Advanced Search
Volume 38 Issue 5
Oct.  2020
Turn off MathJax
Article Contents

ZHAO Kun, LI TingTing, ZHU GuangYou, ZHANG ZhiYao, LI JingFei, WANG PengJu, YAN HuiHui, CHEN YongJin. Development Environment and Formation Mechanism of Lower Cambrian Source Rocks in the Chengkou Area, Northeast Chongqing, South China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1111-1122. doi: 10.14027/j.issn.1000-0550.2019.102
Citation: ZHAO Kun, LI TingTing, ZHU GuangYou, ZHANG ZhiYao, LI JingFei, WANG PengJu, YAN HuiHui, CHEN YongJin. Development Environment and Formation Mechanism of Lower Cambrian Source Rocks in the Chengkou Area, Northeast Chongqing, South China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1111-1122. doi: 10.14027/j.issn.1000-0550.2019.102

Development Environment and Formation Mechanism of Lower Cambrian Source Rocks in the Chengkou Area, Northeast Chongqing, South China

doi: 10.14027/j.issn.1000-0550.2019.102
Funds:

China National Petroleum Corporation (CNPC) Scientific Research and Technology Development Project 2019B⁃04, 2018A⁃0102

  • Received Date: 2019-06-10
  • Rev Recd Date: 0209-12-03
  • Publish Date: 2020-10-28
  • The Lower Cambrian black shale at the northern margin of the Upper Yangtze Platform is an important source rock with large sedimentary thickness and high organic carbon content, which gives it important oil and gas exploration value. Restoring its developmental environment and clastic provenance is of great significance for the prediction of hydrocarbon source rock distribution. By systematic field outcrop sampling in the Chengkou area, South China, and geochemical testing, this study investigated the formation environment and source supply of the black shale and discusses the effect of climate change and terrigenous input on the formation of the black shale. It also reconstructs the process by which these excellent⁃quality hydrocarbon source rocks were formed. The results showed that the black shale has high Al2O3 content (7.38⁃13.90%), K2O content (1.01⁃2.93%), Na2O content (1.98⁃2.88%) and total Fe2O3 content (2.35⁃5.36%), and is enriched by trace elements such as V (average 242 µg/g), Cr (average 83 µg/g) and Ni (average 58 µg/g). CIA, K/Al and Rb/Al ratios indicate that the climate was warm and humid during the period of black shale deposition. V/Cr, U/Th, Ce/Ce* and MoEF⁃UEF indicate that the sedimentary waterbody underwent an anoxic → suboxic → anoxic → suboxic cycle. A positive Eu/Eu* anomaly also suggests the occurrence of early submarine hydrothermal activity. The Th/Sc ⁃ Zr/Sc chart indicates that the sedimentary components of the black shale did not undergo a recycling process, and it is therefore possible to effectively identify the location of the source. The Co/Th⁃La/Sc and La/Th⁃Hf diagrams confirm the presence of both felsic and mafic source rocks in the black shale. The Hannan paleo⁃uplift may have been an effective source area.
  • [1] Ishikawa T, Ueno Y, Komiya T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion[J]. Gondwana Research, 2008, 14(1/2): 193-208.
    [2] Magaritz M, Kirschvink J L, Latham A J, et al. Precambrian/Cambrian boundary problem : Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco[J]. Geology, 1991, 19(8): 847-850.
    [3] Zhu G Y, Chen F R, Wang M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
    [4] 朱光有,杜德道,陈玮岩,等. 塔里木盆地西南缘古老层系巨厚黑色泥岩的发现及勘探意义[J]. 石油学报,2017,38(12):1335-1342,1370.

    Zhu Guangyou, Du Dedao, Chen Weiyan, et al. The discovery and exploration significance of the old thick black mudstones in the southwest margin of Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(12): 1335-1342, 1370.
    [5] 朱光有,陈斐然,陈志勇,等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学,2016,27(1):8-21.

    Zhu Guangyou, Chen Feiran, Chen Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21.
    [6] 赵文智,胡素云,汪泽成,等. 中国元古界—寒武系油气地质条件与勘探地位[J]. 石油勘探与开发,2018,45(1):1-13.

    Zhao Wenzhi, Hu Suyun, Wang Zecheng, et al. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-13.
    [7] 邹才能,翟光明,张光亚,等. 全球常规—非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13-25.

    Zou Caineng, Zhai Guangming, Zhang Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
    [8] Zhu G Y, Zhang Z Y, Zhou X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930, doi: 10.1016/j.earscirev.2019.102930.
    [9] Zhu G Y, Milkov A V, Zhang Z Y, et al. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China[J]. AAPG Bulletin, 2019, 103(7): 1703-1743.
    [10] Li C, Jin C S, Planavsky N J, et al. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian?[J]. Geology, 2017, 45(8): 743-746.
    [11] Wang D, Ling H F, Struck U, et al. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J]. Nature Communications, 2018, 9: 2575.
    [12] Wille M, Nägler T F, Lehmann B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature, 2008, 453(7196): 767-769.
    [13] Steiner M, Li G X, Qian Y, et al. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
    [14] Jiang S Y, Pi D H, Heubeck C, et al. Early Cambrian ocean anoxia in South China[J]. Nature, 2009, 459(7248): E5-E6.
    [15] Xu L G, Lehmann B, Mao J W, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black Shales of South China-A reassessment[J]. Economic Geology, 2011, 106(3): 511-522.
    [16] Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian (∼529-514 Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
    [17] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193.
    [18] Guo Q J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
    [19] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346.
    [20] Blamey N J F, Brand U, Parnell J, et al. Paradigm shift in determining Neoproterozoic atmospheric oxygen[J]. Geology, 2016, 44(8): 651-654.
    [21] Crowley T J, Berner R A. CO2 and climate change[J]. Science, 2001, 292(5518): 870-872.
    [22] Shields G A. Earth system transition during the Tonian-Cambrian interval of biological innovation: Nutrients, climate, oxygen and the marine organic carbon capacitor[M]//Brasier A T, McIlroy D, McLoughlin N. Earth system evolution and early life: A celebration of the work of martin brasier. Geological Society, London, Special Publications, 2017.
    [23] 刘忠宝,高波,张钰莹,等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发,2017,44(1):21-31.

    Liu Zhongbao, Gao Bo, Zhang Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017, 44(1): 21-31.
    [24] 崔楠,张烨,陆朝晖. 渝东北城口北相区寒武系页岩储集层特征研究[J]. 科学技术与工程,2017,17(9):120-127.

    Cui Nan, Zhang Ye, Lu Zhaohui. Features of shale Reservoir of Cambrian System in Chengkou North face of northeastern Chongqing[J]. Science Technology and Engineering, 2017, 17(9): 120-127.
    [25] 朱正杰,张斌臣,唐清敏,等. 城口地区早寒武世黑色岩系铂族元素地球化学特征与来源[J]. 矿物学报,2017,37(4):495-506.

    Zhu Zhengjie, Zhang Binchen, Tang Qingmin, et al. Sources and geochemistry of Platinum Group Elements (PGE) in the Early Cambrian black rock series in Chengkou district, northern Dabashan, southwestern China[J]. Acta Mineralogica Sinica, 2017, 37(4): 495-506.
    [26] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[M]//Lipin B R, McKay G A. Geochemistry and mineralogy of rare earth elements. Washington: Mineralogical Society of America, 1989.
    [27] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [28] Calvert S E, Pedersen T F. Geochemistry of Recent Oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
    [29] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985: 312.
    [30] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [31] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
    [32] McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J]. Journal of Geology, 1991, 99(1): 1-21.
    [33] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
    [34] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes controlling the composition of clastic sediments. Boulder, Colorado: Geological Society of America, 1993: 21-40.
    [35] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
    [36] Condie K C, Wronkiewicz D J. The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution[J]. Earth and Planetary Science Letters, 1990, 97(3/4): 256-267.
    [37] 谷志东,殷积峰,姜华,等. 四川盆地宣汉—开江古隆起的发现及意义[J]. 石油勘探与开发,2016,43(6):893-904.

    Gu Zhidong, Yin Jifeng, Jiang Hua, et al. Discovery of Xuanhan-Kaijiang Paleouplift and its significance in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(6): 893-904.
    [38] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

    Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
    [39] 齐靓,余文超,杜远生,等. 黔东南华纪铁丝坳期—大塘坡期古气候的演变:来自CIA的证据[J]. 地质科技情报,2015,34(6):47-57.

    Qi Liang, Yu Wenchao, Du Yuansheng, et al. Paleoclimate evolution of the Cryogenian Tiesi’ao Formation – Datangpo Formation in eastern Guizhou province: Evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 2015, 34(6): 47-57.
    [40] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [41] Bock B, McLennan S M, Hanson G N. Geochemistry and provenance of the Middle Ordovician Austin Glen member (Normanskill Formation) and the Taconian Orogeny in New England[J]. Sedimentology, 1998, 45(4): 635-655.
    [42] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
    [43] 赵元龙,Steiner M,杨瑞东,等. 贵州遵义下寒武统牛蹄塘组早期后生生物群的发现及重要意义[J]. 古生物学报,1999,38(增刊1):132-144.

    Zhao Yuanlong, Steiner M, Yang Ruidong, et al. Discovery and significance of the early metazoan biotas from the Lower Cambrian Niutitang formation Zunyi, Guizhou, China[J]. Acta Palaeontologica Sinica, 1999, 38(Suppl. 1): 132-144.
    [44] Murphy A E, Sageman B B, Hollander D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15(3): 280-291.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(3)

Article Metrics

Article views(283) PDF downloads(110) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-06-10
  • Revised:  0209-12-03
  • Published:  2020-10-28

Development Environment and Formation Mechanism of Lower Cambrian Source Rocks in the Chengkou Area, Northeast Chongqing, South China

doi: 10.14027/j.issn.1000-0550.2019.102
Funds:

China National Petroleum Corporation (CNPC) Scientific Research and Technology Development Project 2019B⁃04, 2018A⁃0102

Abstract: The Lower Cambrian black shale at the northern margin of the Upper Yangtze Platform is an important source rock with large sedimentary thickness and high organic carbon content, which gives it important oil and gas exploration value. Restoring its developmental environment and clastic provenance is of great significance for the prediction of hydrocarbon source rock distribution. By systematic field outcrop sampling in the Chengkou area, South China, and geochemical testing, this study investigated the formation environment and source supply of the black shale and discusses the effect of climate change and terrigenous input on the formation of the black shale. It also reconstructs the process by which these excellent⁃quality hydrocarbon source rocks were formed. The results showed that the black shale has high Al2O3 content (7.38⁃13.90%), K2O content (1.01⁃2.93%), Na2O content (1.98⁃2.88%) and total Fe2O3 content (2.35⁃5.36%), and is enriched by trace elements such as V (average 242 µg/g), Cr (average 83 µg/g) and Ni (average 58 µg/g). CIA, K/Al and Rb/Al ratios indicate that the climate was warm and humid during the period of black shale deposition. V/Cr, U/Th, Ce/Ce* and MoEF⁃UEF indicate that the sedimentary waterbody underwent an anoxic → suboxic → anoxic → suboxic cycle. A positive Eu/Eu* anomaly also suggests the occurrence of early submarine hydrothermal activity. The Th/Sc ⁃ Zr/Sc chart indicates that the sedimentary components of the black shale did not undergo a recycling process, and it is therefore possible to effectively identify the location of the source. The Co/Th⁃La/Sc and La/Th⁃Hf diagrams confirm the presence of both felsic and mafic source rocks in the black shale. The Hannan paleo⁃uplift may have been an effective source area.

ZHAO Kun, LI TingTing, ZHU GuangYou, ZHANG ZhiYao, LI JingFei, WANG PengJu, YAN HuiHui, CHEN YongJin. Development Environment and Formation Mechanism of Lower Cambrian Source Rocks in the Chengkou Area, Northeast Chongqing, South China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1111-1122. doi: 10.14027/j.issn.1000-0550.2019.102
Citation: ZHAO Kun, LI TingTing, ZHU GuangYou, ZHANG ZhiYao, LI JingFei, WANG PengJu, YAN HuiHui, CHEN YongJin. Development Environment and Formation Mechanism of Lower Cambrian Source Rocks in the Chengkou Area, Northeast Chongqing, South China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1111-1122. doi: 10.14027/j.issn.1000-0550.2019.102
  • 早寒武世是生物大爆发之初的地球关键时期,这一时期发生海平面快速升降,气候剧烈变化、碳同位素异常等重要地质事件[12],特别是沉积的富有机质黑色页岩是目前页岩气勘探的重点层位,已引起石油地质学家的高度重视[36]。烃源岩是大型油气田形成的基础[78],当前对早寒武世这套黑色页岩的研究包括古海洋环境[911]、生物地层学[12]及地质年代学[1315]等,认为早寒武世海水保持高度氧化还原分层结构,硫化和铁化水体共存[16],直到中寒武世深水地区才逐渐开始氧化[1718]。“雪球地球”假设认为自新元古代冰期事件至寒武纪生物大爆发,地球气候由极端寒冷转变为温暖湿润[19],高的大气氧含量[20]和CO2浓度[21]影响大陆铝硅酸盐物质的风化程度。而大陆风化对海水营养物质的输入有显著影响[22],高的营养物输入通量能有效增强初级生产力,提供充足的有机质来源,影响富有机质页岩的形成。

    渝东北城口地区位于上扬子地台北缘,紧邻四川盆地(图1b)。城口地区在早寒武世处于深水陆棚边缘盆地[23],沉积一套碎屑岩组合,从下往上依次沉积水井沱组、石牌组、天河板组地层,水井沱组与下伏震旦系灯影组低角度不整合接触(图2a),灯影组在城口地区为白云岩地层(图2a,d,g),水井沱组为一套黑色页岩地层,且黑色页岩在城口地区出露厚度大于100 m(图2b,c,e,f,h,i),分布稳定。特别的,水井沱组黑色页岩底部出现泥质碳酸盐结核(图2f),与华南地区广泛沉积的含磷层属于异相沉积。而当前对这套黑色页岩的研究集中在页岩储集层[24]、PGE元素异常[25]等方向,而对黑色页岩的沉积环境分析和有效源区判定缺乏系统研究。本次研究对下寒武统水井沱组黑色页岩系统野外取样,通过多种地球化学手段重建黑色页岩沉积环境和物源。

    Figure 1.  The geographical location, study profile and columnar diagram of Lower Cambrian strata in the Chengkou area of Northeast Chongqing, South China

    Figure 2.  Photographs of outcrop and samples from Shuijingtuo Formation in the Lower Cambrian, Chengkou area

  • TOC测试分析在中国石油大学(北京)地球科学学院石油地质实验室完成。样品经粉碎后用小于0.2 mm的筛子过筛,以1∶7(体积比)盐酸浸泡2 h以上以消除碳酸盐组分,确认无残留碳酸盐组分后将样品放入恒温(70 ℃~80 ℃)干燥箱中烘干待用,所有待测样品使用美国LECO公司CS⁃230碳硫测定仪完成测试。

    主量元素测定采用熔片X荧光光谱法(XRF),仪器型号为岛津XRF⁃1800,测试精度优于5%,在北京科荟测试技术有限公司完成。全岩微量元素含量采用溶样法利用Analyticjena PQMS elite ICP⁃MS分析仪在北京科荟测试技术有限公司完成。ICP⁃MS分析的样品前处理步骤如下:1)将200目样品置于105 ℃烘箱中12 h,烘干;2)准确称取25 mg粉末样品,置于特氟龙溶样弹中;3)先后依次缓慢加入1 mL高纯度硝酸和1 mL高纯度氢氟酸;4)将特氟龙溶样弹放入钢套,拧紧后置于190 ℃烘箱中加热24 h以上;5)待溶样弹冷却,开盖后置于140 ℃电热板上蒸干,然后加入1mL硝酸并再次蒸干;6)加入1 mL高纯度硝酸、1 mL 超纯水和0.5 mL浓度为1 mg/L的In元素内标,再次将特氟龙溶样弹放入钢套,拧紧后置于190 ℃烘箱中加热12 h以上;7)将溶液转入聚乙烯料瓶中,并用2%浓度硝酸稀释至100 g以备ICP⁃MS测试。

  • 所有样品的TOC测试结果见表1。寒武系水井沱组黑色页岩TOC值分布在0.8%~1.8%,平均为1.0%,在垂向序列上表现为“两高两低”的趋势,即底部和上部TOC高,中部和顶部TOC低,反映有机质沉积环境的差异性。下覆震旦系灯影组灰岩TOC值较低,为0.1%。

    时代 地层 编号 岩性 厚度 TOC Al2O3 SiO2 TiO2 K2O Na2O TFe2O3 MnO P2O5 MgO CaO L.O.I
    /m wt/% wt/% wt/% wt/% wt/% wt/% wt/% wt/% wt/% wt/% wt/%
    寒武系 水井沱组 B93 页岩 1.0 0.8 9.6 51.7 0.5 2.0 2.1 2.4 0.06 0.16 1.9 14.6 15.0
    寒武系 水井沱组 B90 页岩 4.0 1.0 11.6 57.3 0.7 2.3 2.5 3.9 0.06 0.16 2.4 8.2 11.0
    寒武系 水井沱组 B88 页岩 6.0 0.8 11.2 53.9 0.6 2.1 2.5 4.1 0.07 0.14 3.2 9.5 12.8
    寒武系 水井沱组 B87 页岩 8.0 1.0 10.9 51.4 0.6 2.0 2.4 3.9 0.07 0.14 2.8 11.6 14.2
    寒武系 水井沱组 B83 页岩 12.0 0.9 11.1 53.1 0.6 2.0 2.6 4.0 0.07 0.14 2.9 10.8 12.6
    寒武系 水井沱组 B80 页岩 15.0 0.7 13.4 60.3 0.8 2.8 2.9 4.8 0.05 0.18 2.7 3.9 8.2
    寒武系 水井沱组 B77 页岩 18.0 1.3 12.3 55.4 0.7 2.4 2.8 4.3 0.06 0.15 2.8 7.6 11.5
    寒武系 水井沱组 B73 页岩 22.0 1.2 12.7 59.6 0.8 2.7 2.3 4.8 0.05 0.31 2.8 5.1 9.0
    寒武系 水井沱组 B71 页岩 24.0 1.3 13.2 59.0 0.8 2.8 2.2 4.8 0.06 0.27 2.9 5.3 8.7
    寒武系 水井沱组 B68 页岩 28.0 0.9 11.3 53.0 0.7 1.9 2.8 4.0 0.06 0.16 2.5 10.7 12.9
    寒武系 水井沱组 B67 页岩 30.0 1.1 13.0 61.2 0.8 2.6 2.5 4.1 0.05 0.18 2.6 4.7 8.2
    寒武系 水井沱组 B65 页岩 34.0 0.9 12.0 56.0 0.7 2.5 2.3 5.4 0.05 0.15 2.2 8.6 10.2
    寒武系 水井沱组 B63 页岩 37.7 0.8 12.4 54.8 0.7 2.6 2.7 2.9 0.05 0.20 2.4 9.8 11.5
    寒武系 水井沱组 B58 页岩 42.5 1.3 12.6 59.2 0.8 2.8 2.0 4.7 0.06 0.26 2.8 5.5 9.3
    寒武系 水井沱组 B52 页岩 78.0 1.8 13.5 62.5 0.8 2.9 2.4 4.6 0.05 0.27 2.7 3.0 7.4
    寒武系 水井沱组 B45 页岩 93.7 0.7 13.0 66.2 0.8 2.7 2.5 4.2 0.05 0.24 2.2 2.8 5.4
    寒武系 水井沱组 B39 页岩 104.5 0.7 13.4 65.9 0.8 2.7 2.7 4.4 0.04 0.23 2.2 2.1 5.5
    寒武系 水井沱组 B38 页岩 107.0 0.7 14.0 65.6 0.8 3.0 2.7 4.6 0.04 0.25 2.3 1.6 5.1
    寒武系 水井沱组 B37 页岩 109.0 0.9 12.0 61.8 0.7 2.4 2.5 4.2 0.07 0.23 2.7 6.3 7.1
    寒武系 水井沱组 B35 页岩 113.6 1.0 11.3 58.1 0.7 2.2 2.4 3.7 0.07 0.21 2.4 8.5 10.4
    寒武系 水井沱组 B30 页岩 126.0 0.9 13.1 64.5 0.8 2.7 2.6 4.3 0.05 0.27 2.4 2.8 6.5
    寒武系 水井沱组 B26 页岩 149.0 0.8 13.9 64.5 0.9 2.9 2.7 4.4 0.04 0.29 2.4 2.2 5.8
    寒武系 水井沱组 B22 页岩 165.2 0.9 13.5 65.0 0.9 2.8 2.7 4.1 0.04 0.27 2.4 2.6 5.7
    寒武系 水井沱组 B16 页岩 193.0 1.3 12.7 62.7 0.8 2.6 2.5 4.0 0.04 0.25 2.1 4.5 7.9
    寒武系 水井沱组 B11 页岩 209.8 0.8 13.2 65.8 0.8 2.8 2.6 4.0 0.05 0.29 2.3 2.6 5.4
    寒武系 水井沱组 B6 页岩 222.4 0.9 7.4 36.4 0.4 1.0 2.1 2.7 0.09 0.23 1.8 26.1 21.8
    寒武系 水井沱组 B3 页岩 227.0 1.6 11.9 54.8 0.7 2.2 2.6 4.3 0.07 0.24 2.7 8.7 11.8
    震旦系 灯影组 B2 灰岩 228.0 0.1

    Table 1.  Data for TOC and major elements in Lower Cambrian Shuijingtuo Formation, Chengkou area

  • 主量元素测试结果见表1。主量元素分析表明水井沱组黑色页岩中Al2O3含量(7.38%~13.90%,平均值为12.23%)、SiO2含量(36.38%~66.23%,平均值为58.51%)、K2O含量(1.01%~2.93%,平均值为2.45%)、Na2O含量(1.98%~2.88%,平均值为2.50%)、总Fe2O3含量(2.35%~5.36%,平均值为4.13%)很高,而MnO(平均值为0.06%)、TiO2(0.73%)和P2O5(0.22%)含量很低。在水井沱组底部一个黑色页岩样品(样品编号为B6)的CaO含量呈现高值(26.1%),其余主量元素较低。

    微量元素测试结果见表2。黑色页岩中富集V、Cr、Ni、Ba等微量元素,其他元素含量较低。黑色页岩样品的Mo含量为5.7~30.2 μg/g,平均值为13.3 μg/g,U含量为6.7~17.1 μg/g,平均值为9.4 μg/g;V含量为82.7~478 μg/g,平均值为258 μg/g(表2)。其中Mo、U和V的含量均高于后澳大利亚太古代页岩(PAAS)的值[26]

    编号 Sc V Cr Co Ni Cu Zn Rb Sr Y Mo Ba Tl Th U Zr Hf
    B2 1.02 60.2 13.5 2.74 19.6 3.99 10.7 14.7 155 5.51 0.569 60.9 0.053 1.44 1.09 11 0.29
    B3 10.4 160 74.8 13.3 54.4 35.7 96.5 90.5 424 37.6 20.5 750 1.61 9.62 11.8 134 3.54
    B6 6.71 208 45.4 7.86 45.2 19.6 80.9 42.8 1 502 46.3 12 10 715 1.01 5.32 10.4 79.1 2.07
    B11 12.9 310 92.3 14 64 33 116 110 230 32.7 10.2 832 1.48 9.94 7.23 163 3.86
    B16 12.4 385 98.1 14 73.8 40.4 167 109 340 31.8 20.1 1 058 2.03 9.78 9.37 155 3.64
    B22 12.4 422 98.1 14 60.5 30.6 136 109 234 30.1 6.63 657 1.59 9.82 6.82 159 3.68
    B26 13.6 457 102 15.5 73.7 36.7 142 121 218 35.4 15.6 934 2.17 10.4 10.1 168 4.12
    B30 11.9 422 93.2 14.3 77.2 37.6 167 104 256 33.8 15.7 825 2.03 9.71 9.1 165 4.04
    B35 10.1 311 76.7 12 56 31.5 130 85.4 585 34.6 8.1 1 511 1.65 8.64 8.73 136 3.49
    B37 10.8 337 82.4 13.4 68.1 31.7 124 95.5 461 34.1 17.4 1 328 2.12 8.8 10.4 139 3.47
    B38 13.1 478 104 17.1 79.2 42.1 162 121 215 35.4 20.2 1 242 2.86 10.5 11.1 199 4.86
    B39 13.3 272 104 17.5 75.9 37.7 111 113 238 32.5 13.4 951 1.94 10.1 9.84 211 5.06
    B45 12.3 252 94.8 14.6 60.8 34.5 115 107 223 33.8 10.2 950 1.53 8.94 7.03 192 4.51
    B52 12.3 375 107 17 79.2 41.9 198 117 231 33.5 17.5 1 098 2.14 10.1 11.2 187 4.59
    B58 12.8 224 94 16.3 62.2 39.9 137 115 448 40.7 30.2 2 168 1.87 10 17.1 178 4.69
    B63 8.84 374 70.8 11.8 46.8 21.3 85.9 99.5 419 25.7 12.1 1 101 1.69 10.3 7.49 164 4.55
    B65 10.4 110 75.4 13.4 58.7 33.3 46.6 99.9 595 28.2 7.21 1 681 0.974 10.2 6.49 157 4.38
    B67 11.8 165 85 15 57 31.5 57 111 345 42.3 6.93 1 151 1.63 11.7 9.27 211 5.59
    B68 9.73 82.7 66.4 12.9 43.6 25.9 61.7 83.5 672 34.5 7.47 1 996 1.09 11 7.53 167 4.77
    B71 13.5 187 104 18.5 68.1 43.2 114 124 385 36.1 27.4 1 875 1.56 10.7 14.4 187 4.79
    B73 12.3 202 92.5 18.1 79.7 38.4 156 114 366 35.9 21.2 1 345 2.6 9.92 13.1 162 4.16
    B77 11.6 117 80.5 14.6 47.8 29 75.2 99.9 502 33.6 6.34 1 691 1.25 10.4 6.7 167 4.3
    B80 11.7 132 83.3 15.9 46.2 37 81.4 111 291 26.8 10.1 1 261 1.16 11.1 7.43 179 4.71
    B83 10.4 107 69.8 12.5 35.1 27.6 62 84.7 674 33.4 9.89 1 863 0.886 10.3 8.12 163 4.61
    B87 10.2 99.4 67.7 12.2 42.4 25.2 66.8 83.9 708 32.7 5.71 1 775 1.1 9.72 6.7 159 4.41
    B88 12.5 149 81.2 14.2 48.3 28.8 75 99.6 651 39.4 8.3 2 234 1.37 9.81 7.92 169 4.27
    B90 12.4 156 84.1 14.3 51.6 33.2 56.6 99.1 571 41.1 7.62 1 881 1.33 10 7.41 185 4.66
    B93 8.97 476 70.3 9.47 49.9 22.1 349 82.8 903 33.6 13.5 2 736 1.3 7.81 11.8 145 3.58

    Table 2.  Data for trace elements in Lower Cambrian Shuijingtuo Formation, Chengkou area(μg/g)

  • 稀土元素结果见表3。黑色页岩稀土总量(∑REE)为144.3~202.4 μg/g,平均值为172.1 μg/g,大部分样品的REE值低于PAAS(后澳大利亚太古代页岩)。其中,轻稀土(LREE)为127.9~178.6,平均值为153.4;重稀土(MREE)为15.4~23.8,平均值为18.7;轻重稀土比值(LREE/MREE)介于7.3~9.6,平均为8.2,指示轻稀土(LREE)相对富集。黑色页岩稀土元素分配模式曲线表现为从左至右相对平坦,中度的Ce亏损。

    编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu REE LREE MREE L/M
    B3 41.8 64.7 8.5 33.7 6.3 1.1 5.7 0.9 5.3 1.0 3.2 0.4 3.0 0.4 176.0 156.2 19.8 7.9
    B6 39.2 57.8 7.9 31.6 5.9 2.7 5.6 0.9 5.4 1.0 3.2 0.4 2.9 0.4 164.9 145.1 19.8 7.3
    B11 43.6 67.9 8.7 33.4 6.0 1.1 5.3 0.8 4.4 0.8 2.6 0.3 2.6 0.3 177.9 160.7 17.2 9.3
    B16 39.1 60.6 8.0 30.6 5.6 1.0 5.1 0.8 4.5 0.8 2.5 0.3 2.5 0.3 161.8 144.9 16.8 8.6
    B22 41.5 65.2 8.4 31.5 5.6 1.0 4.9 0.7 4.1 0.8 2.5 0.3 2.3 0.3 169.1 153.1 16.0 9.6
    B26 46.0 71.2 9.3 36.0 6.6 1.1 6.0 0.9 5.1 0.9 2.9 0.4 2.8 0.4 189.6 170.2 19.4 8.8
    B30 40.0 61.8 8.2 31.6 5.8 1.1 5.3 0.8 4.6 0.9 2.8 0.4 2.7 0.3 166.2 148.5 17.7 8.4
    B35 36.3 59.0 7.9 31.7 5.9 1.3 5.5 0.8 4.8 0.9 2.8 0.4 2.6 0.3 160.1 142.1 17.9 7.9
    B37 37.5 59.4 7.9 31.0 5.8 1.2 5.1 0.8 4.8 0.9 2.8 0.4 2.7 0.3 160.4 142.7 17.6 8.1
    B38 43.3 68.3 9.0 35.4 6.6 1.3 6.1 0.9 5.4 0.9 3.1 0.4 2.9 0.4 183.9 163.9 20.1 8.2
    B39 43.0 67.0 8.6 32.8 5.7 1.0 5.2 0.8 4.7 0.9 2.9 0.4 2.8 0.4 176.2 158.1 18.1 8.7
    B45 38.2 60.4 7.8 30.4 5.6 1.0 5.1 0.8 4.7 0.9 2.8 0.4 2.8 0.4 161.1 143.4 17.7 8.1
    B52 38.1 56.5 7.7 30.4 5.5 1.0 5.1 0.8 4.8 0.9 2.8 0.4 2.8 0.3 157.1 139.3 17.8 7.8
    B58 46.0 71.6 9.4 37.9 7.0 1.4 6.4 1.0 5.8 1.1 3.5 0.4 3.3 0.4 195.3 173.4 21.9 7.9
    B63 38.3 56.1 7.1 27.7 4.9 0.9 4.4 0.7 4.1 0.8 2.5 0.3 2.4 0.3 150.5 135.1 15.4 8.7
    B65 38.9 61.0 7.7 29.8 5.3 1.2 4.9 0.7 4.5 0.8 2.7 0.4 2.6 0.3 160.7 143.9 16.9 8.5
    B67 46.6 74.0 9.9 39.5 7.4 1.3 6.8 1.1 6.5 1.2 3.8 0.5 3.5 0.5 202.4 178.6 23.8 7.5
    B68 41.5 66.0 8.6 33.3 6.3 1.3 5.8 0.9 5.3 1.0 3.3 0.4 3.1 0.4 177.2 157.0 20.2 7.8
    B71 46.8 71.2 9.2 35.9 6.8 1.3 6.1 0.9 5.4 1.0 3.2 0.4 3.1 0.4 191.7 171.2 20.5 8.4
    B73 42.8 65.2 8.5 33.3 6.1 1.2 5.4 0.9 5.0 0.9 3.0 0.4 2.9 0.4 175.8 157.1 18.7 8.4
    B77 42.0 65.6 8.5 33.0 6.1 1.1 5.4 0.9 5.2 0.9 3.0 0.4 2.9 0.4 175.2 156.3 19.0 8.2
    B80 41.4 62.9 7.8 29.8 5.1 0.9 4.7 0.7 4.3 0.8 2.6 0.4 2.7 0.3 164.4 147.9 16.5 9.0
    B83 39.7 64.6 8.3 32.9 6.1 1.3 5.4 0.9 5.2 1.0 3.1 0.4 3.0 0.4 172.2 152.9 19.3 7.9
    B87 40.3 63.8 8.3 32.3 6.1 1.3 5.3 0.9 5.2 0.9 3.0 0.4 2.9 0.4 171.0 152.1 18.9 8.0
    B88 41.8 66.4 8.7 35.8 6.6 1.4 5.9 0.9 5.7 1.0 3.3 0.4 3.1 0.4 181.4 160.6 20.8 7.7
    B90 40.5 66.0 9.0 35.5 6.8 1.5 6.2 1.0 5.7 1.0 3.3 0.4 3.1 0.4 180.4 159.3 21.1 7.5
    B93 33.7 52.2 7.1 28.1 5.2 1.6 4.9 0.7 4.4 0.8 2.6 0.3 2.4 0.3 144.3 127.9 16.4 7.8
    Ave. 41.0 63.9 8.4 32.8 6.0 1.2 5.5 0.8 5.0 0.9 2.9 0.4 2.8 0.4 172.1 153.4 18.7 8.2

    Table 3.  Data for rare earth elements in Lower Cambrian Shuijingtuo Formation, Chengkou area(μg/g)

  • 黑色页岩的沉积时期水体的氧化还原情况反映在一些微量元素的含量中。特别的,Mo、U、V是典型的指示氧化还原情况的微量元素,其富集程度与水体的环境有关,被广泛用来示踪沉积岩的古氧化还原环境[2728]。微量元素的富集程度可以用富集系数(EF)来表征。元素富集系数计算公式为:XEF=[(X/Al)sample/ (X/Al)PAAS] ,其中PAAS数据来自Taylor et al.[29]

    城口地区水井沱组黑色页岩的MoEF和UEF在垂向序列上与反映水体环境变化的微量元素比值U/Th趋势一致(图3),指示Mo和U的富集明显受限于水体的氧化还原情况。通常认为缺氧环境的沉积物中U/Th>1.25,V/Cr>4.25;而氧化环境中U/Th<0.75,V/Cr <2[30]。根据微量元素变化趋势,城口地区黑色页岩的水体环境变化大致可以分为四个阶段(图3),并分别进行讨论。

    Figure 3.  Vertical distribution of TOC, CIA and trace elements in Shuijingtuo Formation, Lower Cambrian

    第Ⅰ阶段的黑色页岩典型的野外特征是出现泥质碳酸盐结核(图2f),根据微量元素变化趋势,此阶段出现MoEF(最高为17.5 μg/g)和UEF(最高为7.6 μg/g)的小峰值(图3),样品数据在MoEF⁃UEF交会图上落在缺氧沉积区域,指示沉积水体为缺氧环境;黑色页岩的有机碳含量较高(TOC最高为1.6%),U/Th值为1.23~1.95(平均值为1.60),V/Cr值为2.14~4.58(平均值为3.36),指示还原的水体环境。此外,经PAAS标准化后的Eu/Eu*出现显著正异常,表明这一阶段存在海底热水活动[25],容易造成缺氧的底水环境。第Ⅱ阶段黑色页岩的U/Th和V/Cr值在氧化和缺氧界线中间变动,指示水体处于次氧化环境。同时,Eu/Eu*在1值附近摆动,与正常海水值一致,表明这一阶段沉积水体相对稳定。此外,在第Ⅱ阶段中部出现两个异常点,其MoEF平均值为14.5,UEF平均值为4.6,而Ce/Ce*未见显著负异常,U/Th值和V/Cr值仍然指示正常的次氧化环境,因此其MoEF和UEF的异常可能是沉积孔隙水缺氧导致的。第Ⅲ阶段的黑色页岩出现U/Th值逐渐增大,而V/Cr值却呈现降低趋势,结合黑色页岩的有机碳含量变化,认为这一阶段水体处于缺氧环境。特别的,第Ⅲ阶段MoEF和UEF值逐渐增大,并达到峰值,其MoEF⁃UEF交会图(图4)指示水体环境变为缺氧环境。第Ⅳ阶段黑色页岩的U/Th和V/Cr值指示整体处于次氧化环境,此外,在第Ⅳ阶段中部和顶部出现异常样品点,其MoEF和UEF、U/Th均处于相对高值,说明这中部和顶部曾出现过短暂的缺氧时期,可以认为第Ⅳ阶段黑色页岩沉积时期水体环境以次氧化为主,夹有短暂的缺氧环境。从整个黑色页岩的沉积序列看,城口地区黑色页岩沉积环境经历了多期缺氧—次氧化旋回,可能与早寒武世海水的脉动式上升下降有关。

    Figure 4.  MoEF vs. UEF plot for Shuijingtuo Formation in Chengkou area

    除微量元素比值可以反映水体古环境外,作为稀土元素,其独特的元素特征可以用来指示氧化还原环境。Ce存在正三价和正四价两钟价态,在氧化环境中,Ce3+易被氧化成Ce4+,而Ce4+容易水解被Fe、Mn氢氧化物胶体吸附,造成海水Ce的强烈亏损;在还原环境中,Ce4+易被还原成Ce3+,造成海水Ce的强烈富集,因此,沉积岩的Ce异常可以反映古海水的氧化还原环境。城口地区黑色页岩样品的稀土元素数据见表3,所有样品的Ce异常采用后澳大利亚太古代页岩(PAAS)进行标准化。此外,黑色页岩中La异常可能引起Ce异常变化[31],不能真实反映黑色页岩沉积时的古海水Ce特征,通过样品的Ce/Ce*与Pr/Pr*交会图(图5a),所有黑色页岩样品均落在了Ⅲb区内,表明黑色页岩样品受到La的影响程度低,Ce异常能够反映真实的沉积海水特征。从表3图5b可以看出,城口地区水井沱组黑色页岩呈现弱的Ce异常,Ce/Ce*值介于0.76~0.82,平均值为0.79。特别的,黑色页岩的第Ⅰ和第Ⅲ阶段出现Ce/Ce*的两个较低值(图3),指示沉积水体还原性较强。

    Figure 5.  (a) Cross⁃plots of Ce/Ce* vs. Pr/Pr* for black shale (Field Ⅰ. no anomaly, Ⅱa. positive La anomaly causing an apparent negative Ce anomaly, Ⅲa. negative La anomaly causing an apparent positive Ce anomaly, Ⅲb. actual negative Ce anomaly[31]); (b) PAAS⁃normalized REE distribution patterns of black shale

  • 微量元素和稀土元素诸如Al、Ti、Sc、Th和Zr等由于其在风化、迁移、成岩、变质作用过程中的稳定性,使得它们被广泛用来示踪沉积物源[32]。TiO2与Zr的比值可以用来区分三种不同的源岩类型,分别是长英质、中性、铁镁质火成岩。当TiO2/Zr的值大于200指示源岩类型为铁镁质火成岩,TiO2/Zr的值小于55指示源岩类型为长英质火成岩,而TiO2/Zr的值介于55和195之间指示源岩类型为中性火成岩[33]。城口地区水井沱组黑色页岩的TiO2⁃Zr图解(图6a)显示黑色页岩样品均落在了长英质火成岩源区内,指示黑色页岩的源岩类型可能是长英质的。考虑到沉积岩的再分选与再循环过程会影响沉积物的成分变化,进而影响对源区的判定,因此需要判定黑色页岩样品是否经历了沉积分选与再循环过程。由于Th一般存在酸性岩中,而Sc在基性岩中赋存,且Th/Sc值不会受到沉积再循环的影响,因此常被用来判定沉积物源组分变化情况[34]。Zr主要富集在锆石中,锆石的稳定性决定其会随着沉积再循环赋存在沉积物中,而不改变其原始的沉积物源特征,因此Zr/Sc值能够作为反映沉积物的成分变化的指标[34]。水井沱组黑色页岩样品大部分落在了成分演化线上(图6b),且更靠近长英质岩石端元,经PAAS标准化后的REE分布模式(图5b)也指示黑色页岩样品的稀土元素特征接近上地壳(UCC),说明黑色页岩样品没有经历沉积再循环,其沉积组分受源岩成分控制,表现为近源沉积。同时,根据Th/Sc⁃Zr/Sc图解,黑色页岩样品靠近长英质岩石端元,指示城口地区水井沱组源岩类型为长英质岩石(图6b)。

    Figure 6.  Discrimination diagrams illustrating sedimentary provenance

    Co作为过渡金属元素被认为是沉积过程中最稳定的元素,根据前述讨论可以排除城口地区水井沱组沉积组分经历再循环过程,黑色页岩中保留的原始源岩信息可以准确的指示源岩类型。黑色页岩样品在Co/Th⁃La/Sc图解中分布集中(图7a),除了一个黑色页岩样品远离之外,大部分黑色页岩样品表现出更靠近UCC的趋势,并且相对于花岗岩类型,黑色页岩更接近长英质火山岩类型,这与TiO2⁃Zr图解指示的源岩类型一致(图6a)。La/Th⁃Hf图解可以对不同构造环境沉积物的源区进行有效判定[35],在图7b上清晰的展示出黑色页岩样品落在了长英质物源和长英质/铁镁质混源区域,只有一个黑色页岩样品落在了安山岩岛弧物源区域,可能是样品风化引起测试结果误差,可以排除掉。结合前面对黑色页岩源岩的分析,认为城口地区水井沱组黑色页岩存在两种源岩类型,分别是长英质和铁镁质两种源岩类型,结合岩相古地理资料(图8),震旦系晚期—寒武系早期,距离城口较近的宣汉—开江古陆由水上隆起演变成水下隆起[37],无法提供风化碎屑物质,而汉南古陆在早寒武世由于构造抬升处于构造高部位,为水上古隆起,而资料证实汉南古陆缺失灯影组沉积地层,极有可能在寒武纪早期被风化剥蚀掉,加之城口地区受早寒武世大面积海侵影响,汉南古陆作为距城口地区最近的古陆,能够提供大量的陆源碎屑物质。

    Figure 7.  Discrimination diagrams illustrating sedimentary provenance

    Figure 8.  Distribution of sedimentary facies, Lower Cambrian Shuijingtuo Formation, Chengkou, and adjacent area[3738]

  • 沉积岩中的陆源输入情况反映在黏土矿物的含量中,Ca、Na、K等碱金属容易从长石中迁移形成黏土矿物,而其中Al2O3的比率通常随着风化产物的形成而增加[39]。因此化学风化指数CIA可以定量表征源区的化学风化程度,广泛被用于重建古气候变化[40],CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)] × 100,式中各元素采用摩尔分数,其中CaO*含量仅代表硅酸盐矿物中的CaO含量[40],根据Bock et al.[41]提出的方法对泥岩中CaO*的含量进行校正:当CaO>Na2O,CaO*=Na2O,当CaO≤Na2O,CaO*=CaO。计算结果见表1

    由于不同的气候条件下化学风化程度的不同,当CIA值为80~100反映炎热潮湿气候条件下的强烈风化;CIA值为60~80反映温暖湿润气候条件下的中等风化;CIA值为50~60反映含量干燥气候条件下的低等程度风化[40,42]。城口地区水井沱组黑色页岩样品的CIA值介于58.2~65.8,平均为62.3,垂向序列CIA值分布稳定,指示源区中等程度的化学风化和稳定的陆源输入,反映黑色页岩沉积时期温暖湿润的气候条件。寒武纪是生物演化和气候变化的重大历史时期,小壳化石[12,43]在牛蹄塘组黑色页岩的发现表明这一时期大气氧含量较高,气候逐渐回暖,化学风化程度增加。Th/Sc⁃Zr/Sc图解表明黑色页岩未经历沉积再循环过程(图6b),因此CIA值可以准确的反映源区的气候变化。

    Al、K、Rb是典型的用于指示陆源输入的化学元素,以铝硅酸盐矿物形式经河流或者风力作用搬运至沉积盆地中,被广泛用来重建沉积岩的陆源输入情况[44]。在城口地区水井沱组黑色页岩样品中,K/Al和Rb/Al表现出一致的趋势(图3),其平均值分别为3.12×10-1和15.54。K/Al和Rb/Al在黑色页岩从底部到顶部的微弱变化趋势,反映黑色页岩中黏土矿物成分的变化趋势,指示黑色页岩沉积时期气候相对稳定,没有较大的变动,使得城口地区的陆源输入通量保持稳定。CIA值和K/Al与Rb/Al表现出一致的变化趋势(图3),表明城口地区黑色页岩沉积时期温暖湿润的气候带来更多的淡水和细粒黏土矿物输入。然而,黑色页岩的TOC⁃K/Al图和TOC⁃Rb/Al图(图9)并未表现出明显的相关性,反映陆源黏土矿物的输入对城口地区水井沱组黑色页岩的有机质贡献不大,可能与城口地区海水中较低的溶解氧含量导致生产力过低有关。

    Figure 9.  Correlation between TOC and terrestrial input parameters

  • (1) 渝东北城口地区发育下寒武统水井沱组厚层黑色页岩,厚度超过100 m,TOC分布在0.66%~1.82%之间,平均值为1.01%,是一套重要的烃源岩。主量元素分析表明黑色页岩富集Al2O3(7.38%~13.90%,平均值为12.23%)、SiO2(36.38%~66.23%,平均值为58.51%)、K2O(1.01%~2.93%,平均值为2.45%)、Na2O(1.98%~2.88%,平均值为2.50%)、总Fe2O3(2.35~5.36%,平均值为4.13%),微量元素分析表明黑色页岩具有较高的V(82.7~478 μg/g,平均值为258 μg/g)、Cr(45.4~104 μg/g,平均值为85 μg/g)、U(6.7~17.1 μg/g,平均值为9.4 μg/g)、Mo(5.7~30.2 μg/g,平均值为13.3 μg/g)含量。稀土总量较高(144.3~202.4,平均值为172.1),轻重稀土比值(LREE/MREE)介于7.3~9.6,平均为8.2,指示稀土分馏程度较高,轻稀土明显富集。

    (2) 黑色页岩的CIA值表明城口地区在早寒武世以温暖湿润的气候为主,V/Cr和U/Th值指示黑色页岩沉积水体环境变化经历了四个阶段:缺氧→次氧化→缺氧→次氧化,并且在次氧化阶段夹有多期缺氧事件沉积。底部黑色页岩的正Eu/Eu*异常和同期异相沉积的泥质碳酸盐结核指示城口地区水井沱组沉积时期存在海底热水活动。Th/Sc⁃Zr/Sc交会图表明黑色页岩碎屑组分未经历再分选循环过程,La/Th⁃Hf图和TiO2⁃Zr图指示黑色页岩存在长英质和铁镁质两种源岩类型,且汉南古陆在早寒武世时期为城口地区提供风化碎屑物质来源。

    (3) 通过野外露头踏勘取样和多种地球化学手段分析,重建了城口地区早寒武世沉积环境变化和主要的物源供应类型,对恢复上扬子北缘寒武系早期古海水环境和周缘古隆起演化具有重要意义,对城口地区页岩气勘探提供参考依据。

Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return