Hao, Ling Wenli, Duan Ruichun, et al. Os isotopic geochemistry of Neoproterozoic-Cambrian black shales in eastern Three Gorges of Yangtze craton and its geological significance[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(3): 451-462.
    [4] 邓义楠,郭庆军,朱茂炎,等. 湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征[J]. 地球科学——中国地质大学学报,2014,39(3):283-292.

    Deng Yi′nan, Guo Qingjun, Zhu Maoyan, et al. REE geochemistry of kerogen from Early Cambrian black rock series in western Hunan[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(3): 283-292.
    [5] 曹婷婷,徐思煌,王约. 川东北下寒武统筇竹寺组稀土元素特征及其地质意义:以南江杨坝剖面为例[J]. 石油实验地质,2018,40(5):716-723.

    Cao Tingting, Xu Sihuang, Wang Yue. Characteristics of rare earth elements in Lower Cambrian Qiongzhusi Formation in northeastern Sichuan Basin and its geological implications: A case study of Yangba section, Nanjiang[J]. Petroleum Geology and Experiment, 2018, 40(5): 716-723.
    [6] 陈孝红,危凯,张保民,等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质,2018,45(2):207-226.

    Chen Xiaohong, Wei Kai, Zhang Baomin, et al. Main geological factors controlling shale gas reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei province as well as its and enrichment patterns[J]. Chinese Geology, 2018, 45(2): 207-226.
    [7] 贾智彬,侯读杰,孙德强,等. 贵州地区牛蹄塘组底部烃源岩地球化学特征[J]. 天然气地球科学,2018,29(7):1031-1041.

    Jia Zhibin, Hou Dujie, Sun Deqiang, et al. Geochemical characteristics of source rocks in the Lower Cambrian Niutitang Formation, Guizhou province[J]. Natural Gas Geoscience, 2018, 29(7): 1031-1041.
    [8] 钱建民,刘崇民,杜红东,等. 浙江省下寒武统荷塘组黑色页岩系地球化学特征[J]. 物探与化探,2009,33(4):395-399.

    Qian Jianmin, Liu Chongmin, Du Hongdong, et al. Geochemical characteristics of black shales in Lower Cambrian Hetang Formation, Zhejiang province[J]. Geophysical and Geochemical Exploration, 2009, 33(4): 395-399.
    [9] 周磊,王宗秀,李会军,等. 川东—武陵山地区下寒武统牛蹄塘组页岩有机质富集模式[J]. 地质力学学报,2018,24(5):617-626.

    Zhou Lei, Wang Zongxiu, Li Huijun, et al. Accumulation pattern of organic matter in shales of the Lower Cambrian Niutitang Formation, Chuandong-Wulingshan area[J]. Journal of Geomechanics, 2018, 24(5): 617-626.
    [10] 刘小平,潘继平,董清源,等. 苏北地区古生界页岩气形成地质条件[J]. 天然气地球科学,2011,22(6):1100-1108.

    Liu Xiaoping, Pan Jiping, Dong Qingyuan, et al. Geological conditions of shale gas forming in Paleozoic Subei area[J]. Natural Gas Geoscience, 2011, 22(6): 1100-1108.
    [11] 许红,张柏林,俞昊,等. 下扬子地块2个古生界地质剖面的烃源岩特征及其对南黄海盆地的意义[J]. 海洋地质前沿,2015,31(4):28-34.

    Xu Hong, Zhang Bolin, Yu Hao, et al. Characteristics of the source rocks from two Paleozoic geological sections in the Lower Yangtze and the implication for the South Yellow Sea Basin[J]. Marine Geology Frontiers, 2015, 31(4): 28-34.
    [12] 刘小平,潘继平,刘东鹰,等. 苏北地区下寒武统幕府山组页岩气勘探前景[J]. 成都理工大学学报(自然科学版),2012,39(2):198-205.

    Liu Xiaoping, Pan Jiping, Liu Dongying, et al. Shale-gas exploration prospect of Lower Cambrian Mufushan Formation in the northern Jiangsu, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 198-205.
    [13] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Pub., 1985: 1-90.
    [14] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [15] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303.
    [16] McLennan S M, Hemming S R, Taylor S R, et al. Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta, 1995, 59(6):1153-1177.
    [17] Lambeck A, Huston D, Maidment D, et al. Sedimentary geochemistry, geochronology and sequence stratigraphy as tools to typecast stratigraphic units and constrain basin evolution in the gold mineralised Palaeoproterozoic Tanami region, northern Australia[J]. Precambrian Research, 2008, 166(1/2/3/4): 185-203.
    [18] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(8): 169-200.
    [19] Rollinson H R. 岩石地球化学[M]. 杨学明,杨晓勇,陈双喜,译. 合肥:中国科学技术大学出版社,2000.

    Rollinson H R. Petrogeochemistry[M]. Yang Xueming, Yang Xiaoyong, Chen Shuangxi, trans. Hefei: China University of Science and Technology Press, 2000.
    [20] Allègre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
    [21] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
    [22] 徐政语,蒋恕,熊绍云,等. 扬子陆块下古生界页岩发育特征与沉积模式[J]. 沉积学报,2015,33(1):21-35.

    Xu Zhengyu, Jiang Shu, Xiong Shaoyun, et al. Characteristics and depositional model of the Lower Paleozoic organic rich shale in the Yangtze continental block[J]. Acta Sedimentologica Sinica, 2015, 33(1): 21-35.
    [23] 舒良树. 华南构造演化的基本特征[J]. 地质通报,2012,31(7):1035-1053.

    Shu Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7): 1035-1053.
    [24] 张国伟,郭安林,王岳军,等. 中国华南大陆构造与问题[J]. 中国科学(D辑):地球科学,2013,43(10):1553-1582.

    Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of South China continent and its implications[J]. Science China (Seri.D):Earth Sciences, 2013, 43(10): 1553-1582.
    [25] 李秀珍,余何,江楠,等. 江南古陆研究成果综述禄丰[J]. 云南地质,2016,35(1):1-4.

    Li Xiuzhen, Yu He, Jiang Nan, et al. A summary of the study result of Jiangnan old land[J]. Yunnan Geology, 2016, 35(1): 1-4.
    [26] 黄汲清. 中国东部大地构造分区及其特点的新认识[J]. 地质学报,1959,39(2):3-22.

    Huang Jiqing. New researches on geotectonic subdivisions of eastern China and their characteristics[J]. Acta Geologica Sinica, 1959, 39(2): 3-22.
    [27] 任纪舜. 论中国南部的大地构造[J]. 地质学报,1990(4):275-288.

    Ren Jishun. On the geotectonics of southern China[J]. Acta Geologica Sinica, 1990(4): 275-288.
    [28] 高林志,刘燕学,丁孝忠,等. 江南古陆中段沧水铺群锆石U-Pb年龄和构造演化意义[J]. 中国地质,2012,39(1):12-20.

    Gao Linzhi, Liu Yanxue, Ding Xiaozhong, et al. SHRIMP dating of Cangshuipu Group in the middle part of the Jiangnan Orogen and its implications for tectonic evolutions[J]. Geology in China, 2012, 39(1): 12-20.
    [29] 赵振华. 铕地球化学特征的控制因素[J]. 南京大学学报(地球科学版),1993(5):271-280.

    Zhao Zhenhua. Control factors of Eu geochemical characteristics[J]. Journal of Nanjing University-Earth Sciences, 1993(5): 271-280.
    [30] Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650.
    [31] McLennan S M, Hemming S, Mcdaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society of America, 1993, 284: 21-40.
    [32] Bhatia M R, Crook K A. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
    [33] 孙晶,王建强,龚建明. 下扬子陆域海相中—古生界烃源岩有机质丰度特征及其岩相古地理[J]. 海洋地质前沿,2016,32(1):22-28.

    Sun Jing, Wang Jianqiang, Gong Jianming. Abundance of organic matters in Mesozoic-Paleozoic marine source rocks of inland area of the Lower Yangtze and its bearing on lithofacies paleogeography[J]. Marine Geology Frontiers, 2016, 32(1): 22-28.
    [34] 印峰,杨风丽,叶芳,等. 晚震旦至中奥陶世下扬子被动大陆边缘原型盆地特征[J]. 地球科学——中国地质大学学报,2013,38(5):1053-1064.

    Yin Feng, Yang Fengli, Ye Fang, et al. Late Sinian-Middle Ordovician the prototype basin characteristics of passive continental margin in Lower Yangtze[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(5): 1053-1064.
    [35] 徐文礼, 郑荣才, 颜雪, 等. 下扬子地区早古生代黑色岩系地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2014(4):1108-1122.

    Xu Wenli, Zheng Rongcai, Yan Xue, et al. Trace and rare earthelement geochemistry of the Early Paleozoic black shales in the Lower Yangtze area and its geological significances[J]. Journal of Jilin University (Earth Sciences Edition), 2014, 44(4): 1108-1122.
    [36] 于炳松, 陈建强, 李兴武, 等. 塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J]. 沉积学报, 2004, 22(1): 59-66.

    Yu Bingsong, Chen Jianqiang, Li Xingwu, et al. Rare earth and trace element patterns in bedded-cherts from the bottom of the Lower Cambrian in the northern Tarim Basin, Northwest China: Implication for depositional environments[J]. Acta Sedimentologica Sinica, 2004, 22(1): 59-66.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(2)

Article Metrics

Article views(968) PDF downloads(132) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-05-15
  • Published:  2020-09-02

Geochemical Characteristics and Geological Significance of the Black Rock Series at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Area

doi: 10.14027/j.issn.1000-0550.2019.076
Funds:

Petroleum Geological Survey Project of China Geological Survey DD20160183

Investigation of Tectonic Systems and Control Conditions of Oil and Gas and Shale Gas in Key Areas DD20190085

Abstract: In order to investigate the provenance and tectonic setting for the source of the organic⁃rich black rock series from the Lower Cambrian Mufushan Formation in the Lower Yangtze area, samples were collected systematically from the bottom of the Mufushan Formation in the Mufushan section in Nanjing, and geochemical tests and analysis were conducted on the samples. The chemical alteration index (CIA) and Th/U values are important chemical parameters for judging the degree of weathering in the source region. The CIA and Th/U values of the sample indicate that the source rock has experienced weak⁃medium intensity weathering, and the Th/Sc⁃Zr/Sc diagram shows that the black rock series in the area has not experienced sedimentary recirculation. By analyzing the ratio characteristics of the major elements, the distribution patterns of rare earth elements (REE), δEu, (La/Yb)N, La/Th⁃Hf, and the La/Yb⁃∑REE diagrams, we find that the source rock of the Mufushan Formation black rock series is mainly upper crust felsic rocks such as granite and sedimentary rocks rich in felsic minerals, and there are mixed rocks of basic rocks. Considering the source property, geological age, and tectonic evolution process of the South China continent, the granite composition in the source rocks is mainly composed of magmatic rocks that formed during the Neoproterozoic period, and the source area is Ghiangnania. By analyzing the diagrams of K2O+Na2O⁃SiO2, K2O/Na2O⁃SiO2/Al2O3, La⁃Th⁃Sc, Th⁃Co⁃Zr/10, and Th⁃Sc⁃Zr/10, we determine that the tectonic setting of the black rock source area of the Mufushan Formation is the passive continental margin.

HOU YangHong, KANG ZhiHong, ZHAO ChenJun, YU XuDong, WANG EnBo. Geochemical Characteristics and Geological Significance of the Black Rock Series at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2020, 38(4): 886-897. doi: 10.14027/j.issn.1000-0550.2019.076
Citation: HOU YangHong, KANG ZhiHong, ZHAO ChenJun, YU XuDong, WANG EnBo. Geochemical Characteristics and Geological Significance of the Black Rock Series at the Bottom of the Mufushan Formation in the Lower Cambrian, Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2020, 38(4): 886-897. doi: 10.14027/j.issn.1000-0550.2019.076
  • 黑色岩系泛指含一定数量有机碳并使之成黑色的细粒沉积岩及其附生类型,主要包括各类页岩、硅质岩、粉砂岩等[1]。下寒武统黑色岩系在我国南方广泛分布,主要发育于幕府山组(Є1 m),及与其层位相当的牛蹄塘组(Є1 n)、水井沱组(Є1 sh)、荷塘组(Є1 h)和筇竹寺组(Є1 qz),随着对页岩气的勘探与开发,前人已对筇竹寺组、牛蹄塘组、水井沱组、荷塘组黑色岩系做了大量地球化学方面的研究[29],但对幕府山组黑色岩系的相关研究相对较少。下扬子地区下寒武统幕府山组底部黑色岩系有机碳含量高,具有很大的页岩气勘探潜力。本文主要通过主量元素、微量元素及稀土元素特征,研究幕府山组底部富含有机质黑色岩系的物源属性及源区构造背景,以期对下扬子地区页岩气勘探提供一定的理论及实际指导意义。

  • 下扬子地区一般指扬子板块在长江下游地区内的范围,其西及西北以郯庐断裂、嘉山—响水断裂为界,西南到九江,以赣江断裂为界与中扬子地区相邻,南及东南以江绍断裂为界与华夏板块相邻,并向东延伸到南黄海(图1),面积为36×104 km2[1011]。下扬子区是一个经历了多期构造运动改造的叠合盆地,2种构造体制、2个世代盆地造就了下扬子地区复杂的构造格局。大致以中晚三叠世为界,下扬子地区大地构造演化可划分为海相盆地演化及陆相盆地演化两大阶段。从震旦纪到早古生代下扬子地区形成了“两盆夹一台”的沉积格局,其中中央台地主要以碳酸盐岩沉积为主,两侧盆地较深水区及深水区主要发育富含有机质的黑色页岩和硅质岩[12]

    Figure 1.  Tectonic location and division of the geotectonic system unit in the study area (modified from Liu et al. [10] )

  • 本文所选用样品均为野外工作过程中采集的新鲜黑色页岩及泥岩样品,取样地点为江苏省南京市幕府山剖面(32°07′11.06″ N,118°47′06.84″ E),层位为下寒武统幕府山组底部(图23)。幕府山组的岩性可分为上下两部分,其中上部为大套白云岩,含紫色及黑色泥岩夹层;下部发育一套黑色岩系,夹白云质泥岩,与下伏灯影组平行不整合接触。下部黑色岩系有机碳含量(TOC)较高。本次共采取了11个新鲜的样品,其中TOC最高者为3.88%,最低者为2.29%,平均为3.05%,且有机质热演化程度较高,普遍达到了高成熟—过成熟阶段,干酪根类型主要为Ⅰ型。

    Figure 2.  Lithology and sample locations of the Mufushan Formation in the Mufushan section

    Figure 3.  Outcrop from the bottom of the Cambrian Mufushan Formation in the Mufushan section of Nanjing

    样品测试分析由核工业北京地质研究院分析测试中心完成。在进行主量元素的测试时,将样品磨碎至200 目,然后放入高温炉中920 ℃煅烧去除有机质,再经过一系列添加化学试剂的过程后,依据GB/T14506.28—2010标准,采用X射线荧光光谱仪(XRF)测定,分析误差<1%;微量元素和稀土元素的测试,同样将样品磨碎至200 目,然后放入高温炉中700 ℃煅烧去除有机质,经过一系列添加化学试剂的过程后,依据GB/T14506.30—2010的标准,采用电感耦合等离子质谱仪(ICP⁃MS)测定,分析误差<5%。

  • 主量元素测试结果如表1所示,SiO2的含量为68.430%~73.160%,平均值为71.887%;Al2O3的含量为10.130%~13.960%,平均值为11.842%;Fe2O3 T(Fe2O3 T表示以Fe2O3表示全铁含量)的含量为1.479%~7.498%,平均值为2.769%;MgO的含量为0.645%~0.847%,平均值为0.719%;CaO的含量为0.113%~0.262%,平均值为0.154%;TiO2的含量为0.560%~0.793%,平均值为0.650%;MnO的含量为0.007%~0.013%,平均值为0.009%;P2O5的含量为0.124%~0.592%,平均值为0.278%;Na2O的含量为0.067%~0.199%,平均值为0.113%;K2O的含量为4.940%~6.110%,平均值为5.721%。与澳大利亚后太古宙页岩(PAAS)的元素组成进行对比发现:幕府山剖面幕府山组底部黑色岩系较PAAS表现为SiO2、K2O、P2O5富集;Al2O3、Fe2O3 T、MgO、CaO、TiO2、P2O5、Na2O亏损。

    主量元素 MFS⁃01 MFS⁃05 MFS⁃08 MFS⁃09 MFS⁃10 MFS⁃11 MFS⁃12 MFS⁃13 MFS⁃14 MFS⁃15 MFS⁃16
    SiO2 73.160 71.920 70.760 72.390 72.500 71.000 68.430 72.700 72.800 73.020 72.080
    Al2O3 10.900 12.430 10.130 11.370 12.010 12.390 13.960 11.960 11.820 12.040 11.250
    Fe2O3 1.430 1.380 6.520 1.770 1.200 1.320 1.290 1.280 1.040 1.100 1.990
    MgO 0.655 0.806 0.645 0.719 0.756 0.741 0.847 0.721 0.645 0.676 0.699
    CaO 0.130 0.150 0.138 0.140 0.154 0.262 0.221 0.130 0.113 0.123 0.130
    Na2O 0.067 0.118 0.123 0.199 0.108 0.099 0.116 0.102 0.101 0.098 0.116
    K2O 5.780 5.640 4.940 5.470 5.420 5.820 6.100 6.110 6.080 5.660 5.910
    MnO 0.009 0.007 0.008 0.010 0.009 0.011 0.008 0.009 0.009 0.008 0.013
    TiO2 0.612 0.657 0.560 0.637 0.674 0.705 0.793 0.651 0.633 0.648 0.581
    P2O5 0.256 0.149 0.512 0.592 0.404 0.214 0.083 0.124 0.132 0.115 0.480
    烧失量 6.750 6.640 6.300 6.980 6.950 7.650 8.710 6.510 6.480 6.700 6.580
    FeO 1.080 1.000 0.880 1.050 0.890 0.250 0.170 1.020 0.870 0.660 1.260
    K2O/Na2O 86.269 47.797 40.163 27.487 50.185 58.788 52.586 59.902 60.198 57.755 50.948
    Fe2O3+MgO 2.085 2.186 7.165 2.489 1.956 2.061 2.137 2.001 1.685 1.776 2.689
    Al2O3/SiO2 0.149 0.173 0.143 0.157 0.166 0.175 0.204 0.165 0.162 0.165 0.156
    K2O/(Na2O+CaO) 29.340 21.045 18.927 16.136 20.687 16.122 18.101 26.336 28.411 25.611 24.024
    Al2O3/(CaO+Na2O) 55.330 46.381 38.812 33.540 45.840 34.321 41.424 51.552 55.234 54.480 45.732
    Fe2O3+MgO 2.085 2.186 7.165 2.489 1.956 2.061 2.137 2.001 1.685 1.776 2.689
    K2O+Na2O 5.847 5.758 5.063 5.669 5.528 5.919 6.216 6.212 6.181 5.758 6.026
    log(K2O+Na2O) 0.767 0.760 0.704 0.754 0.743 0.772 0.794 0.793 0.791 0.760 0.780
    SiO2/Al2O3 0.173 0.177 0.202 0.183 0.185 0.172 0.164 0.164 0.164 0.177 0.169
    Fe2O3 T 2.630 2.491 7.498 2.937 2.189 1.598 1.479 2.413 2.007 1.833 3.390
    CIA 62.6 65.6 63.7 63.3 65.8 65.1 66.6 63.2 63.0 65.1 62.3

    Table 1.  Test and analysis results for the main elements of the black rock series from the Mufushan Formation in the Mufushan section (wt.%)

  • 微量元素测试结果如表2所示,样品的微量元素经后太古宙澳大利亚页岩(PAAS)标准化后结果如图4a所示。除了Cr与PAAS相当以外,其他所有微量元素都出现了不同程度的亏损,其中Co、Ni、Cu、Zn等强烈的亏损;除个别样品以外,所有样品的微量元素的富集、亏损大体呈一致的趋势。

    微量元素 MFS⁃01 MFS⁃05 MFS⁃08 MFS⁃09 MFS⁃10 MFS⁃11 MFS⁃12 MFS⁃13 MFS⁃14 MFS⁃15 MFS⁃16
    Li 10.4 11.4 11.3 9.66 9.77 8.63 9.37 10.4 10.1 10.7 7.77
    Be 1.68 1.83 1.68 1.58 1.71 1.59 2 1.7 1.55 1.6 1.58
    Sc 7.95 8.26 8.39 8.14 8.11 8.36 9.15 8.04 8.33 9.83 8.4
    V 79.1 71.8 59.4 66.4 69 77.9 88.9 68.5 68.5 67.1 73.9
    Cr 101 100 97.9 99.6 103 116 144 95.9 98.3 99.9 113
    Co 1.02 0.77 0.98 0.72 0.75 0.79 0.83 0.71 0.7 0.78 0.76
    Ni 6.13 5.35 6.9 5.34 5.51 7.05 8.89 4.52 5.47 4.98 10.1
    Cu 4.79 3.72 4.6 4.18 3.76 4.22 4.83 4.12 4.95 4.91 8.21
    Zn 8.85 8.23 9.68 6.93 7.71 8.08 9.17 7.16 8.63 7.86 33.4
    Ga 13.1 14.3 11.9 13.1 13.7 14.2 16.3 13.2 13.9 14.1 14.3
    Rb 81.6 91 83.7 85.9 88.1 92.8 104 86.4 89.1 89.4 85.3
    Sr 123 91.8 155 105 180 110 105 92.6 164 251 287
    Y 12.4 12.2 11.7 11.3 12.3 11.9 13.9 11.2 12.3 12.3 53.9
    Mo 3.26 4.63 7.6 8.15 8.78 3.45 4.32 7.31 7.12 5.69 6.42
    Cd 0.33 0.03 0.04 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.1
    In 0.04 0.04 0.05 0.04 0.04 0.03 0.03 0.03 0.04 0.03 0.03
    Sb 0.52 0.32 0.26 0.26 0.26 0.25 0.33 0.18 0.19 0.24 0.25
    Cs 4.78 6.4 4.54 5.92 6.18 6.6 8.5 5.74 5.29 5.49 6.55
    Ba 440 419 304 313 385 340 426 280 662 553 546
    La 30.2 32 31.3 30.8 34.7 33.8 39.4 30.5 31.3 26.4 34.7
    Ce 35.5 39.3 31.8 36.4 39.9 40.1 47.6 36.5 37.2 38.8 42.3
    Pr 5.57 6.02 5.02 5.51 6 6.14 7.39 5.42 5.72 5.93 6.1
    Nd 19.1 21.1 17.9 18.6 19.9 20.2 24.8 17.7 18.4 20.2 18.8
    Sm 2.45 2.71 2.83 2.41 2.4 2.46 3.27 2.06 2.21 2.7 2.56
    Eu 0.49 0.48 0.57 0.42 0.42 0.45 0.63 0.35 0.42 0.53 0.53
    Gd 1.77 1.88 2.17 1.67 1.72 1.72 2.26 1.48 1.57 1.8 1.78
    Tb 0.32 0.33 0.37 0.29 0.3 0.3 0.37 0.26 0.28 0.31 0.34
    Dy 1.93 1.95 2.05 1.75 1.8 1.75 2.17 1.62 1.74 1.84 1.08
    Ho 0.46 0.46 0.45 0.41 0.45 0.43 0.5 0.39 0.43 0.45 0.46
    Er 1.48 1.45 1.39 1.33 1.46 1.4 1.63 1.3 1.43 1.45 1.67
    Tm 0.26 0.26 0.23 0.23 0.26 0.25 0.28 0.23 0.25 0.25 0.26
    Yb 1.68 1.7 1.51 1.57 1.79 1.67 1.87 1.57 1.71 1.67 1.71
    Lu 0.27 0.28 0.24 0.25 0.29 0.27 0.29 0.25 0.27 0.26 0.21
    W 1.56 1.51 1.31 1.57 1.66 1.94 2.31 1.45 1.66 1.54 1.78
    Re 0.21 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01
    Tl 2.51 2.46 1.73 1.82 1.79 1.64 1.66 1.75 1.79 2.1 2.73
    Pb 18 17.3 17.3 14.2 13.1 12.8 14.3 14.4 15 14.8 14.8
    Bi 0.41 0.17 0.15 0.15 0.16 0.13 0.14 0.14 0.15 0.16 0.13
    Th 5.02 5.1 4.82 5.38 4.75 5.06 6.41 4.14 4.39 4.82 5.83
    U 3 1.9 2.99 1.54 1.55 1.61 1.9 2 1.94 1.64 1.4
    Nb 11.7 12.6 10.4 12.4 13.1 13.8 15.5 12 12.9 12.7 12.2
    Ta 0.89 0.94 0.73 0.93 1.01 1.03 1.19 0.88 0.95 0.91 0.84
    Zr 114 125 109.5 117 128 129 142 117 126 122 123
    Hf 3.49 3.77 3.04 3.46 3.67 3.75 4.21 3.43 3.6 3.59 3.39
    LaN/YbN 12.12 12.69 11.79 13.23 13.07 13.65 14.2 13.1 12.34 12.64 13.68
    δEu 0.68 0.61 0.67 0.6 0.6 0.63 0.67 0.58 0.65 0.69 0.72
    ΣREE 101.48 109.92 92.93 101.64 111.39 110.94 132.46 99.63 102.93 107.49 113.1
    LREE 93.31 101.61 84.52 94.14 103.32 103.15 123.09 92.53 95.25 99.46 104.99
    HREE 8.17 8.31 8.41 7.5 8.07 7.79 9.37 7.1 7.68 8.03 8.11
    LREE/HREE 11.42 12.23 10.05 12.55 12.8 13.24 13.14 13.03 12.4 12.39 12.95

    Table 2.  Test and analysis results for trace elements and rare earth elements of the black rock series from the Mufushan Formation in the Mufushan section (μg/g)

    Figure 4.  PAAS⁃normalized spider diagram of trace elements and REEs of the black rock system from the Mufushan Formation in the Mufushan section

  • 稀土元素测试结果如表2所示。稀土元素总含量(∑REE)为92.93~132.46 μg/g,平均值为107.63 μg/g,与球粒陨石稀土元素总含量相当,低于PAAS稀土元素总含量;轻稀土元素(∑LREE)为84.52~123.09 μg/g,平均值为99.58 μg/g;重稀土元素(∑HREE)为7.10~9.37 μg/g,平均值为8.05μg/g;LREE/HREE是反映稀土元素分馏程度的重要参数,若其比值大于1,则表示轻稀土元素相对于重稀土元素富集;反之,则轻稀土元素相对亏损。本文所有样品L/H(∑LREE/∑HREE)为10.05~13.24,平均值为12.38,表明轻稀土元素(LREE)相对重稀土元素(HREE)富集。经后太古宙澳大利亚页岩标准化后,幕府山剖面幕府山组底部黑色岩系稀土元素的配分模式如图4b所示,所有样品的稀土元素的富集、亏损表现一致的趋势,除个别样品的某些元素外,所有稀土元素均出现了不同程度的亏损。

  • Nesbitt et al.[14]研究表明,随着化学风化的进行,K、Na、Ca等元素会逐渐减少(长石被风化),Al逐渐增加(黏土矿物的形成),并提出利用化学风化指数CIA来表征源区化学风化强度,且CIA值越高,则化学风化程度越高。CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,式中各量均为摩尔分数(公式中涉及的各氧化物的量已换算为摩尔数),CaO*表示硅酸盐中CaO含量,对于CaO*的计算McLennan[15]提出:当CaO的摩尔数大于Na2O的摩尔数时,可认为mCaO*=mNa2O;当CaO的摩尔数小于Na2O的摩尔数时,则mCaO*=mCaO。幕府山剖面幕府山组底部黑色岩系的CIA值为62.3~66.6,平均值为64.2(表1),表明幕府山组黑色岩系母岩经历了弱—中等强度的化学风化作用。

    化学风化作用会使得沉积岩中Th/U比率增大,当Th/U>4便与化学风化作用有关[16]。本次研究所有样品Th/U值在1.673~4.164之间,平均为2.833。在Th/U⁃Th图解中(图5),有一个样品投在了Th/U=4之上,其余样品均在Th/U=4之下,且低于上地壳Th/U平均值3.8。大部分样品的Th/U值反映黑色岩系母岩经历了低等强度的化学风化作用,个别样品反映母岩经历了中等强度的化学风化作用。需要说明的是CIA和Th/U两种参数在化学风化强度强弱的数值限定上具有一定差异,导致在利用两种参数判断样品的化学风化强度时出现了一些细小的差别,但总的来说两种参数均反映了幕府山组黑色岩系母岩经历弱—中等强度的化学风化作用。

    Figure 5.  Th/U⁃Th diagram of the black rock series from the Mufushan Formation in the Mufushan section (base map after McLennan et al.[16] )

    沉积分选和沉积再循环会使得沉积物中的重矿物富集。微量元素Zr常赋存在锆石中,在沉积分选再循环的过程中,锆石因其较强的稳定性而在沉积物中富集,微量元素Th和Sc则常分别在酸性岩和基性岩中富集,且不随沉积再循环而改变,故随着沉积分选和沉积再循环的进行,Th/Sc值保持不变,Zr/Sc值会逐渐增大[17]。因此,可根据Th/Sc⁃Zr/Sc图解分析沉积物成分变化、分选程度以及重矿物富集程度。在Th/Sc⁃Zr/Sc图解中(图6),样品均落在成分演化线附近,Th/Sc值和Zr/Sc值都比较集中,变化范围不大,与PAAS相近,表明幕府山组底部黑色岩系的沉积碎屑物质未曾经历沉积再循环,能够较好的指示源岩组分。

    Figure 6.  Th/Sc⁃Zr/Sc diagram of the black rock series from the Mufushan Formation in the Mufushan section ( base map after Lambeck et al. [17] )

  • 通过风化作用及沉积再循环分析可知,幕府山剖面幕府山组底部黑色岩系源岩经历了弱—中等的化学风化作用,且没有经历沉积再循环,故根据其地球化学特征可以较准确地还原物源信息,判断源岩类型。

    来源于上地壳的稀土元素通常表现出轻稀土元素相对富集、重稀土元素相对贫乏且含量稳定、Eu元素负异常等特征[18]。经过球粒陨石标准化之后,幕府山剖面幕府山组底部黑色岩系稀土元素的配分模式表现为明显的右倾趋势(图7),表现出轻稀土元素相对重稀土元素富集的特征。此外(La/Yb)N也是反映稀土元素分异程度的重要参数,样品(La/Yb)N值为11.79~14.21,平均值为12.95,表明轻重稀土分异程度较高。δEu是反映Eu相对其他稀土元素的分异程度的参数,所有样品δEu值为0.609~0.754,平均值为0.679,表现为Eu元素负异常。以上稀土元素特征,表明下寒武统幕府山组底部黑色岩系源岩主要来自上地壳。

    Figure 7.  The REE distribution patterns of the black rock series from the Mufushan Formation in the Mufushan section

    表1可知,与PAAS相比,样品SiO2含量略高于PAAS的SiO2含量;Al2O3/(CaO+Na2O)值明显高于PAAS的Al2O3/(CaO+Na2O)值(图8a);而Fe2O3+MgO值明显低于PAAS的Fe2O3+MgO值(图8b)。反映出源岩富含长英质岩石组分,缺乏铁镁质岩石组分,表明下寒武统幕府山组底部黑色岩系母岩类型倾向于长英质岩石。

    Figure 8.  The eigenvalue distribution schematics for the main elements of the black rock series from the Mufushan Formation in the Mufushan section

    除元素含量及比值分析外,利用更为直观的元素判别图解进行物源分析也逐渐成为一种重要的手段。Allègre et al. [20]提出可通过La/Yb⁃∑REE图解判源岩类型。在La/Yb⁃∑REE图解中,样品投在了花岗岩和沉积岩的混合区域(图9a)。表明下寒武统幕府组底部黑色岩系源岩主要为花岗岩和沉积岩。Floyd et al. [21]提出利用La/Th⁃Hf图解可判断沉积岩源岩类型。在La/Th⁃Hf图解中,样品均投在了长英质、基性岩混合物源区域或其临近区域,无样品投在岛弧物源区域(图9b)。表明下寒武统幕府山组黑色岩系母岩不但受上地壳长英质岩石的控制,同时还存在洋壳基性岩石的混入,基性岩的混入可能与研究区存在上升洋流有关[22]。此外,La/Th⁃Hf图解还反映了幕府山组黑色岩系不存在岛弧火山岩物源。

    Figure 9.  Discrimination diagrams for the provenance attribute of the black rock series from the Mufushan Formation in the Mufushan section

    以上的论述表明下寒武统幕府山组底部黑色岩系源岩主要是花岗岩和富含长英质矿物的沉积岩等上地壳长英质岩石,存在基性岩的混入,无岛弧火山岩物源。前人研究表明,扬子陆块和华夏陆块在晋宁Ⅱ期(850~820 Ma)完成拼合,并最终在新元古代中晚期形成统一的华南大陆板块[2324]。到了新元古代晚期古华南大陆板块在Rodinia超大陆裂解的背景下开始发生扩张裂解与陆内裂谷运动。值得一提的是在古华南大陆板块新元古代期的拼合以后,华南大陆的扩张裂解与陆内裂谷构造过程中都伴随着裂谷型岩浆活动,形成了酸性花岗岩及基性—超基性岩浆岩。因此,从物源属性、地质年代关系上可推测下寒武统幕府山组黑色岩系源岩中花岗岩成分可能为新元古时期岩浆活动形成的岩浆岩。在扬子陆块和华夏陆块拼合过程中,在研究区西南缘形成了“江南古陆”(大陆动力学称之为江南造山带),“江南古陆”和“康滇古陆”、“华夏古陆”并称为我国华南的三大古陆剥蚀区[25]。通过半个多世纪的研究,对于“江南古陆”是否存在、形成的时间上存在着诸多的争论[2627]。通过最新的测年数据和年代学研究,许多地质学者认为“江南造山带”的形成时代为新元古代(850 Ma),它是扬子陆块与华夏陆块拼合过程中陆内造山的产物[28]。因此本文从物源属性、地质年代关系、华南大陆构造演化历程等多方面考虑,认为下扬子地区下寒武统幕府山组底部黑色岩系的物源区为“江南古陆”(江南造山带)。

  • 不同的构造环境的沉积岩会出现稀土元素表现差异:活动大陆边缘的沉积物表现为重稀土元素富集且无Eu亏损;被动大陆边缘的沉积物表现为轻稀土富集且Eu呈负异常[29]。本文研究区样品稀土元素表现为轻稀土元素相对于重稀土元素富集,且Eu呈负异常,据此,可推断下扬子地区下寒武统幕府山组底部黑色岩系源区构造环境为被动大陆边缘。

    Roser et al. [30]提出通过K2O+Na2O⁃SiO2图解可以判别出泥岩物源区的构造背景。对研究区页岩样品进行投点,结果样品无一例外的落在了被动大陆边缘区域(图10a)。McLlennan et al. [31]通过研究不同构造背景下沉积物的地球化学特征,提出应用SiO2/Al2O3⁃K2O/Na2O图解可以判别沉积物源区的构造背景。对样品进行投点,样品点均落在了被动大陆边缘区域(图10b)。以上两种图解均表明下扬子地区下寒武统幕府山组底部黑色岩系源区构造背景为被动大陆边缘。

    Figure 10.  Discrimination diagrams for the tectonic setting of the main elements in the black rock series from the Mufushan Formation in the Mufushan section

    La、Ce、Nd、Th、Zr、Hf、Nb、Ti等微量元素相对于主量元素稳定性较强,在水体中不活泼且滞留时间较短,经过初次风化便进入了碎屑沉积物中,故其含量及比值可以用于判别源区构造背景[14]。Bhatia et al. [32]经过研究提出可利用La⁃Th⁃Sc、Th⁃Co⁃Zr/10和Th⁃Sc⁃Zr/10等图解判别源区构造背景。在La⁃Th⁃Sc图解中,除了一个样品(样品编号为MFS⁃15)落在大陆岛弧区域,其余样品均落在了被动大陆边缘(主动大陆边缘)的附近区域(图11a);在Th⁃Co⁃Zr/10图解中,样品均落在了被动大陆边缘区域(图11b);在Th⁃Sc⁃Zr/10图解中,有三个样品(样品编号分别为:MFS⁃13、MFS⁃14、MFS⁃15)落在了大陆岛弧区域,其余样品均落在了被动大陆边缘区域或其附近区域(图11c)。前人研究表明,下寒武统幕府山组沉积早期,在华南大陆整体扩张的背景下,下扬子地区海侵规模有所增大,海水深度不断加大,促使洋流上涌强度增强[33]。MFS⁃13、MFS⁃14、MFS⁃15位于幕府山组黑色岩系上部,为最大海泛时期沉积的沉积物,因此,推测这三个样品元素特征在一定程度上受到上升洋流的影响。综合以上三个图解,认为下扬子地区下寒武统幕府山组底部黑色岩系源区构造背景为被动大陆边缘。

    Figure 11.  Discrimination diagrams for the tectonic setting of the trace elements in the black rock series of the Mufushan Formation in the Mufushan section (base map after Bhatia et al.[32] )

    印峰等[34]通过对下扬子晚震旦至中奥陶世残留地层分布状况以及该时期沉积充填过程的分析,确定了晚震旦至中奥陶世下扬子原型盆地的性质为被动大陆边缘。本文元素数据特征及判别图解也综合反映出下扬子地区下寒武统幕府山组底部黑色岩系源区构造背景为被动大陆边缘(图12)。徐文礼等[35]通过对下扬子下寒武统黑色岩系地球化学特征进行研究后认为下扬子地区下寒武统黑色岩系源岩形成的构造环境主要为活动大陆边缘和岛弧环境,这与本文所得结论存在较大差异。通过对比分析,笔者认为这种沉积物元素特征差异可能与上升洋流有关[22]。于炳松等[36]在通过微量元素和稀土元素对塔里木盆地布拉克剖面下寒武统底部硅质岩进行研究时发现:上升洋流将形成于大洋盆地背景中的物质带到大陆边缘陆棚环境中发生沉积,造成了沉积在陆棚环境中的沉积物在地球化学元素组成上保留了大洋盆地背景的特征。因此笔者推测下扬子部分地区下寒武统底部的黑色岩系中同样可能含有大量的上升洋流所带来的沉积物,从而导致了部分黑色岩系的地球化学元素表现出了活动大陆边缘和岛弧环境等异常特征。

    Figure 12.  Schematic diagram of the Early Cambrian tectonic background in the Lower Yangtze region

  • (1) CIA和Th/U等指数表明幕府山剖面幕府山组底部黑色岩系母岩经历了弱—中等强度的风化作用;Th/Sc⁃Zr/Sc图解表明黑色岩系的沉积碎屑物质未曾经历沉积再循环。故黑色岩系的地球化学特征能够较好的指示源岩组分。

    (2) 稀土元素的配分模式及(La/Yb)NδEu等参数表明研究区黑色岩系源岩主要来自上地壳;通过样品SiO2、Fe2O3+MgO、Al2O3/(CaO+Na2O)等各种主量元素的含量或比值以及样品在La/Yb⁃∑REE图解和La/Th⁃Hf图解中的投点,分析出幕府山组底部黑色岩系源岩主要是花岗岩和富含长英质矿物的沉积岩等上地壳长英质岩石,并存在基性岩的混入,无岛弧火山岩物源。从物源属性、地质年代关系上可推测研究区黑色岩系源岩中的花岗岩成分为新元古时期岩浆活动形成的岩浆岩。结合华南大陆构造演化历程,认为下扬子地区下寒武统幕府山组底部黑色岩系的物源区为“江南古陆”。

    (3) 样品轻重稀土元素含量、Eu等元素特征及在K2O+Na2O⁃SiO2、K2O/Na2O⁃SiO2/Al2O3、La⁃Th⁃Sc、Th⁃Co⁃Zr/10、Th⁃Sc⁃Zr/10等图解中的投点表明下扬子地区下寒武统幕府山组底部黑色岩系源区构造背景为被动大陆边缘,构造环境较稳定。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return