Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

LÜ JunLing, ZHU YiJie, XIA Rui, ZHENG YunKe, LIU ChenHu, FENG WenJie, LI GuoYan, DU XiaoFeng. Sedimentary Characteristics and Evolution Process of Arid Distributive Fluvial Systems: Insights from a flume⁃tank experiment[J]. Acta Sedimentologica Sinica, 2020, 38(5): 994-1005. doi: 10.14027/j.issn.1000-0550.2019.101
Citation: LÜ JunLing, ZHU YiJie, XIA Rui, ZHENG YunKe, LIU ChenHu, FENG WenJie, LI GuoYan, DU XiaoFeng. Sedimentary Characteristics and Evolution Process of Arid Distributive Fluvial Systems: Insights from a flume⁃tank experiment[J]. Acta Sedimentologica Sinica, 2020, 38(5): 994-1005. doi: 10.14027/j.issn.1000-0550.2019.101

Sedimentary Characteristics and Evolution Process of Arid Distributive Fluvial Systems: Insights from a flume⁃tank experiment

doi: 10.14027/j.issn.1000-0550.2019.101
Funds:

National Natural Science Foundation of China 41802123

National Science and Technology Major Project 2016ZX05024⁃003⁃004

Top Disciplines in Yangtze University 2019KFJJ0818024

  • Received Date: 2019-08-26
  • Rev Recd Date: 2019-12-02
  • Publish Date: 2020-10-28
  • Distributive fluvial systems(DFS) are large sedimentary accretions that develop at the margin of basins and extend to the shoreline of the lake. The main part of a DFS is generally known as an alluvial fan. In arid climatic conditions, large⁃scale DFS usually form at the margin of basins. The deposition process is complex, and may form large⁃scale oil, gas and water reservoirs. To gain an insight into the evolution of arid DFS and the variations in their sedimentary characteristics, the sedimentation process was modeled ina flume⁃tank experimentand precisely recorded by 3D laser scanning and a time⁃lapse camera. The experiment revealed that: (1)During the simulation process, the mean radius and edge roughness was correlated to the logarithm of the run time under constant boundary conditions. DFS growthoccurred in three obvious stages: an early stage, middle stage and late stage, each with large differences in sedimentation characteristics.(2)In the early stage, plate⁃like sheet⁃flood unitsformed in multi⁃periodic movements superposed on the surface of the experimental DFS.The middle stage was dominated by the lateral migration of unconfined channels andthe formation of confined channels originating atthe ends of the unconfined channels.In the late stage, the development of unconfined channels decreased, while the number of confined channels increased and drove the sedimentation process. (3)The threestages resulted in three layers of sediment,each having different sedimentary characteristics and spatial structure. The lowest layer was characterized by sheet⁃flooding lobe complexes; the middle layer consisted of filled unconfined channels and axial confined channels;the top layer was characterized by intersecting confined channels.
  • [1] Hartley A J, Weissmann G S, Nichols G J, et al. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183.
    [2] Hartley A J, Mather A E, Jolley E, et al. Climatic controls on alluvial-fan activity, coastal cordillera, northern Chile[J]. Geological Society, London, Special Publications, 2005, 251(1): 95-116.
    [3] Weissmann G S, Hartley A J, Scuderi L A, et al. Prograding distributive fluvial systems: Geomorphic models and ancient examples[M]//Driese S G, Nordt L C. New Frontiers in paleopedology and terrestrial paleoclimatology: Paleosols and soil surface analog systems. Tulsa: SEPM, 2013: 149-158.
    [4] Weissmann G S, Hartley A J, Scuderi L A, et al. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review[J]. Geomorphology, 2015, 250: 187-219.
    [5] Weissmann G S, Hartley A J, Nichols G J, et al. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems[J]. Geology, 2010, 38(1): 39-42.
    [6] Buscombe D. Transferable wavelet method for grain-size distribution from images of sediment surfaces and thin sections, and other natural granular patterns[J]. Sedimentology, 2013, 60(7): 1709-1732.
    [7] Brierley G J, Liu K Y, Crook K A W. Sedimentology of coarse-grained alluvial fans in the Markham Valley, Papua New Guinea[J]. Sedimentary Geology, 1993, 86(3/4): 297-324.
    [8] D’Arcy M, Whittaker A C, Roda-Boluda D C. Measuring alluvial fan sensitivity to past climate changes using a self-similarity approach to grain-size fining, Death Valley, California[J]. Sedimentology, 2017, 64(2): 388-424.
    [9] 张昌民,胡威,朱锐,等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏,2017,29(3):1-9.

    Zhang Changmin, Hu Wei, Zhu Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3): 1-9.
    [10] 张昌民,朱锐,赵康,等. 从端点走向连续:河流沉积模式研究进展述评[J]. 沉积学报,2017,35(5):926-944.

    Zhang Changmin, Zhu Rui, Zhao Kang, et al. From end member to continuum: Review of fluvial facies model research[J]. Acta Sedimentologica Sinica, 2017, 35(5): 926-944.
    [11] 冯文杰,吴胜和,印森林,等. 准噶尔盆地西北缘三叠系干旱型冲积扇储层内部构型特征[J]. 地质论评,2017,63(1):219-234.

    Feng Wenjie, Wu Shenghe, Yin Senlin, et al. Internal architecture characteristics of Triassic arid alluvial fan in northwestern margin of Junggar Basin[J]. Geological Review, 2017, 63(1): 219-234.
    [12] 余宽宏,金振奎,李桂仔,等. 准噶尔盆地克拉玛依油田三叠系克下组洪积砾岩特征及洪积扇演化[J]. 古地理学报,2015,17(2):143-159.

    Yu Kuanhong, Jin Zhenkui, Li Guizai, et al. Conglomerate characteristics and alluvial fan evolution of the Triassic Lower Karamay Formation in Karamay oilfield, Junggar Basin[J]. Journal of Palaeogeography, 2015, 17(2): 143-159.
    [13] 余宽宏,金振奎,李桂仔,等. 天山北缘辫状河型洪积扇沉积特征及其对准噶尔盆地西北缘古代洪积扇油气勘探的指导意义[J]. 高校地质学报,2015,21(2):288-299.

    Yu Kuanhong, Jin Zhenkui, Li Guizai, et al. Sedimentary characteristics of braided alluvial fan in North Tianshan Mountain and its significance for oil-gas exploration of ancient alluvial fans in Northwest Junggar Basin[J]. Geological Journal of China Universities, 2015, 21(2): 288-299.
    [14] 贾进华. 塔里木盆地早白垩世沉积相特征与古地理[J]. 古地理学报,2009,11(2):167-176.

    Jia Jinhua. Sedimentary characteristics and palaeogeography of the Early Cretaceous in Tarim Basin[J]. Journal of Palaeogeography, 2009, 11(2): 167-176.
    [15] 李鑫,钟大康,李勇,等. 塔里木盆地库车坳陷新近系和第四系沉积特征及演化[J]. 古地理学报,2013,15(2):169-180.

    Li Xin, Zhong Dakang, Li Yong, et al. Sedimentary characteristics and evolution of the Neogene and Quaternary in Kuqa Depression of Tarim Basin[J]. Journal of Palaeogeography, 2013, 15(2): 169-180.
    [16] 田军. 塔里木盆地库车坳陷白垩系—第三系沉积相及储层分布预测研究[D]. 成都:西南石油大学,2005:45-140.

    Tian Jun. The research for distribution and prediction of Cretaceous and Tertiary sedimentary facies and reservoir beds in Kuche Depression, Tarim Basin[D]. Chengdu: Southwest Petroleum University, 2005: 45-140.
    [17] 宫清顺,刘占国,宋光永,等. 柴达木盆地昆北油田冲积扇厚层砂砾岩储集层内部隔夹层[J]. 石油学报,2019,40(2):152-164.

    Gong Qingshun, Liu Zhanguo, Song Guangyong, et al. Inter—layers in alluvial—fan thick sandy conglomerate reservoir of Kunbei oilfield, Qaidam Basin[J]. Acta Petrolei Sinica, 2019, 40(2): 152-164.
    [18] 王勇,钟建华,王志坤,等. 柴达木盆地西北缘现代冲积扇沉积特征及石油地质意义[J]. 地质论评,2007,53(6):791-796.

    Wang Yong, Zhong Jianhua, Wang Zhikun, et al. Sedimentary characteristics of modern alluvial fans in the northwest margin of the Qaidam Basin and their significance in petroleum geology[J]. Geological Review, 2007, 53(6): 791-796.
    [19] 印森林,刘忠保,陈燕辉,等. 冲积扇研究现状及沉积模拟实验:以碎屑流和辫状河共同控制的冲积扇为例[J]. 沉积学报,2017,35(1):10-23.

    Yin Senlin, Liu Zhongbao, Chen Yanhui, et al. Research progress and sedimentation experiment simulation about alluvial fan: A case study on alluvial fan controlled by debris flow and braided river[J]. Acta Sedimentologica Sinica, 2017, 35(1): 10-23.
    [20] 印森林,陈玉琨,冯文杰,等. 粗碎屑冲积扇沉积构型模式及剩余油分布[M]. 北京:石油工业出版社,2018:85-86.

    Yin Senlin, Chen Yukun, Feng Wenjie, et al.Thick debris alluvial fan deposition configuration mode and remaining oil distribution [M]. Petroleum Industry Press, 2018:85-86.
    [21] Clarke L, Quine T A, Nicholas A. An experimental investigation of autogenic behaviour during alluvial fan evolution[J]. Geomorphology, 2010, 115(3/4): 278-285.
    [22] 郭颖,罗子金,杨勇. 干旱气候环境下小型冲积扇—辫状河沉积特征:以坎苏瓦特剖面紫泥泉子组为例[J]. 东北石油大学学报,2017,41(6):1-8.

    Guo Ying, Luo Zijin, Yang Yong. Arid climate alluvial fan-braided river system deposition: A case of Ziniquanzi Formation in Kansuwate outcrop[J]. Journal of Northeast Petroleum University, 2017, 41(6): 1-8.
    [23] 李国永,徐怀民,路言秋,等. 准噶尔盆地西北缘八区克下组冲积扇高分辨率层序地层学[J]. 中南大学学报(自然科学版),2010,41(3):1124-1131.

    Li Guoyong, Xu Huaimin, Lu Yanqiu, et al. High-resolution sequence stratigraphy for alluvial fan on Lower Karamay Formation in 8th zone of northwestern Junggar Basin[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1124-1131.
    [24] 陈欢庆,赵应成,高兴军,等. 准噶尔盆地西北缘克下组冲积扇类型[J]. 大庆石油地质与开发,2014,33(2):6-9.

    Chen Huanqing, Zhao Yingcheng, Gao Xingjun, et al. Types of the alluvial fans of Lower Karamay Formation in the northwestern margin of Zhunger Basin[J]. Petroleum Geology and oilfield Development in Daqing, 2014, 33(2): 6-9.
    [25] 陈德坡,乔雨朋,王军,等. 山东莱阳赭埠村辛格庄组冲积扇沉积特征研究[J]. 石油化工高等学校学报,2019,32(3):87-94.

    Chen Depo, Qiao Yupeng, Wang Jun, et al. Sedimentary characteristics analysis on alluvial fan of Xingezhuang Formation Zhebu Village in Laiyang, Shandong province[J]. Journal of Petrochemical Universities, 2019, 32(3): 87-94.
    [26] 李新坡,莫多闻,朱忠礼,等. 一个片流过程控制的冲积扇:太原盆地风峪沟冲积扇[J]. 北京大学学报(自然科学版),2007,43(4):560-566.

    Li Xinpo, Mo Duowen, Zhu Zhongli, et al. A sheetflood-dominated alluvial fan: FengYG alluvilal fan, Taiyuan Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(4): 560-566.
    [27] 刘超,姜在兴,陈骥. 青海湖北部冲积扇沉积特征、演化过程及控制因素[J]. 油气地质与采收率,2017,24(5):1-9.

    Liu Chao, Jiang Zaixing, Chen Ji. Sedimentary characteristics, evolution and controlling factors of the alluvial fans, the north of Qinghai Lake[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 1-9.
    [28] Primm J W, Johnson C L, Stearns M. Basin-axial progradation of a sediment supply driven distributive fluvial system in the Late Cretaceous southern Utah foreland[J]. Basin Research, 2018, 30(2): 249-278.
    [29] Owen A, Nichols G J, Hartley A J, et al. Vertical trends within the prograding Salt Wash distributive fluvial system, SW United States[J]. Basin Research, 2017, 29(1): 64-80.
    [30] Gulliford A R, Flint S S, Hodgson D M. Crevasse splay processes and deposits in an ancient distributive fluvial system: The Lower Beaufort Group, South Africa[J]. Sedimentary Geology, 2017, 358: 1-18.
    [31] Goswami P K, Deopa T. Lithofacies characters and depositional processes of a Middle Miocene Lower Siwalik fluvial system of the Himalayan Foreland Basin, India[J]. Journal of Asian Earth Sciences, 2018, 162: 41-53.
    [32] 冯文杰,吴胜和,许长福,等. 冲积扇储层窜流通道及其控制的剩余油分布模式:以克拉玛依油田一中区下克拉玛依组为例[J]. 石油学报,2015,36(7):858-870.

    Feng Wenjie, Wu Shenghe, Xu Changfu, et al. Water flooding channel of alluvial fan reservoir and its controlling distribution pattern of remaining oil: A case study of Triassic Lower Karamay Formation, Yizhong area, Karamay oilfield, NW China[J]. Acta Petrolei Sinica, 2015, 36(7): 858-870.
    [33] 吴胜和,范峥,许长福,等. 新疆克拉玛依油田三叠系克下组冲积扇内部构型[J]. 古地理学报,2012,14(3):331-340.

    Wu Shenghe, Fan Zheng, Xu Changfu, et al. Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay oilfield, Xinjiang[J]. Journal of Palaeogeography, 2012, 14(3): 331-340.
    [34] 吴胜和,冯文杰,印森林,等. 冲积扇沉积构型研究进展[J]. 古地理学报,2016,18(4):497-512.

    Wu Shenghe, Feng Wenjie, Yin Senlin, et al. Research advances in alluvial fan depositional architecture[J]. Journal of Palaeogeography, 2016, 18(4): 497-512.
    [35] 刘大卫,纪友亮,高崇龙,等. 砾质辫状河型冲积扇沉积微相及沉积模式:以准噶尔盆地西北缘现代白杨河冲积扇为例[J]. 古地理学报,2018,20(3):435-451.

    Liu Dawei, Ji Youliang, Gao Chonglong, et al. Microfacies and sedimentary models of gravelly braided-river alluvial fan: A case study of modern Baiyanghe-river alluvial fan in northwestern margin of Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(3): 435-451.
    [36] 单新,于兴河,李胜利,等. 准南水磨沟侏罗系喀拉扎组冲积扇沉积模式[J]. 中国矿业大学学报,2014,43(2):262-270.

    Shan Xin, Yu Xinghe, Li Shengli, et al. The depositional characteristics and model of Kalazha for mation in Shuimogou profile, Junggar Basin[J]. Journal of China University of Mining & Technology, 2014, 43(2): 262-270.
    [37] 陈欢庆,梁淑贤,舒治睿,等. 冲积扇砾岩储层构型特征及其对储层开发的控制作用:以准噶尔盆地西北缘某区克下组冲积扇储层为例[J]. 吉林大学学报(地球科学版),2015,45(1):13-24.

    Chen Huanqing, Liang Shuxian, Shu Zhirui, et al. Characteristics of conglomerate reservoir architecture of alluvial fan and its controlling effects to reservoir development: Taking alluvial fan reservoir in some area of northwest margin of Junggar Basin as an example[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1): 13-24.
    [38] 王晓光,贺陆明,吕建荣,等. 克拉玛依油田冲积扇构型及剩余油控制模式[J]. 断块油气田,2012,19(4):493-496.

    Wang Xiaoguang, He Luming, Jianrong Lü, et al. Configuration of alluvial fan and control mode on remaining oil in Karamay oilfield[J]. Fault-Block Oil & Gas Field, 2012, 19(4): 493-496.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(611) PDF downloads(124) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-08-26
  • Revised:  2019-12-02
  • Published:  2020-10-28

Sedimentary Characteristics and Evolution Process of Arid Distributive Fluvial Systems: Insights from a flume⁃tank experiment

doi: 10.14027/j.issn.1000-0550.2019.101
Funds:

National Natural Science Foundation of China 41802123

National Science and Technology Major Project 2016ZX05024⁃003⁃004

Top Disciplines in Yangtze University 2019KFJJ0818024

Abstract: Distributive fluvial systems(DFS) are large sedimentary accretions that develop at the margin of basins and extend to the shoreline of the lake. The main part of a DFS is generally known as an alluvial fan. In arid climatic conditions, large⁃scale DFS usually form at the margin of basins. The deposition process is complex, and may form large⁃scale oil, gas and water reservoirs. To gain an insight into the evolution of arid DFS and the variations in their sedimentary characteristics, the sedimentation process was modeled ina flume⁃tank experimentand precisely recorded by 3D laser scanning and a time⁃lapse camera. The experiment revealed that: (1)During the simulation process, the mean radius and edge roughness was correlated to the logarithm of the run time under constant boundary conditions. DFS growthoccurred in three obvious stages: an early stage, middle stage and late stage, each with large differences in sedimentation characteristics.(2)In the early stage, plate⁃like sheet⁃flood unitsformed in multi⁃periodic movements superposed on the surface of the experimental DFS.The middle stage was dominated by the lateral migration of unconfined channels andthe formation of confined channels originating atthe ends of the unconfined channels.In the late stage, the development of unconfined channels decreased, while the number of confined channels increased and drove the sedimentation process. (3)The threestages resulted in three layers of sediment,each having different sedimentary characteristics and spatial structure. The lowest layer was characterized by sheet⁃flooding lobe complexes; the middle layer consisted of filled unconfined channels and axial confined channels;the top layer was characterized by intersecting confined channels.

LÜ JunLing, ZHU YiJie, XIA Rui, ZHENG YunKe, LIU ChenHu, FENG WenJie, LI GuoYan, DU XiaoFeng. Sedimentary Characteristics and Evolution Process of Arid Distributive Fluvial Systems: Insights from a flume⁃tank experiment[J]. Acta Sedimentologica Sinica, 2020, 38(5): 994-1005. doi: 10.14027/j.issn.1000-0550.2019.101
Citation: LÜ JunLing, ZHU YiJie, XIA Rui, ZHENG YunKe, LIU ChenHu, FENG WenJie, LI GuoYan, DU XiaoFeng. Sedimentary Characteristics and Evolution Process of Arid Distributive Fluvial Systems: Insights from a flume⁃tank experiment[J]. Acta Sedimentologica Sinica, 2020, 38(5): 994-1005. doi: 10.14027/j.issn.1000-0550.2019.101
  • 干旱型分支河流体系是一种常见的沉积体系,广泛见于古代沉积地层记录中和现代沉积盆地周缘,一般由山口顺源延伸至湖盆边缘,终止于湖泊、风成沙丘、轴向河流等[15]。分支河流体系在顺源方向上具有明显的渐变性,如水动力强度、沉积物搬运速度、沉积物粒度等[68]。在干旱地区发育的分支河流体系也被称为冲积扇或洪积扇[910]

    地层记录中的分支河流体系可形成大规模油气、水储层,如我国西部准噶尔盆地[1113]、塔里木盆地[1416]、柴达木盆地[1718]等均发现了大规模的分支河流体系成因的油藏,数十年来,油气地质勘探开发专家的研究实践表明,分支河流体系可形成超大规模的油气储层,但其沉积过程、演化规律及内部构型特征极为复杂。国内外学者通过水槽沉积模拟实验[1921]、现代沉积分析[2224]、露头解剖[2527]、井震结合地下储层研究[2831]等方式对干旱型分支河流体系沉积特征进行了大量研究,并认识到:1)在外部条件恒定的条件下,分支河流体系存在明显的多阶段演化规律。Clarke et al. [21]和印森林等[20]根据分支河流体系的主导性沉积作用类型及其对应的沉积特征演变规律,分别将河流主控和洪水主控的两类分支河流体系的演化过程大致划分为片流主控、非限制性水道主控及限制性水道主控三个阶段。与此同时,可在垂向上形成差异明显的多层结构。2)分支河流体系的沉积过程由河流主导,从出山口到分支河流体系末端存在河型、河道规模、河道分布样式的变化[9]。3)分支河流体系发育的不同阶段河流沉积动力与样式的演变造成沉积体增生过程与样式存在较大差异。4)干旱型分支河流体系从扇根、扇中、扇缘三个部分进行了构型的划分,其中扇根主要为槽流带和片流带,扇中以多期辫状水道复合而成,以辫流带为主,扇缘发育径流水道、漫流细粒沉积等构型要素[3234]

    截至目前,上述特征不论是在实验中还是沉积记录中都十分常见,然而要通过沉积记录精确地分析分支河流体系的阶段性演化规律和不同阶段河流样式与沉积特征还存在较大的困难,主要是因为沉积记录本质上是演化的结果而非过程,虽然结果能够保存大量的沉积过程信息,但对于沉积—侵蚀—再沉积这样的不可恢复过程而言,沉积记录包含信息有限。因而,通过水槽沉积模拟研究分支河流体系沉积过程是可行且十分必要的。前人进行了大量实验研究,但由于缺乏对整个沉积过程中沉积地貌的动态演化、水道迁移、地表侵蚀及沉积物分布的定量观测与分析,至今为止罕有针对分支河流体系或冲积扇沉积演化过程定量化研究的文献报道。

    为明确干旱型分支河流体系沉积演化过程及其不同时期沉积特征的差异,本文通过水槽沉积模拟实验,模拟再现典型干旱分支河流体系的沉积过程,并通过三维激光扫描、延时拍摄等技术手段精确监测模拟过程,在此基础上精确解析其沉积演化规律,并构建沉积构型模式。

  • 为再现干旱气候下分支河流体系的沉积特征与演化过程,本实验根据自然条件下分支河流体系的沉积动力学背景、沉积环境特征等资料,设计了一套沉积模拟与过程监测装置。装置主要包括一座沙质沉积底形(高程Z=3.715 m)、一台定量供水器、一台定量供沙器、一台排水泵、一台延时相机、一台FARO S70三维激光扫描仪(图1)。沉积底形为沙质平台,用于模拟自然条件下盆地边缘地形平坦的底形。根据模拟实验装置的规模,将定量供水器通过一条通道向分支河流体系提供稳定的水流(0.1 L/s)。实测数据(测量对象为柴达木盆地格尔木分支河流体系)显示一般分支河流体系中水道携砂量约为45 kg/m3或者0.045 g/cm3,考虑到干砂的比重为1.6 g/cm3,设定了160 cm3/min的供砂速率。保证在模拟过程中,水携含砂量与自然条件一致。干砂的中值粒径为0.35 mm,通过供水通道混入水中并被携带至分支河流表面发生沉积。

    Figure 1.  Experimental arrangement

    本实验采用三维激光扫描仪对沉积过程中的沉积地貌进行精确监测,所用仪器为FARO S70三维激光扫描仪(图1),其垂向和纵横向测量精度为亚毫米级,可实现理想的定量化地貌监测。在测量过程中,为了避免水体折射激光造成测量失准,每隔15 min暂停实验,并在水流完全下渗之后进行测量。以15 min作为一个期次,总共模拟74期。除激光扫描外,延时相机在固定机位每隔1 min拍照一次,记录沉积过程中的水流分散样式、演变过程等。

  • 在稳定的沉积条件控制下,实验模拟的分支河流体系往往呈现出明显的阶段性演化特征,Clarke et al. [21]和印森林等[20]在针对河流主控和洪水事件主控的分支河流体系的沉积模拟实验中均通过水流分散样式的差异进行了阶段划分,但水流分散样式往往是渐变的,难以进行精确的阶段划分,且在模拟整个分支河流体系的生长过程中,其地貌特征演变规律、水流分散样式变迁、定量化地貌指标如何变化尚未做出明确研究叙述。为了准确划分演化阶段,在前人研究基础之上,本实验采用定量化地貌指标、水流分散样式及沉积物堆积样式综合分析的研究思路对干旱气候条件下分支河流体系的演化规律进行解析。

  • 分支河流体系沉积演化过程中出现的代表性、典型的沉积现象,并通过三维激光扫描建立的数字化高程模型计算分支河流体系的平均半径、边缘糙度、坡度等指标,揭示其演变规律。该实验在模拟过程中,可观察到三种水流式样:片流、非限制性河道、限制性河道。片流,即流水漫出河道在全部或部分扇面上大面积流动的一种席状水流[26]。该实验中,将两侧不被限制,因水流漫溢造成决口,其形态、位置均发生改变、多位于分支河流体系近源端的河道称为非限制河道;而将两侧受限及形态、位置不发生或几乎不发生改变的河道称为限制性河道,多出现于分支河流体系远端(图2)。

    Figure 2.  Typical sedimentary characteristics during the three stages of DFS development

    实验开始后,沉积物随水流冲出供水槽形成分支河流体系(Distributive fluvial system,简称DFS)雏形,水流覆盖整个DFS表面形成片状水流,砂体呈朵状分布,此时未出现侵蚀现象(图2a1),随着沉积砂体增多,水流从全覆盖式片流转变为部分覆盖式,集中于地势较低侧沉积[20],待较低部位填平后进行新一轮沉积,此时侵蚀现象较少发生或几乎不发生(图2a2)。由于片流水浅而急,其携带的大量沉积物快速沉降[20],在此过程中,沉积体速度增长明显,其坡度(图3)、半径及边缘糙度处于快速增加状态(图4),其局部片流沉积导致其边缘呈现明显差异化;随着模拟期次增加,片流面积逐渐减小,转化为非限制性河道。非限制性水道多呈分叉状于沉积体侧向迁移(图2b1,b2),以拓宽沉积体并填补上一期事件造成的低势区,且期次数与非限制性河道的面积呈反比,与限制性河道数呈正比(图2b2)。在该过程中沉积体坡度(图3)、半径、边缘糙度(图4)增长速率有所减缓; DFS形成后期,非限制性河道面积持续减小至近物源处迁移叠置,非限制性河道趋于主导地位,且均匀分布于沉积体表面(图2c1,c2),切割沉积体中较高部位,使整个DFS达到沉积平衡的状态。沉积体坡度(图3)、半径、边缘糙度(图4)均趋于稳定状态。

    Figure 3.  Surface slope evolution of the DFS during the experiment

    Figure 4.  Variations of average radius and edge roughness of the experimental DFS at different surface elevations

  • 实验沉积体最大厚度约为10 cm,底床高程为3.715 m。为了定量分析DFS的沉积过程演变规律,以Z=3.72 m、3.73 m、3.74 m及3.75 m为水平参考面,利用激光扫描测量的DFS表面高程数据绘制DFS边缘线,并投影到水平面上(图5)。进一步地,利用所得的4套边缘线数据计算DFS半径与边缘糙度。所选4个参考面主要为实验沉积体中下部位,因此,所选参考面计算所得的地貌参数能够指示分支河流体系主体部位的地貌特征,具有较强的普遍性和可靠性。

    Figure 5.  DFS edge linesof the experimental DFS from the 1st to 74th laser scans

    DFS平均半径是边缘线距离物源口距离的平均值,其计算公式为:

    R ¯ = i = 1 n R i n (1)

    式中: R ¯ 为DFS平均半径; R i 为某一期单次所取DFS半径;n为某一期所取半径总数。

    DFS边缘糙度是指边缘线上的所有点与物源口距离的方差,指示边缘线的圆滑程度,糙度越小则边缘线越圆滑,其计算公式为:

    R e = i = 1 N ( r i - r ¯ ) 2 N (2)
    r ¯ = i = 1 N r i N (3)
    r i = ( x i - x 0 ) 2 + ( y i - y 0 ) 2 , (i=1,2,3……) (4)

    式中:Re为DFS边缘糙度; r i 为DFS物源点至边缘某一点的距离; r ¯ 为某一期次中所取距离的平均值;N为某一期次中所取距离的总数;(x 0 , y 0)为物源点坐标;(xi , yi )为沉积体边缘某一点坐标。

    结果显示,在整个沉积过程中,DFS的平均半径呈现出较为典型的指数型增长规律,即平均半径逐渐增大,但增长速率逐渐减小(图4a1~d1)。类似地,DFS边缘糙度与模拟期次也存在指数相关关系,即糙度随着模拟期次的增加而增大,但增加速率则逐步减小(图4a2~d2)。根据平均半径和糙度的增速特性,结合水流分散式样,分支河流体系演化过程可拟合出三个明显的不同阶段,即初期快速增加阶段、中期中速增加阶段及后期慢速增加阶段。

    在三个不同的阶段内,DFS边缘线指示的新增沉积物分布范围存在较大的差异性。初期快速增加阶段(即蓝色区域),呈现较为规律的环带状为特征(图5d),表明该时期,DFS各个方向均发育有新增的连片沉积。此后沉积方向发生转变,由全面沉积转化为倾向于某一侧集中沉积,并于某一段期次内(第1~8期),该沉积区域边缘线皆呈重合现象,表明该区域曾发生大面积沉积间断,沉积物随水流朝其他方向呈朵状分布沉积,并于图中显示为大片空白带。此时,沉积体正处于快速扩大阶段,与之对应的DFS半径变化速率迅速增加(图4d1)。由于初始空间可容量大,沉积物于各向沉积时,其沉积面积大小差异较大(图5d),因此,DFS边缘糙度与半径增长规律相同(图4d2)。随着高程的增加,DFS剖面坡度增大,水流阻力减小,沉积物难以在中心部位形成大面积朵体,上述规律虽仍然存在,但趋于逐渐弱化的形式(图4a1~c2、图5a~c)。

    中期中速增加阶段(即绿—黄色区域)(图5d),仍有部分较明显的突出空白带,但面积较蓝色区域小,整体分布较为均匀,随着边缘线颜色由绿转黄,其空白带面积呈递减趋势。边缘线重合比例增高,表明多个区域在某一时间段内均发生沉积间断,只有较小区域发生改变,不重合的部分即为每一期新的片流沉积区,此时水流连片性与连续性降低,DFS半径及边缘糙度仍处增加阶段但其增长速率减缓(图4d1,d2)。

    后期慢速增加阶段(即红色区域),该阶段几乎不存在较大面积的空白带,边缘线重合率高(图5d),表明该过程沉积体外围几乎不发生大面积沉积,能量较高的非限制性水道发育程度大大降低,低能的限制性水道占据主体对沉积体进行侵蚀、切割,沉积作用不大[11]。因此,DFS半径及边缘糙度即使依旧呈现出增加状态,但其变化率逐渐趋于稳定(图4d1,d2)。

    从整体观察可知,随着所取参考面的海拔高程增加,DFS的半径及边缘糙度的变化规律仍具有一致性(图4a1~d2),则该现象可视为DFS形成过程中的普遍规律,是划分沉积阶段行之有效的方法。

  • 在稳定的沉积条件控制下,实验模拟的分支河流体系沉积过程中各阶段的沉积物分布、水流分散式样及其形式转变都具有明显特点,通过延时相机所摄相片及三维激光扫描仪获得的沉积体厚度增量图,对各阶段的沉积特征及差异性进行分析描述。

  • 初期阶段水流式样以整体覆盖式片流(图6a1)和部分覆盖式片流(图6a2)为主,水流连片性较好。分支河流体系形成最早期,DFS表面水流覆盖率达100%(图6a1),各方向均有沉积(图6a1),随着模拟期次增加,新的沉积物随水流不断推进沉积,覆盖于前期沉积体之上,整个过程其DFS边界线呈环带状分布(图5d)。

    Figure 6.  Characteristics of sediment deposition and its distribution at the initial stage

    由于各方向沉积量存在差异,各区域地形高程差逐渐明显化,因此,水流集中至几个方向进行沉积(图6a2),每一期次沉积的方向均有不同,前期优势沉积方向发生沉积间断(图5d),沉积物以朵状形式多分布于DFS中远端(图6a4)。该时期几乎不发育侵蚀现象(图6a3,a4)。

  • 该阶段片状水流规模较上一阶段减小,逐渐转变为非限制性河道,水流连片性减弱。该阶段早期,非限制性河道延伸距离远,可至DFS边缘(图7b1,b2),砂体跟随河道方向呈小规模朵状沉积(图7b5)。由于流速不变,水流分散面积减小,DFS表面开始出现侵蚀现象(图7b5,b6),但发生侵蚀的区域可于下一期次沉积充填,此后非限制性河道转至其他方向进行沉积、侵蚀(图7b3,b4)。由观察可知,非限制性水道于侧向迁移过程中并非一直处于优势地位,随着DFS逐步生长,非限制性河道流域面积持续减小,限制性河道数量增加(图7b3,b4),沉积物不再只随着高能水道于某一侧沉积,而呈现出远端限制性河道区域内沉积物以细线状四散分布、近端非限制性河道区域内沉积物随着河道发生大面积沉积的形式(图7b6)。

    Figure 7.  Characteristics of sediment deposition and its distribution at the middle stage

  • 该阶段非限制性河道逐渐“萎缩”至近物源区域,限制性河道发育程度增加并较为均匀地分布于DFS(图8c1~c4)。沉积物呈辐射状散布,各方向沉积物数量较前期减少,分支河流体系增长速率变慢,在稳定的水动力条件下,同初期——早中期发育有大面积沉积的现象几乎不存在,因此该阶段各期次的DFS边界线重合度高(图5d)。与此同时,河道下切程度增加,小规模侵蚀水道增多(图8c5,c6),形成切割后被充填又再次切割的状态,使DFS处于沉积平衡。

    Figure 8.  Characteristics of sediment deposition and its distribution at the latter stage

  • 本实验将从分支河流体系动态沉积过程出发,对其沉积模式进行阶段性的描述,在此过程中共总结出三种沉积构型,由下至上依次为:底层片流朵体复合体、中层非限制性河道与限制性河道切割叠覆体、顶层限制性河道切叠沉积体(图9d)。

    Figure 9.  Sedimentary architecture model of the experimental DFS at the initial, middle and latter stages

    同上文分支河流体系沉积过程的描述,初期阶段水流于沉积体表面覆盖率高,侵蚀现象几乎不发生,多期片流砂体在垂向上叠加,并于侧向上来回摆动相互叠复[32]以扩大DFS面积,形成片流朵体相互叠复的复合体(图9a)。

    而中期阶段由非限制性河道及与其远端相连的限制性河道的形成与废弃共同主导了沉积过程。片流面积逐渐转化为非限制性河道且于初期阶段形成的朵体复合体侧向迁移,DFS中发育的少数限制性河道对朵体底形和非限制性河道形成的沉积物进行切割(图9b)。随着模拟期次的增加,逐渐形成非限制性河道与限制性河道切割叠覆体。

    实验后期阶段,非限制性河道发育程度大大降低而限制性河道主导沉积过程,从而显示出限制性水道在整个分支河流体系表面呈辐射状分布并对沉积体进行叠置切割的状态(图9c),形成由限制性河道切叠的沉积体。

    与前人从野外露头等静态资料研究DFS沉积构型不同[3538],本实验从沉积过程与动态演化的视角揭示了分支河流体系沉积过程的动态演变特性和特有的阶段性。沉积体系在发育过程中,持续的沉积作用会改变沉积区的高程分布、地貌特征及表面沉积物类型,这就导致随后的沉积过程会受到影响而发生流态、水流分布样式及沉积规律的变化,并呈现出明显的阶段性差异,而阶段性的差异转变又进一步造成分支河流体系内部构成呈现出明显的垂向分层性。因此,针对分支河流体系或类似的冲积扇沉积体系成因的大规模油气储层,其勘探开发研究应考虑到其垂向分层并明确层间差异性。

  • (1) 干旱型分支河流体系在沉积过程中从片流逐渐演化为非限制性河道—限制性河道最后变成限制性河道主导,与此同时,沉积体半径、边缘糙度和沉积坡度呈对数关系的趋势增长,在事件发生的后期逐渐趋于稳定。

    (2) 分支河流体系演化过程划分为三个阶段:1)初期阶段,水流以全覆盖式片流至部分覆盖式片流多期次迁移叠置,连片性好,沉积物随着水流从各方向均有分布发展到集中于某侧分布,多沉积于DFS中远端,该阶段几乎不发育侵蚀现象;2)中期阶段,水流面积较上一阶段有缩小的趋势,水流式样从片流转化为非限制性河道,其连片性降低,有少量限制性河道发育,沉积物分散形式呈现多样化,除小规模朵状分布外,还以细线状四散分布于沉积体。与此同时,该阶段开始出现侵蚀现象,且前期的侵蚀部位会于后期填充;3)后期阶段,水流面积进一步减小,几乎不具有连片性,限制性河道为主要存在形式,大面积沉积现象已不存在,沉积物多呈辐射状分散,且侵蚀现象较上一阶段更为明显,河道不断切叠、沉积,使沉积体处于沉积平衡状态。

    (3) 实验表明分支河流体系形成的复杂沉积体系具有明显的三层结构,底层为片流朵体复合体、中层为非限制性河道与限制性河道切割叠覆体、顶层为限制性河道切叠沉积体。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return