Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

DENG XiuQin, CHENG DangXing, ZHOU XinPing, SHI ZiWei, GUO YiXuan. Formation Hydrochemical Characteristics and Genesis of the Lower Jurassic, Ordos Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1099-1110. doi: 10.14027/j.issn.1000-0550.2019.080
Citation: DENG XiuQin, CHENG DangXing, ZHOU XinPing, SHI ZiWei, GUO YiXuan. Formation Hydrochemical Characteristics and Genesis of the Lower Jurassic, Ordos Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1099-1110. doi: 10.14027/j.issn.1000-0550.2019.080

Formation Hydrochemical Characteristics and Genesis of the Lower Jurassic, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2019.080
Funds:

National Science and Technology Major Project 2016ZX05050, 2017ZX05001002⁃008

  • Received Date: 2019-02-21
  • Rev Recd Date: 2019-08-03
  • Publish Date: 2020-10-28
  • The formation water characteristics are closely related to hydrocarbon migration and accumulation. The main factors affecting differences of the formation water from the Yan'an and Fuxian Formations are analyzed, based on the vertical and plane distribution characteristics of water type and hydrochemical composition of the formation water. The relationship between formation water characteristics and reservoir distribution and formation is discussed, and the factors that are important to in the process of finding Jurassic reservoirs are clarified in this paper. Study of formation water of the lower Jurassic Yan'an and Fuxian Formations in the Ordos basin reveal the complexity and regularity of the hydrochemical characteristics. The complexity lies in the diversity of formation water and the hydrochemical parameters, such as water salinity, sodium chloride coefficient, metamorphism coefficient, etc., which vary significantly vertically or laterally. The regularity is reflected in that the varying formation hydrochemistry forms zonation, vertically, east⁃westward, or geomorphologically. It is pointed out that: 1) The mixing and alternation of formation water in different hydrological cycles lead to the vertical differentiation of formation water chemical characteristics. From Fuxian to Y10 to Y9 strata, the salinity of the formation water gradually decreases, the proportion of CaCl2 type water gradually decreases, and the proportion of NaHCO3 type and Na2SO4 type formation water gradually increases. The coefficient of sodium chloride and desulfurization gradually increase, while the coefficient of metamorphism decreases. 2) Structural evolution determines the east⁃west zonation of the hydrochemical characteristics. The Jurassic strata at the east or west margin of the basin are buried shallowly or exposed where infiltration water supply alternates easily with a relative lower salinity, and the strata at or close to the axis of the Tianhuan depression are buried deeply far away from the supply area, imprisoned in a relatively stagnant environment, making the salinity relatively high. 3) Regionalization of the formation hydrochemical feature changes with geomorphology of the Fuxian Formation⁃Yan10 member and is strengthened by the water⁃rock reaction during the diagenesis process. In the river developed area, formation water salinity is low. In the direction of the slope, terrace, and highland, it increases gradually, while the coefficient of the sodium chloride and desulfurization decreases, and the coefficient of metamorphism increases by degrees. Formation water type changes from Na2SO4 or NaHCO3 to CaCl2. 4) The terraces, slopes, and channel bars have the advantage of reservoir formation in terms of the infiltration water alternating extent, hydrodynamics, lithologic association, and low⁃amplitude structural trap development conditions, and they are the favorable targets prediction method of Jurassic Palaeogeomorphic reservoir is summarized.
  • [1] 顾家裕,范土芝,方辉,等. 塔里木盆地流体与油气藏[J]. 地质论评,2001,47(2):202-207.

    Gu Jiayu, Fan Tuzhi, Fang Hui, et al. Fluid migration and oil reservoirs in the Tarim Basin[J]. Geological Review, 2001, 47(2): 202-207.
    [2] 李明诚. 石油与天然气运移[M]. 2版. 北京:石油工业出版社,1994:2-174.

    Li Mingcheng. Migration of oil and gas[M]. 2nd ed. Beijing: Petroleum Industry Press, 1994: 2-174.
    [3] Yahi N, Schaefer R G, Littke R. Petroleum generation and accumulation in the Berkine Basin, eastern Algeria[J]. AAPG Bulletin, 2001, 85(8): 1439-1467.
    [4] Bachu S. Synthesis and model of formation-water flow, Alberta Basin, Canada[J]. AAPG Bulletin, 1995, 79(8): 1159-1178.
    [5] Magara K. Geological models of petroleum entrapment[M]. Amsterdam: Elsevier, 1989: 27-44.
    [6] Bethke C M, Reed J D, Oltz D F. Long-range petroleum migration in the Illinois Basin[J]. AAPG Bulletin, 1991, 75(5): 925-945.
    [7] Bredehoeft J D, Djevanshir R D, Belitz K R. Lateral fluid flow in a compacting sand-shale sequence: South Caspian Basin[J]. AAPG Bulletin, 1988, 72(4): 416-424.
    [8] 刘方槐,颜婉荪. 油气田水文地质学原理[M]. 北京:石油工业出版社,1991:55-237.

    Liu Fanghuai, Yan Wansun. Principles of hydrogeology of oil & gas fields[M]. Beijing: Petroleum Industry Press, 1991: 55-237.
    [9] 刘崇禧. 我国中、新生代陆相盆地油田水文地球化学特征及与油气聚集的关系[J]. 石油勘探与开发,1983(2):39-43,27.

    Liu Chongxi. Geochemical characteristics of oilfield water and their relation with oil and gas accumulation in Mesozoic-Cenozoic basins of China[J]. Petroleum Exploration and Development, 1983(2): 39-43, 27.
    [10] 斯扬,张文选,罗安湘,等. 姬塬地区长9油层组地层水化学特征及其与油藏的关系[J]. 中国石油大学学报(自然科学版),2019,43(2):25-36.

    Si Yang, Zhang Wenxuan, Luo Anxiang, et al. Hydrochemical characteristics and relationship between formation water and hydrocarbon reservoirs for Chang 9 in Jiyuan area[J]. Journal of China University of Petroleum, 2019, 43(2): 25-36.
    [11] 周鹏,朱文慧,王佐涛,等. 克拉苏构造带超深气藏地层水特征及水化学相图建立[J]. 长江大学学报(自然科学版),2019,16(2):1-7.

    Zhou Peng, Zhu Wenhui, Wang Zuotao, et al. Characteristics of formation water and water chemical phase diagram of the super-deep gas reservoirs in Kelasu Structure Belt[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(2): 1-7.
    [12] 杨绪充. 论含油气盆地的地下水动力环境[J]. 石油学报,1989,10(4):27-34.

    Yang Xuchong. On the underground hydrodynamic environment in an oil and gas basin[J]. Acta Petrolei Sinica, 1989, 10(4): 27-34.
    [13] 汪蕴璞,林锦璇,汪林. 论含油气盆地含水系统和水文地质期的划分:以东海西湖凹陷为例[J]. 地球科学——中国地质大学学报,1995,20(4):393-398.

    Wang Yunpu, Lin Jinxuan, Wang lin. Division of water-bearing systems and hydrogeological periods of oil (gas)-bearing basin: With Xihu Depression in East China Sea as an example[J]. Earth Science-Journal of China University of Geosciences, 1995, 20(4): 393-398.
    [14] 楼章华,高瑞祺,蔡希源. 论松辽盆地地下水动力场演化与油气运移、聚集[J]. 沉积学报,1997,15(4):115-120.

    Lou Zhanghua, Gao Ruiqi, Cai Xiyuan. A study on the evolution of hydrodynamics, the migration and accumulation of oil and gas in the Songliao Basin[J]. Acta Sedimentologica Sinica, 1997, 15(4): 115-120.
    [15] 楼章华,金爱民,田炜卓,等. 论陆相含油气沉积盆地地下水动力场与油气运移、聚集[J]. 地质科学,2005,40(3):305-318.

    Lou Zhanghua, Jin Aimin, Tian Weizhuo, et al. Origin and evolution of hydrodynamics and the migration, accumulation of petroleum in continental petroliferous sedimentary basins[J]. Chinese Journal of Geology, 2005, 40(3): 305-318.
    [16] 李继宏,李荣西,韩天佑,等. 鄂尔多斯盆地西缘马家滩地区地层水与油气成藏关系研究[J]. 石油实验地质,2009,31(3):253-257.

    Li Jihong, Li Rongxi, Han Tianyou, et al. Study of stratum water and oil and gas accumulation relations of Majiatan area in the western Ordos Basin[J]. Petroleum Geology & Experiment, 2009, 31(3): 253-257.
    [17] 窦伟坦,刘新社,王涛. 鄂尔多斯盆地苏里格气田地层水成因及气水分布规律[J]. 石油学报,2010,31(5):767-773.

    Dou Weitan, Liu Xinshe, Wang Tao. The origin of formation water and the regularity of gas and water distribution for the Sulige gas field, Ordos Basin[J]. Acta Petrolei Sinica, 2010, 31(5): 767-773.
    [18] 史婷婷,成建梅,解习农,等. 松辽盆地北部地层水同位素特征及其地质意义[J]. 沉积学报,2012,30(2):399-404.

    Shi Tingting, Cheng Jianmei, Xie Xinong, et al. Isotopic characteristics of formation waters in the north of Songliao Basin and its geological significances[J]. Acta Sedimentologica Sinica, 2012, 30(2): 399-404.
    [19] 李士祥,楚美娟,王腾飞,等. 鄂尔多斯盆地姬塬地区延长组长6油层组地层水特征与油藏聚集关系[J]. 中国石油勘探,2017,22(5):43-53.

    Li Shixiang, Chu Meijuan, Wang Tengfei, et al. Features of formation water and implications for hydrocarbon accumulation in Chang 6 pay zone, Jiyuan area, Ordos Basin[J]. China Petroleum Exploration, 2017, 22(5): 43-53.
    [20] 刘福田,李荣西,左智峰,等. 鄂尔多斯盆地南部地区上三叠统延长组6段地层水成因及其油气意义[J]. 石油与天然气地质,2018,39(6):1179-1189.

    Liu Futian, Li Rongxi, Zuo Zhifeng, et al. Genesis of formation water in the 6th member of the Upper Triassic Yanchang Formation in southern Ordos Basin and its petroleum significance[J]. Oil & Gas Geology, 2018, 39(6): 1179-1189.
    [21] 宫亚军. 准噶尔盆地腹部中生界地层水特征及油气地质意义[J]. 新疆石油地质,2017,38(5):524-529.

    Gong Yajun. Mesozoic formation water characteristics and hydrocarbon geological significance in the hinterland of Junggar Basin[J]. Xinjiang Petroleum Geology, 2017, 38(5): 524-529.
    [22] 崔明明,王宗秀,樊爱萍,等. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学,2018,29(9):1364-1375.

    Cui Mingming, Wang Zongxiu, Fan Aiping, et al. Characteristics of formation water and gas-water relation in southwest Sulige gas field, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(9): 1364-1375.
    [23] 楼章华,曾允孚. 扶杨油层孔隙水成因与砂岩成岩相研究[J]. 沉积学报,1995,13(增刊):63-70.

    Lou Zhanghua, Zeng Yunfu. The origin of pore-water and the study of sandstone diagenetic facies of Fu-Yang formations (K1q3+4, northern-eastern Songliao Basin, NE China (Cretaceous))[J]. Acta Sedimentologica Sinica, 1995, 13(Suppl.): 63-70.
    [24] 沈忠民,刘四兵,吕正祥,等. 川西坳陷中段陆相地层水纵向变化特征及水—岩相互作用初探[J]. 沉积学报,2011,29(3):495-502.

    Shen Zhongmin, Liu Sibing, Zhengxiang Lü, et al. Vertical geochemical characteristics of continental formation water and its water-rock interaction in the middle area of western Sichuan Depression[J]. Acta Sedimentologica Sinica, 2011, 29(3): 495-502.
    [25] 郭正权,潘令红,刘显阳,等. 鄂尔多斯盆地侏罗系古地貌油田形成条件与分布规律[J]. 中国石油勘探,2001,6(4):20-27.

    Guo Zhengquan, Pan Linghong, Liu Xianyang, et al. The formation conditions and distribution of Jurassic palaeo-geomorphological oil-field in Ordos Basin[J]. China Petroleum Exploration, 2001, 6(4): 20-27.
    [26] 郭正权,张立荣,楚美娟,等. 鄂尔多斯盆地南部前侏罗纪古地貌对延安组下部油藏的控制作用[J]. 古地理学报,2008,10(1):63-71.

    Guo Zhengquan, Zhang Lirong, Chu Meijuan, et al. Pre-Jurassic palaeogeomorphic control on the hydrocarbon accumulation in the Lower Yan’an Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(1): 63-71.
    [27] 朱静,李文厚,韩永林,等. 陇东地区前侏罗纪古地貌及油藏成藏规律研究[J]. 沉积学报,2010,28(6):1229-1237.

    Zhu Jing, Li Wenhou, Han Yonglin, et al. Research on palaeogeomorphic features of Pre-Jurassic and accumulation regularity of oil reservoir in the area of eastern Gansu, Ordos Basin[J]. Acta Sedimentologica Sinica, 2010, 28(6): 1229-1237.
    [28] 宋凯,吕剑文,凌升阶,等. 鄂尔多斯盆地定边—吴旗地区前侏罗纪古地貌与油藏[J]. 古地理学报,2003,5(4):497-507.

    Song Kai, Jianwen Lü, Ling Shengjie, et al. Palaeogeomorphic features of the Pre-Jurassic and oil reservoir of Dingbian-Wuqi area in Ordos Basin[J]. Journal of Palaeogeography, 2003, 5(4): 497-507.
    [29] 李树同,张海峰,王多云,等. 聚油古地貌成因类型及其有利成藏条件分析:以鄂尔多斯盆地上里塬地区前侏罗纪古地貌为例[J]. 沉积学报,2011,29(5):962-969.

    Li Shutong, Zhang Haifeng, Wang Duoyun, et al. Genetic type of oil-gas accumulation paleogeomorphology and favorable conditions for petroleum accumulation: Taking the paleogeomorphology of Pre-Jurassic in Shangliyuan area, Ordos Basin as an example[J]. Acta Sedimentologica Sinica, 2011, 29(5): 962-969.
    [30] 赵俊兴,陈洪德,杨华,等. 鄂尔多斯中南部中下侏罗统储层成因类型与油气聚集关系[J]. 成都理工大学学报(自然科学版),2005,32(3):246-251.

    Zhao Junxing, Chen Hongde, Yang Hua, et al. Genetic types and their relationship with oil-gas accumulation of the lower and middle Jurassic Reservoirs in Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2005, 32(3): 246-251.
    [31] 赵俊兴,陈洪德. 鄂尔多斯盆地侏罗纪早中期甘陕古河的演化变迁[J]. 石油与天然气地质,2006,27(2):152-158.

    Zhao Junxing, Chen Hongde. Evolution of Gan-Shaan paleochannel during early and middle Jurassic in Ordos Basin[J]. Oil & Gas Geology, 2006, 27(2): 152-158.
    [32] 雷开宇,刘池洋,张龙,等. 鄂尔多斯盆地北部侏罗系泥岩地球化学特征:物源与古沉积环境恢复[J]. 沉积学报,2017,35(3):621-636.

    Lei Kaiyu, Liu Chiyang, Zhang Long, et al. Element geochemical characteristics of the Jurassic mudstones in the northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration[J]. Acta Sedimentologica Sinica, 2017, 35(3): 621-636.
    [33] 张善文. 成岩过程中的“耗水作用”及其石油地质意义[J]. 沉积学报,2007,25(5):701-707.

    Zhang Shanwen. “Water Consumption” in diagenetic stage and its petroleum geological significance[J]. Acta Sedimentologica Sinica, 2007, 25(5): 701-707.
    [34] 邓秀芹,姚泾利,胡喜锋,等. 鄂尔多斯盆地延长组超低渗透岩性油藏成藏流体动力系统特征及其意义[J]. 西北大学学报(自然科学版),2011,41(6):1044-1050.

    Deng Xiuqin, Yao Jingli, Hu Xifeng, et al. Characteristics and geological significance of hydrodynamic system on ultra-low permeability reservoir of Yanchang Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2011, 41(6): 1044-1050.
    [35] 段毅,吴保祥,郑朝阳,等. 鄂尔多斯盆地西峰油田油气成藏动力学特征[J]. 石油学报,2005,26(4):29-33.

    Duan Yi, Wu Baoxiang, Zheng Chaoyang, et al. Pool-forming dynamic properties of Xifeng oilfield in Ordos Basin[J]. Acta Petrolei Sinica, 2005, 26(4): 29-33.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(656) PDF downloads(102) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-02-21
  • Revised:  2019-08-03
  • Published:  2020-10-28

Formation Hydrochemical Characteristics and Genesis of the Lower Jurassic, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2019.080
Funds:

National Science and Technology Major Project 2016ZX05050, 2017ZX05001002⁃008

Abstract: The formation water characteristics are closely related to hydrocarbon migration and accumulation. The main factors affecting differences of the formation water from the Yan'an and Fuxian Formations are analyzed, based on the vertical and plane distribution characteristics of water type and hydrochemical composition of the formation water. The relationship between formation water characteristics and reservoir distribution and formation is discussed, and the factors that are important to in the process of finding Jurassic reservoirs are clarified in this paper. Study of formation water of the lower Jurassic Yan'an and Fuxian Formations in the Ordos basin reveal the complexity and regularity of the hydrochemical characteristics. The complexity lies in the diversity of formation water and the hydrochemical parameters, such as water salinity, sodium chloride coefficient, metamorphism coefficient, etc., which vary significantly vertically or laterally. The regularity is reflected in that the varying formation hydrochemistry forms zonation, vertically, east⁃westward, or geomorphologically. It is pointed out that: 1) The mixing and alternation of formation water in different hydrological cycles lead to the vertical differentiation of formation water chemical characteristics. From Fuxian to Y10 to Y9 strata, the salinity of the formation water gradually decreases, the proportion of CaCl2 type water gradually decreases, and the proportion of NaHCO3 type and Na2SO4 type formation water gradually increases. The coefficient of sodium chloride and desulfurization gradually increase, while the coefficient of metamorphism decreases. 2) Structural evolution determines the east⁃west zonation of the hydrochemical characteristics. The Jurassic strata at the east or west margin of the basin are buried shallowly or exposed where infiltration water supply alternates easily with a relative lower salinity, and the strata at or close to the axis of the Tianhuan depression are buried deeply far away from the supply area, imprisoned in a relatively stagnant environment, making the salinity relatively high. 3) Regionalization of the formation hydrochemical feature changes with geomorphology of the Fuxian Formation⁃Yan10 member and is strengthened by the water⁃rock reaction during the diagenesis process. In the river developed area, formation water salinity is low. In the direction of the slope, terrace, and highland, it increases gradually, while the coefficient of the sodium chloride and desulfurization decreases, and the coefficient of metamorphism increases by degrees. Formation water type changes from Na2SO4 or NaHCO3 to CaCl2. 4) The terraces, slopes, and channel bars have the advantage of reservoir formation in terms of the infiltration water alternating extent, hydrodynamics, lithologic association, and low⁃amplitude structural trap development conditions, and they are the favorable targets prediction method of Jurassic Palaeogeomorphic reservoir is summarized.

DENG XiuQin, CHENG DangXing, ZHOU XinPing, SHI ZiWei, GUO YiXuan. Formation Hydrochemical Characteristics and Genesis of the Lower Jurassic, Ordos Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1099-1110. doi: 10.14027/j.issn.1000-0550.2019.080
Citation: DENG XiuQin, CHENG DangXing, ZHOU XinPing, SHI ZiWei, GUO YiXuan. Formation Hydrochemical Characteristics and Genesis of the Lower Jurassic, Ordos Basin[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1099-1110. doi: 10.14027/j.issn.1000-0550.2019.080
  • 对含油气盆地油气资源的研究,实际就是认识盆地中的流体在各种不同的地质条件下形成、迁移和聚集的历史过程[1]。地层水是初次运移和二次运移过程中的重要载体[211],地层水特征与油气运移、聚集有着十分密切的关系。在沉积物的埋藏过程中,地层水处于埋藏内循环系统的相对封闭环境,水—岩反应等作用造成地层水的化学性质发生变化,通常矿化度、Cl-、Na+离子浓度和盐化系数增加, H C O 3 - S O 4 2 - 离子浓度、变质系数、脱硫系的降低。前人通过不同盆地的水动力系统、水文地质旋回的划分、水动力场特征研究,探索了水动力与油气运移、聚集的关系[1215]。近年,水文地球化学特征及与油气聚集的关系研究[1619] 、地层水成因和水型分布与油藏保存条件评价[2022],地层水与储层的水—岩作用特点[2324]等研究取得一定进展,在油气藏勘探开发中发挥了重要的作用。然而地层水研究仍一直是石油地质工作中相对较薄弱的环节,鄂尔多斯盆地下侏罗统地层水研究鲜有报道,有待深入开展工作。

    侏罗系延安组、富县组是鄂尔多斯盆地石油勘探的主要目的层,与中上三叠统延长组大面积、大规模、低渗透—致密油藏相比,侏罗系油藏规模小(一般油藏面积小于10 km2),但储层物性好(一般孔隙度大于12%,渗透率平均超过50×10-3 μm2),单井产量高,开发效果好,俗称“小而肥”的特点。经过40多年的勘探开发,地质工作者做了大量较深入细致的研究,成果主要聚焦于沉积古环境与沉积相、古地貌刻画、油藏类型与分布等方面[2532],较少涉及侏罗系地层水特征、影响因素及其与油气关系的研究。本次工作立足于延安组和富县组地层水的水型、水化学成分的纵向、平面的分布特征,分析了影响地层水差异的主要因素,讨论了与油藏分布与形成的关系。

  • 三叠纪末,在印支运动影响下,鄂尔多斯盆地整体、不均衡抬升,总体呈现西高东低的古地形格局,因此造成延长组顶部不同程度地遭受风化剥蚀、河流侵蚀,形成了沟壑纵横、丘陵起伏、高地广布的前侏罗纪古地貌景观(图1)。侏罗纪早期,在前侏罗纪形成的沟壑中,水系发育。一方面水系对早期形成的地貌进一步的冲刷、侵蚀,另一方面沉积物在古河道、沟谷中逐渐沉积,发生填平补齐作用。准平原化后,发育三角洲沉积。这套碎屑岩被命名为富县组和延安组。延安组根据沉积旋回和岩性特征,延安组又可进一步划分为10个油层组,自上而下为延1—延10(图2)。

    Figure 1.  Palaeogeomorphology of the pre⁃Jurassic, Ordos Basin

    Figure 2.  Strata of the Yan'an and Fuxian Formations in the Huachi area, Ordos Basin

    富县组和延10沉积主要受控于前侏罗纪的古地貌格局,为粗碎屑充填,局部地区延10顶部发育煤层或煤线。地层厚度或岩性变化所反映的早侏罗世地貌形态显示,盆地发育甘陕一级古河,庆西、宁陕、蒙陕3条二级古河。几大古河切割形成姬塬高地、演武高地、子午岭高地、定边高地和靖边高地,3条二级古河汇入甘陕一级古河。一级古河河道宽15~40 km,通常与高地沉积厚度差180~260 m;二级古河宽8~15 km,与高地沉积的厚度差100~200 m(图1[2526]。一级古河内发育多个河间丘,其中在宁陕、蒙陕、甘陕三条古河交汇处,发育的河间丘规模相对较大。

    延9—延1期,随着河流沉积的填平补齐,大面积沼泽化,进入三角洲、湖泊发育阶段,汇水区位于盆地东部延安一带。延9—延1主要为中细砂岩夹煤层、碳质泥岩。煤层具有高声波时差、高电阻率、低密度、低自然伽马等明显的电测特征(图2),成为地层划分对比的标志层,其中延7顶部和延9顶部煤层在盆地广泛分布。延4+5—延9地层分布较稳定,保存较好,延3以上地层遭受不同程度的剥蚀。

  • 延安组、富县组地层水主要离子组成为Cl-、Na+、K+ S O 4 2 - H C O 3 - 、Ca2+及Mg2+,离子浓度由大到小的顺序为Cl->(Na++K+)> S O 4 2 - > H C O 3 - >Ca2+>Mg2+。阳离子组分中,K+、Na+离子浓度最高,平均11.2 g/L;Ca2+次之,平均浓度为0.8 g/L;Mg2+含量最低。阴离子中,Cl-浓度最高,平均16.0 g/L; S O 4 2 - 次之,平均3.5 g/L;再次为 H C O 3 - ,含极少量的 C O 3 2 - 表1图3)。

    井名 层位 pH (Na++K+)/mg/L Ca2+/mg/L Mg2+/mg/L Cl-/mg/L S O 4 2 - /mg/L H C O 3 - /mg/L S O 4 2 - /mg/L 矿化度/g/L 水型
    C35 延2 7.0 2 356 104 56 4 758 0 235 378 9.1 NaHCO3
    Y283 延2 6.0 4 057 189 574 3 069 0 297 6 801 15.0 Na2SO4
    L180 延3 6.5 5 756 1 145 347 6 655 0 0 6 859 21.1 Na2SO4
    Y314 延3 6.0 7 446 1 135 172 10 373 0 461 4 534 24.1 Na2SO4
    Z380 延4+5 6.0 7 956 1 026 830 7 773 438 0 11 476 29.5 Na2SO4
    H427 延4+5 6.0 16 673 2 187 1 568 19 878 0 938 18 582 59.8 Na2SO4
    Y85 延4+5 8.0 15 691 187 170 24 575 204 129 224 41.2 CaCl2
    Z467 延6 6.0 13 604 509 988 16 383 142 0 11 224 42.9 Na2SO4
    L305 延6 7.1 5 023 819 333 5 666 828 0 5 439 18.1 Na2SO4
    Y81 延6 6.0 9 343 821 187 15 731 0 209 738 27.0 CaCl2
    L88 延6 6.7 9 837 464 218 10 664 0 617 7 585 29.4 Na2SO4
    C84 延7 7.5 15 583 79 14 21 394 0 189 984 41.4 NaHCO3
    G173 延7 6.3 32 564 8 729 184 66 048 0 207 0 20.2 CaCl2
    W515 延7 7.0 10 190 596 241 12 002 0 3 953 4 288 5.5 NaHCO3
    B417 延7 7.5 5 221 365 119 3 006 0 287 7 949 17.0 Na2SO4
    Y81 延7 7.0 3 268 204 124 3 318 780 0 2 694 10.4 Na2SO4
    X72 延7 6.5 17 412 1 291 308 24 563 0 1 387 6 297 51.3 Na2SO4
    Z164 延8 6.5 25 354 422 384 32 288 3 343 0 9 095 70.9 NaHCO3
    W276 延8 6.0 1 908 117 70 1 994 194 0 1 571 27.4 Na2SO4
    L205 延8 6.0 8 218 741 257 14 230 0 530 254 24.2 CaCl2
    A162 延8 6.5 6 913 305 62 9 792 866 0 1 464 19.4 Na2SO4
    Z175 延9 6.0 24 276 3 174 428 44 138 0 245 0 72.3 CaCl2
    G190 延9 8.0 7 128 994 241 5 370 0 1 500 9 529 18.7 Na2SO4
    G285 延9 6.5 17 263 2 021 164 10 124 0 246 3 512 33.2 CaCl2
    H184 延9 7.4 14 033 463 117 21 128 0 481 1 873 38.0 Na2SO4
    H91 延9 6.5 21 912 2 974 516 40 076 0 469 255 66.2 CaCl2
    Z67 延10 6.0 19 631 1 157 234 29 137 0 419 4 887 55.5 Na2SO4
    Z497 延10 6.0 22 531 2 365 1 377 39 944 238 0 3 854 70.3 CaCl2
    Z29 延10 6.0 28 215 3 623 738 50 317 0 314 2 099 85.3 CaCl2
    H53 延10 6.6 22 856 3 164.32 608 41 477 0 223 1 344.84 70.0 CaCl2
    Li231 延10 6.0 7 191 596 965 4 994 192 0 13 341 27.3 Na2SO4
    Li323 延10 6.0 30 259 1 988 1 005 49 920 404 0 3 970 87.6 CaCl2
    Li345 延10 6.0 10 960 189 57 17 103 214 0 227 28.8 CaCl2
    Li40 延10 6.0 13 932 850 258 18 562 0 1 131 6 109 40.8 Na2SO4
    Li51 延10 8.0 4 334 48 58 3 080 276 969 4 018 12.8 NaHCO3
    L132 延10 6.0 36 671 3 893 539 64 165 0 223 955 106.5 CaCl2
    L164 延10 6.5 26 543 2 187 879 46 815 0 401 408 77.2 CaCl2
    Sh219 延10 8.0 6 420 362 188 5 495 0 82 6 568 20.2 Na2SO4
    Sh22 延10 6.0 4 180 613 744 8 353 445 0 1 470 15.8 MgCl2
    X126 延10 6.0 8 169 10 278 544 32 218 0 195 1 390 51.8 CaCl2
    X154 延10 6.5 3 514 216 175 7 619 0 120 350 12.0 MgCl2
    X321 延10 6.5 5 591 724 251 5 598 475 0 6 444 19.1 Na2SO4
    Y57 延10 7.0 3 536 211 96 5 886 0 0 253 10.0 CaCl2
    S1 富县组 6.0 8 614 1 270 514 12 824 0 779 5 072 29.1 Na2SO4

    Table 1.  Formation water chemical characteristics of the Jurassic Yan′an and Fuxian Formations, Ordos Basin

    Figure 3.  The ionic composition of formation water in the Jurassic system, Ordos Basin

    地层水矿化度为5~120 g/L,平均值为33.2 g/L,主要分布在8~100 g/L(表1图3)。平面分布上地层水的化学性质存在较大的差异,但同时显示出较好的规律性。西缘冲断带和东部浅埋藏区矿化度较低,一般小于40 g/L,其他地区地层水矿化度为20~100 g/L。地层水的矿化度平面分布与古地貌具有较好的相关性,一般古河地区矿化度低,向高地方向矿化度逐渐增高。虽然不同区块矿化度存在较大的差异,但每个区块自下而上地层水的平均矿化度都一致呈现出逐渐降低的趋势(图4表1)。

    Figure 4.  Comparison of formation water total salinity among different areas and different Jurassic system, Ordos Basin

    Cl-,K+、Na+与矿化度呈现出较好的线性相关性(图5)。pH值为5.5~7.5,平均6.4,呈中性—弱碱性。

    Figure 5.  Correlation of formation water geochemistry with total salinity of the Jurassic system, Ordos Basin

  • 钠氯系数( r N a + / r C l - )是地层水变质程度和活动性的重要指标,钠氯系数越低,反映水体环境越还原,越有利于油气的保存。( r N a + / r C l - )值>1,指示地层水封闭条件相对较差。延安组和富县组地层水( r N a + / r C l - )为0.1~3.5,平均为1.1。

    脱硫系数[100 r S O 4 2 - /( r S O 4 2 - + r C l - )]是地层水氧化还原环境的重要指标,表征脱硫酸作用的程度,作用完全时为0,表明封闭浓缩程度好。该值越低反映封闭性越好;当脱硫系数>10时或越高,则表明封闭条件相对较差。延安组、富县组地层水脱硫系数主要分布区间为0~60,平均值为15.9,各层系平均分布范围11.1~26.3。

    变质系数( r C l - - N a + / r M g 2 + )值越大,表明封闭程度越好,水岩作用强;为负值时,则表征地层水受到大气降水淋滤作用的影响。延安组、富县组地层水变质系数主要分布区间为-30~10,平均值为-10.9。

    地层水的钠氯系数、脱硫系数、变质系数等参数分析表明,延安组、富县组整体上封闭、保存条件较差。

  • 侏罗系地层水水型以Na2SO4型和NaHCO3型为主,分别占34.2%和38.8%,CaCl2型水占20.9%,MgCl2型占6.1%。

    纵向上,富县组地层水以CaCl2型水为主,MgCl2型次之;延8—延10砂岩中CaCl2型、Na2SO4型和NaHCO3型均衡发育;延4+5—延7以Na2SO4型水和NaHCO3型水为主,前者含量略高。MgCl2型地层水较少,多见于富县组和延安组下部储层,向上含量逐渐降低(图6)。总体上呈现出自下而上CaCl2型、MgCl2型地层水含量减少,Na2SO4型含量增高的趋势。

    Figure 6.  Formation water type association in different strata of the Jurassic Fuxian and Yan′an Formations

    平面上,古地貌位置不同,水型也存在明显差异。以延10为例,一级、二级古河发育地区地层水的类型常常为Na2SO4型,部分地区为Na2SO4+NaHCO3型(图7);斜坡和阶地,尤其是在西部地区,常常以CaCl2型水为主,向东水型逐渐过渡为CaCl2+Na2SO4型。

    Figure 7.  The distribution feature of different formation water types and total salinity in the Jurassic Fuxian Formation and Yan10 member in the Ordos Basin

    以上分析展示了侏罗系水化学特征的复杂性,各种水型均有不同程度的发育,不同层、相带差异明显,但其变化有一定的规律性。总体上侏罗系储层的封闭性、保存条件相对较差,但差中有优,其中富县组和延安组延10段的斜坡、阶地、河间丘等位置保存条件相对较好。

  • 前侏罗纪,在延长组顶面形成了侵蚀沟谷,这些沟谷在侏罗纪早期进一步受河流的冲蚀,对下伏的延长组进一步切割。在盆地东部地区,一级古河、二级古河一般切割到长1或长2地层,在西部地区常常切穿长3地层,甚至切穿长4+5,而与长6地层直接接触[26]。河谷中沉积了富县组和延10粗碎屑沉积物。随着上覆地层加厚,压实作用造成侏罗系下部沉积水与延长组上部的渗入水或沉积水混合更替,因此侏罗系底部地层水具有延长组上部地层水的特征。富县组—延10地层水矿化度较高,具有相对高的Cl-、Ca2+离子浓度,低 S O 4 2 - H C O 3 - 离子浓度,CaCl2型水占比相对较高。而延8以上地层水矿化度较低, S O 4 2 - H C O 3 - 离子浓度相对较高,Cl-、Ca2+离子浓度相对较低,水型以Na2SO4型和NaHCO3型为主,局部地区为CaCl2型(表2)。由此可知,纵向地层水的混合交替作用,造成侏罗系不同层系地层水化学特征的差异。

    地区 油田 层位 地层水
    矿化度/ g/L 主要水型
    西 部 红井子 延4⁃5 44.83 Na2SO4 CaCl2
    延6⁃8 56.71 CaCl2
    延10 90.80 CaCl2
    演武—镇北 延6⁃8 39.81 CaCl2 Na2SO4
    延10 57.55 CaCl2
    中 部 马岭 延8及以上 40.39 Na2SO4
    延9 53.40 CaCl2 Na2SO4
    延10、富县组 55.80 CaCl2
    城壕 延7 25.75 Na2SO4 NaHCO3
    延9 45.97 CaCl2 MgCl2
    元城 延8及以上 21.16 MgCl2 CaCl2
    延9 27.36 CaCl2 Na2SO4
    延10 23.32 CaCl2 Na2SO4
    华池 延8及以上 26.92 Na2SO4 CaCl2
    延9 26.43 CaCl2 Na2SO4
    延10 28.13 Na2SO4 CaCl2
    东 部 下寺湾 延9、10 31.56 NaHCO3 Na2SO4
    安塞—志靖 延9 11.70 NaHCO3 CaCl2

    Table 2.  Formation water feature of oilfields in the Jurassic Fuxian and Yan′an Formations, Ordos Basin

  • 天环坳陷于中晚侏罗世已初具雏形。中晚侏罗世以来,盆地无论是整体抬升还是沉降,红井子—环县—镇原一线基本处于坳陷的轴部,地层的埋深大,向东西两侧,埋藏深度变浅。其中天环坳陷的东翼变化平缓,向东渐变为宽缓西倾单斜,坳陷西翼受西缘逆冲推覆构造活动影响,抬升急剧,表现出强烈的不对称性。延安组沉积后,盆地经历了多次抬升,如中侏罗世末的燕山运动Ⅰ幕造成盆地整体抬升,上侏罗统和下白垩统基本不发育;早白垩世末的燕山运动Ⅱ幕,盆地再次上升,缺失上白垩统等。由此可知,延安组沉积以后,渗入水文地质阶段远超过沉积水文地质阶段。盆地东部地区和西缘逆冲带,始终处于构造高部位,埋藏较浅,或出露地表,渗入水交替活跃,因此矿化度低, S O 4 2 - H C O 3 - 离子浓度相对较高,水型Na2SO4型,局部为NaHCO3型;而红井子—环县—镇原一线处于天环坳陷的轴部,埋藏深度大,处于相对封闭滞留环境,与渗入水的交替作用也相对较弱,矿化度高(图7)。因此,构造与沉积演化导致地层水矿化度和水化学特征的东西分带性。

  • 古地貌对地层水的运动方向与分布起到重要的控制作用。河谷地带沉积物粒度粗,一般是厚层含砾粗砂岩、粗砂岩等,物性好,是渗入水补给、交替的优势通道;古河两侧的斜坡和阶地主要为中粗砂岩与泥岩互层,粒度相对较细,物性较差,为地层水相对滞留的环境,渗入水补给、交替较弱。为了说明这种变化特征,用过演武高地—甘陕古河—姬塬高地—宁陕与蒙陕古河—靖边高地的大剖面(图8a),以及剖面不同位置的富县组与延10段地层水水化学参数特征(图8b~m),展示各古地貌单元地层水变化。

    Figure 8.  Formation water total salinity and parameters of the Fuxian Formation⁃Yan10 member in different geomorphology zones

  • 在河谷地带,受延长组地层水侵入影响的富县组—延10高矿化度的CaCl2型水更易于被富 S O 4 2 - H C O 3 - 离子的渗入水替换,使得矿化度降低,水型转化为Na2SO4型或NaHCO3型。而古河两侧的斜坡、阶地,渗入水的影响较小,保留了CaCl2水型。因此,由靠近高地的阶地、斜坡到河谷地带,富县组、延10地层水类型从CaCl2型变为Na2SO4型,或从CaCl2型过渡到NaHCO3型到Na2SO4型(图7)。

  • 矿化度呈现出由古河向高地方向增高的趋势。在演武高地和姬塬高地附近,这种变化特征尤为显著,矿化度由斜坡、阶地的100 g/L左右,到河谷降低到20 g/L左右,河间丘的矿化度比河道略高(图8b~e)。

  • 不同地貌单元,变质系数和钠氯系数也有差异。从钠氯系数分析(图8f~i),古河地区样品的钠氯系数一般大于1,河间丘近等于1,斜坡、阶地一般小于或近等于1。从变质系数来看(图8j~m),古河发育区的地层水变质系数小于0的占比较高,河间丘地区变质系数在0附近,而斜坡、阶地区的样品以变质系数大于0为主。

    综上所述,古地貌单元的发育特征决定了各个沉积单元中地层水矿化度、水化学参数、水型的规律性变化。

  • 成岩过程中的“耗水”作用也是造成河道不同位置地层水化学成分差异的原因之一。前人研究表明,碎屑岩的成岩作用中不但大部分需要水的参与,而且耗水量大,如1 000 g钾长石和1 000 g的钠长石蚀变为高岭石的过程中分别需要消耗97.1和103.1 g的水,黏土矿物的转化大部分也是耗水过程[33]

    古河地区富县组、延10发育大套含砾中粗砂岩、中粗粒砂岩,岩石类型主要是岩屑砂岩、长石岩屑砂岩和石英砂岩,泥质沉积少;斜坡和阶地砂体厚度减小,泥质含量增大,泥质夹层增多。埋藏成岩中,长石蚀变和黏土矿物转化造成岩石格架中的水分子大量减少,从而使得离子浓度增大、地层水矿化度增高。与河道相比,斜坡、阶地地区的成岩过程中“耗水作用”更为强烈,因而成岩作用过程中水岩反应进一步放大了由古河、阶地、斜坡、河间丘等单元离子浓度和矿化度的差异。

  • 早白垩世为鄂尔多斯盆地生排烃高峰期,延长组发育流体过剩压力,主要集中在长4+5—长9油层组[3435],延安组主要为正常压力。富县组—延10古河的粗碎屑沉积为中高渗储层,古河发育处,切割下伏的延长组地层强烈,有效缩短了与延长组长7烃源岩的垂向距离,成为泄压通道,因此生排烃高峰期在流体过剩压力与浮力的双重作用下,油气沿着古河侵蚀不整合面,由具有高过剩压力的延长组向常压的延安组运移。

    古河发育区,富县组和延10储层物性好,渗入水交替强烈,以输导作用为主,从延长组运移上来的油气很难在此保存,常随着流体继续由古河向两侧和河间高地运移。斜坡、阶地与河间丘,水体能量较弱,泥质隔层增多,储层封闭性相对较好,沿着斜坡运移的油气易于在此保存。加之,延长组顶面起伏形态与前侏罗纪古地貌具有很好的一致性,古河为幅度较大的下凹形态,斜坡、阶地和高地周边呈现出不同幅度的鼻隆、穹隆[26],成为油气聚集、保存的有利场所。由此而知,斜坡、阶地、河间丘等地区,在渗入水交替活跃程度、水动力、岩性组合、圈闭发育条件等方面均具有成藏优势,成藏要素匹配条件好,成为石油聚集的有利地区,已经发现的油藏主要围绕高地在斜坡、阶地呈串珠状分布(图1)。

  • 侏罗系油藏规模较小,已经发现的油藏面积一般小于10 km2,甚至有的仅1 km2左右,因此油藏评价和预测难度大。侏罗系地层水发育特征说明,在寻找侏罗系油藏过程中需关注以下几个方面:

    (1) 侏罗系古河两侧的斜坡、阶地、河间丘是寻找侏罗系油藏(尤其是侏罗系下部层系油藏)的有利区带。

    (2) 由于侏罗系储层距离延长组长7优质烃源岩垂向距离较远,一般为400 m以上,且属于中高渗透储层,油水分异作用相对较好,因此着力开展低幅度构造的刻画、分析不同地质历史阶段圈闭构造演化特征,有利于寻找侏罗系甜点油藏。

    (3) 侏罗系地层水矿化度、水型等变化复杂,通过分析侏罗系地层水化学特征在纵向变化和横向变化的规律性,有利于在实际的生产过程中甄别“低阻油层”、“高阻水层”,从而提高钻井成功率。

  • 综上所述,侏罗系水化学特征复杂,矿化度变化大,地层水类型丰富,但其变化特征呈现出较好的垂直分异性、东西分带性、地貌分区性。主要可以归纳为以下几点:

    (1) 受纵向地层水的混合交替作用影响,侏罗系水化学特征具有垂直分带性。从富县、延10向延9以上地层,地层水的矿化度逐渐降低,水型由CaCl2型为主向Na2SO4型为主转变,钠氯系数、脱硫系数逐渐变大,变质系数减小。

    (2) 受构造演化影响,水化学特征具有东西分带性。天环坳陷轴部地层埋藏深度大,且远离补给区,处于相对滞留环境,地层水矿化度高,钠氯系数、脱硫系数较小,变系数较大,向东西两侧随着构造埋深的变浅、出露,渗入水补给交替强烈,矿化度减小,钠氯系数、脱硫系数增大,变质系数减小。

    (3) 受富县组—延10古地貌发育特征、成岩耗水作用影响,水化学特征显示出地貌分区性。在古河发育区,地层水矿化度低,向斜坡、阶地到高地,矿化度逐渐提高,钠氯系数、脱硫系数逐渐减小,变质系数逐渐增大。地层水的类型由Na2SO4型或NaHCO3型向CaCl2型转变。

    (4) 阶地、斜坡、河间丘地区,在渗入水交替活跃程度、水动力、岩性组合、低幅度构造圈闭发育条件等方面均具有成藏优势,成藏要素匹配条件好,成为石油聚集的有利地区。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return