Advanced Search
Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

YANG Huan, ZENG MengXiu, PENG HaiJun, CAI Cheng, LI FengQuan, DENG BoLong, ZHU LiDong, HU ZhongXing, NI Jian. High⁃resolution Humification Record of Xingyi Peat since the Late Holocene in Karst Region, Southwestern Guizhou[J]. Acta Sedimentologica Sinica, 2021, 39(2): 395-407. doi: 10.14027/j.issn.1000-0550.2019.107
Citation: YANG Huan, ZENG MengXiu, PENG HaiJun, CAI Cheng, LI FengQuan, DENG BoLong, ZHU LiDong, HU ZhongXing, NI Jian. High⁃resolution Humification Record of Xingyi Peat since the Late Holocene in Karst Region, Southwestern Guizhou[J]. Acta Sedimentologica Sinica, 2021, 39(2): 395-407. doi: 10.14027/j.issn.1000-0550.2019.107

High⁃resolution Humification Record of Xingyi Peat since the Late Holocene in Karst Region, Southwestern Guizhou

doi: 10.14027/j.issn.1000-0550.2019.107
Funds:

National Natural Science Foundation of China 41773140

Natural Science Foundation of Zhejiang Province, China LQ18D020002

National Key R&D Program of China 2016YFC0502101

Strategy for Leading Science and Technology Project from Chinese Academy of Sciences (A) XDA2 009000003

Science and Technology Program of Guizhou Province QKH[2019]1317

  • Received Date: 2019-07-25
  • Publish Date: 2021-04-23
  • Peat in Guizhou province is an important source of peat in the Asian monsoon zone. This study reveals the environmental significance of the degree of humification of Guizhou peat. The AMS 14C dating method was used to establish a chronological framework of XY1 core from Xingyi peatland, a new paleoenvironmental record from the karst area of southwestern China. A high⁃resolution analysis of the extent of humification, the deposition rate and the carbon accumulation rate estimated the climatic evolutionary history and peat deposition process for the period 3 000⁃1 770 cal. a B.P., and a possible mechanism is discussed. The following were found. (1) The humification extent of XY1 core was controlled by both precipitation and temperature. High humification values indicate cold, dry conditions, and vice versa. (2) During the 3 000 ⁃2 700 cal. a B.P. period, the degree of humification was low, but with a rising trend. The carbon accumulation rate was low and showed a decreasing trend. The deposition rate was low and relatively stable, and the peat deposition process was relatively weak. From 2 700 cal. a B.P. to 2 400 cal. a B.P. the humification degree decreased, while the carbon accumulation rate and deposition rate increased slightly, indicating that the peat deposition was accelerating slowly. Between 2 400 cal. a B.P. and 1 950 cal. a B.P., the humification degree increased, and the carbon accumulation rate and deposition rate all peaked, and peat was deposited rapidly. From 1 950 cal. a B.P. to 1 770 cal. a B.P., the humification degree, carbon accumulation rate and deposition rate all varied significantly and a fluctuating peat deposition was obvious. (3) The power spectrum and wavelet analysis of the degree of humification indicated a double Hale cycle, Brückner cycle and century cycle of solar activity. Consequently, it was inferred that climate change and Xingyi peatland deposition were driven by solar activity in Xingyi, southwestern Guizhou.
  • [1] 柴岫. 泥炭地学[M]. 北京:地质出版社,1990.

    Chai Xiu. Peatland[M]. Beijing: Geological Publishing House, 1990.
    [2] 肖河,黄庭,程胜高,等. 东北哈尼泥炭腐殖化度记录的全新世气候变化[J]. 地质科技情报,2015,34(1):67-71.

    Xiao He, Huang Ting, Cheng Shenggao, et al. Holocene climate changes recorded by peat humification from Hani peat in Northeast China[J]. Geological Science and Technology Information, 2015, 34(1): 67-71.
    [3] Longman J, Veres D, Wennrich V. Utilisation of XRF core scanning on peat and other highly organic sediments[J]. Quaternary International, 2019, 514: 85-96.
    [4] 朱诚,马春梅,张文卿,等. 神农架大九湖15.753kaB.P.以来的孢粉记录和环境演变[J]. 第四纪研究,2006,26(5):814-826.

    Zhu Cheng, Ma Chunmei, Zhang Wenqing, et al. Pollen record from Dajiuhu Basin of Shennongjia and environmental changes since 15.753kaB.P.[J]. Quaternary Sciences, 2006, 26(5): 814-826.
    [5] 尹茜,朱诚,马春梅,等. 天目山千亩田泥炭腐殖化度记录的中全新世气候变化[J]. 海洋地质与第四纪地质,2006,26(6):117-122.

    Yin Qian, Zhu Cheng, Ma Chunmei, et al. Holocene climate change recorded in peat humification in Tianmu Mountain region[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 117-122.
    [6] Chambers F M, Barber K E, Maddy D, et al. A 5500-year proxy-climate and vegetation record from Blanket Mire at Talla Moss, Borders, Scotland[J]. The Holocene, 1997, 7(4): 391-399.
    [7] Borgmark A, Schoning K. A comparative study of peat proxies from two eastern central Swedish bogs and their relation to meteorological data[J]. Journal of Quaternary Science, 2006, 21(2): 109-114.
    [8] Blundell A, Charman D J, Barber K. Multiproxy Late Holocene peat records from Ireland: Towards a regional palaeoclimate curve[J]. Journal of Quaternary Science, 2008, 23(1): 59-71.
    [9] Wang H, Hong Y T, Lin Q H, et al. Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286(3/4): 171-177.
    [10] 马春梅,朱诚,郑朝贵,等. 中国东部山地泥炭高分辨率腐殖化度记录的晚冰期以来气候变化[J]. 中国科学(D辑):地球科学,2008,38(9):1078-1091.

    Ma Chunmei, Zhu Cheng, Zheng Chaogui, et al. Climate changes in East China since the late-glacial inferred from high-resolution mountain peat humification records[J]. Science China (Seri. D): Earth Sciences, 2008, 38(9): 1078-1091.
    [11] 蔡颖,钟巍,薛积彬,等. 干旱区湖泊沉积物腐殖化度的古气候指示意义:以新疆巴里坤湖为例[J]. 湖泊科学,2009,21(1):69-76.

    Cai Ying, Zhong Wei, Xue Jibin, et al. The indicative significance of paleoclimate as indicated by humification of lacustrine sediment: a case on lake Barkol, northeastern Xinjiang[J]. Journal of Lake Sciences, 2009, 21(1): 69-76.
    [12] Caseldine C, Gearey B. A multiproxy approach to reconstructing surface wetness changes and prehistoric bog bursts in a raised mire system at Derryville Bog, Co. Tipperary, Ireland[J]. The Holocene, 2005, 15(4): 585-601.
    [13] Jones M C, Yu Z C. Rapid deglacial and Early Holocene expansion of peatlands in Alaska[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(16): 7347-7352.
    [14] van Bellen S, Garneau M, Booth R K. Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: Impact of climate-driven ecohydrological change[J]. The Holocene, 2011, 21(8): 1217-1231.
    [15] Dommain R, Couwenberg J, Joosten H. Development and carbon sequestration of tropical peat domes in South-East Asia: links to post-glacial sea-level changes and Holocene climate variability[J]. Quaternary Science Reviews, 2011, 30(7/8): 999-1010.
    [16] Xing W, Bao K S, Guo W Y, et al. Peatland initiation and carbon dynamics in Northeast China: links to Holocene climate variability[J]. Boreas, 2015, 44(3): 575-587.
    [17] Xu H, Liu B, Lan J H, et al. Holocene peatland development along the eastern margin of the Tibetan Plateau[J]. Quaternary Research, 2013, 80(1): 47-54.
    [18] Zhao L, Ma C M, Leipe C, et al. Holocene vegetation dynamics in response to climate change and human activities derived from pollen and charcoal records from southeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 644-660.
    [19] 刘亚生,常凤琴,张虎才,等. 云南腾冲青海湖泊沉积物物化参数的特点、环境意义及末次冰消期以来气候环境变化[J]. 第四纪研究,2015,35(4):922-933.

    Liu Yasheng, Chang Fengqin, Zhang Hucai, et al. Environmental significance of physicochemical parameters of sediment and climate changes since the late glacial at Qinghai Lake of Tengchong county, Yunnan province[J]. Quaternary Sciences, 2015, 35(4): 922-933.
    [20] 郑景云,卞娟娟,葛全胜,等. 1981~2010年中国气候区划[J]. 科学通报,2013,58(30):3088-3099.

    Zheng Jingyun, Bian Juanjuan, Ge Quansheng, et al. The climate regionalization in China for 1981-2010[J]. Chinese Science Bulletin, 2013, 58(30): 3088-3099.
    [21] 兰安军,张百平,熊康宁,等. 黔西南脆弱喀斯特生态环境空间格局分析[J]. 地理研究,2003,22(6):733-741.

    Lan Anjun, Zhang Baiping, Xiong Kangning, et al. Spatial pattern of the fragile karst environment in southwest Guizhou province[J]. Geographical Research, 2003, 22(6): 733-741.
    [22] 黄威廉,屠玉麟. 贵州植被区划[J]. 贵州师范大学学报(自然科学版),1983(1):26-47.

    Huang Weilian, Tu Yulin. Vegetation regionalization in Guizhou[J]. Journal of Guizhou Normal University (Natural Sciences), 1983(1): 26-47.
    [23] Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3): 457-474.
    [24] Aaby B, Tauber H. Rates of peat formation in relation to degree of humification and local environment, as shown by studies of a raised bog in Deninark[J]. Boreas, 1975, 4(1): 1-17.
    [25] Chen Y, Senesi N, Schnitzer M. Information provided on humic substances by E4/E6 ratios[J]. Soil Science Society of America Journal, 1977, 41(2): 352-358.
    [26] 邢伟. 我国东北地区沼泽湿地碳累积研究[D]. 长春:中国科学院大学(中国科学院东北地理与农业生态研究所),2017.

    Xing Wei. Carbon accumulation in wetlands sediments, Northeast China[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2017.
    [27] Sellami F, Hachicha S, Chtourou M, et al. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters[J]. Bioresource Technology, 2008, 99(15): 6900-6907.
    [28] 程胜高,肖河,黄庭,等. 东北哈尼泥炭腐殖化度古气候意义及区域对比[J]. 地球科学与环境学报,2014,36(2):92-102.

    Cheng Shenggao, Xiao He, Huang Ting, et al. Paleoclimatic significances of peat humification in Hani of Northeast China and regional comparison[J]. Journal of Earth Sciences and Environment, 2014, 36(2): 92-102.
    [29] Zhou W J, Yu X F, Timothy Jull A J, et al. High-resolution evidence from Southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18,000 years[J]. Quaternary Research, 2004, 62(1): 39-48.
    [30] 明方平,田维江. 贵州省兴义煤田构造特征[J]. 城市地理,2015(14):71-72.

    Ming Fangping, Tian Weijiang. Tectonic characteristics of Xingyi coalfield, Guizhou province[J]. Cultural Geography, 2015(14): 71-72.
    [31] Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19): L19704.
    [32] 牛蕊,周立旻,孟庆浩,等. 贵州草海南屯泥炭记录的中全新世以来的气候变化[J]. 第四纪研究,2017,37(6):1357-1369.

    Niu Rui, Zhou Limin, Meng Qinghao, et al. The paleoclimate variations of the Nantun peat in the Caohai area since the middle Holocene[J]. Quaternary Sciences, 2017, 37(6): 1357-1369.
    [33] 胡凡根,李志忠,姜修洋,等. 福建屏南天湖山泥炭腐殖化度记录的早全新世以来气候变化[J]. 亚热带资源与环境学报,2011,6(3):31-39.

    Hu Fan’gen, Li Zhizhong, Jiang Xiuyang, et al. Holocene climate change recorded in peat humification on Tianhu Mountain in northern Fujian province[J]. Journal of Subtropical Resources and Environment, 2011, 6(3): 31-39.
    [34] 薛积彬,钟巍,彭晓莹,等. 南岭东部大湖泥炭沉积记录的古气候[J]. 海洋地质与第四纪地质,2007,27(5):105-113.

    Xue Jibin, Zhong Wei, Peng Xiaoying, et al. Paleo-climate significance for the past 12 kaBP revealed by Dahu peat record in the eastern South Mountain[J]. Marine Geology & Quaternary Geology, 2007, 27(5): 105-113.
    [35] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 71-86.
    [36] 周静,王苏民,吕静. 洱海地区一万多年以来气候环境演化的湖泊沉积记录[J]. 湖泊科学,2003,15(2):104-111.

    Zhou Jing, Wang Sumin, Lü Jing. Climatic and environmental changes from the sediment record of Erhai Lake over the past 10000 years[J]. Journal of Lake Sciences, 2003, 15(2): 104-111.
    [37] 杜荣荣,陈敬安,曾艳,等. 贵州白鹇湖沉积物中孢粉记录的5.5 kaB.P.以来的气候变化[J]. 生态学报, 2013, 33(12): 3783-3791.

    Du Rongrong, Chen Jing’an, Zeng Yan, et al. Climate change recorded mainly by pollen from Baixian Lake during the last 5.5kaB.P.[J]. Acta Ecologica Sinica, 2013, 33(12): 3783-3791.
    [38] 谭金凤,肖霞云,李艳玲. 滇西北格贡错那卡湖沉积记录揭示的晚全新世气候变化[J]. 第四纪研究,2018,38(4):900-911.

    Tan Jinfeng, Xiao Xiayun, Li Yanling. Late Holocene climatic change revealed by sediment records in Gegongcuonaka Lake, northwestern Yunnan province[J]. Quaternary Sciences, 2018, 38(4): 900-911.
    [39] 张美良,林玉石,朱晓燕,等. 云南宁蒗地区中全新世晚期气候变化的石笋记录[J]. 海洋地质与第四纪地质,2006,26(1):35-40.

    Zhang Meiliang, Lin Yushi, Zhu Xiaoyan, et al. The records of climatic change from a stalagmite during the late time of the Middle Holocene in Ninglang area, Yunnan[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 35-40.
    [40] 薛积彬. 新疆巴里坤湖记录的全新世环境变化研究[D]. 广州:华南师范大学,2008.

    Xue Jibin. Holocene environment changes record by Barkol Lake, Xinjiang, NW China[D]. Guangzhou: South China Normal University, 2008.
    [41] Charman D J, Beilman D W, Blaauw M, et al. Climate-related changes in peatland carbon accumulation during the last millennium[J]. Biogeosciences, 2013, 10(2): 929-944.
    [42] Kathayat G, Cheng H, Sinha A, et al. Indian monsoon variability on millennial-orbital timescales[J]. Scientific Reports, 2016, 6: 24374.
    [43] 蔡诚,洪冰,朱咏煊,等. 全新世哈尼泥炭地碳积累速率及影响因素[J]. 地球与环境,2013,41(6):597-604.

    Cai Cheng, Hong Bing, Zhu Yongxuan, et al. Holocene peat carbon accumulation rates and influence factors from the Hani peatland, Northeast China[J]. Earth and Environment, 2013, 41(6): 597-604.
    [44] 蔡诚,洪冰,朱咏煊,等. 全新世红原泥炭碳积累速率及其影响因素研究[J]. 矿物岩石地球化学通报,2014,33(3):309-316.

    Cai Cheng, Hong Bing, Zhu Yongxuan, et al. Carbon accumulation rate and its influence factors in the Hongyuan Holocene peat, Southwest China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(3): 309-316.
    [45] Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to Early Holocene sea-level rise[J]. Nature Geoscience, 2009, 2(9): 636-639.
    [46] 杨琰,袁道先,程海,等. 末次冰消期亚洲季风突变事件的精确定年:以贵州衙门洞石笋为例[J]. 中国科学(D辑):地球科学,2010,40(2):199-210.

    Yang Yan, Yuan Daoxian, Cheng Hai, et al. Precise dating of abrupt shifts in the Asian monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou province, China[J]. Science China (Seri.D)Earth Sciences, 2010, 40(2): 199-210.
    [47] 吴江滢,汪永进,孔兴功. 贵州白骨洞石笋记录的全新世季风气候演化与突变[J]. 海洋地质与第四纪地质,2006,26(5):55-60.

    Wu Jiangying, Wang Yongjin, Kong Xinggong. Evolution and abrupt changes of the Holocene Asian monsoon climate recorded by stalagmite in Baigu Cave in Guizhou[J]. Marine Geology & Quaternary Geology, 2006, 26(5): 55-60.
    [48] 吴江滢,邵晓华,孔兴功,等. 盛冰期太阳活动在南京石笋年层序列中的印迹[J]. 科学通报,2006,51(4):431-435.

    Wu Jiangying, Shao Xiaohua, Kong Xinggong, et al. Imprint of solar activity on Nanjing stalagmite annual layer thickness sequence during the Last Glacial Maximum[J]. Chinese Science Bulletin, 2006, 51(4): 431-435.
    [49] 王绍武. 东亚大气活动中心的多年变化与我国的气候振动[J]. 气象学报,1962,32(1):19-36.

    Wang Shaowu. The multi-year change of the center of sub atmospheric activity and the climate vibration[J]. Acta Meteorologica Sinica, 1962, 32(1): 19-36.
    [50] 杨周,林振山. 北半球过去2000年气温变化的多尺度分析[J]. 地理科学,2010,30(2):295-299.

    Yang Zhou, Lin Zhenshan. Multi-scale analysis of northern hemisphere temperature changes over past two millennia[J]. Scientia Geographica Sinica, 2010, 30(2): 295-299.
    [51] 姚檀栋,杨梅学,康兴成. 从古里雅冰芯与祁连山树轮记录看过去2000年气候变化[J]. 第四纪研究,2001,21(6):514-519.

    Yao Tandong, Yang Meixue, Kang Xingcheng. Comparative study of the climate changes in the past 2 000 years by using ice core and tree ring records[J]. Quaternary Sciences, 2001, 21(6): 514-519.
    [52] 气象学报编委会. 气象学若干问题的进展[M]. 北京:科学出版社,1963.

    Editorial Board of Meteorological Journal. Advances in several problems of meteorology[M]. Beijing: Science Press, 1963.
    [53] 王绍武,赵宗慈. 我国旱涝36年周期及其产生的机制[J]. 气象学报,1979,37(1):64-73.

    Wang Shaowu, Zhao Zongci. The 36-YR. wetness oscillation in China and its mechanism[J]. Acta Meteorologica Sinica, 1979, 37(1): 64-73.
    [54] 钟巍,王立国,塔西甫拉提·特依甫,等. 太阳活动对塔里木盆地南缘近4 ka以来气候波动的可能影响[J]. 科学通报,2004,49(11):1079-1083.

    Zhong Wei, Wang Liguo, Tyip·Tashpolat, et al. Possible solar forcing of climate variability in the past 4000 years inferred from a proxy record at the southern margin of Tarim Basin[J]. Chinese Science Bulletin, 2004, 49(11): 1079-1083.
    [55] 张家诚. 气候变迁及其原因[M]. 北京:科学出版社,1976.

    Zhang Jiacheng. Climate change and causes[M]. Beijing: Science Press, 1976.
    [56] MacDonald G M, Case R A. Variations in the Pacific Decadal Oscillation over the past millennium[J]. Geophysical Research Letters, 2005, 32(8): L08703.
    [57] Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Science, 2003, 300(5626): 1737-1739.
    [58] 王先芳. 晚全新世湖北神农架高精度石笋碳同位素记录[D]. 南京:南京师范大学,2014.

    Wang Xianfang. Carbon isotope records of stalagmites in Shennongjia, Hubei province, Late Holocene[D]. Nanjing: Nanjing Normal University, 2014.
    [59] 谢远云,李长安,王秋良,等. 江汉平原近3 000年来古洪水事件的沉积记录[J]. 地理科学,2007,27(1):81-84.

    Xie Yuanyun, Li Chang’an, Wang Qiuliang, et al. Sedimentary records of paleoflood events during the last 3000 years in Jianghan Plain[J]. Scientia Geographica Sinica, 2007, 27(1): 81-84.
    [60] 洪业汤,刘东生,姜洪波,等. 太阳辐射驱动气候变化的泥炭氧同位素证据[J]. 中国科学(D辑):地球科学,1999,29(6):527-531.

    Hong Yetang, Liu Tungsheng, Jiang Hongbo, et al. Evidence of peat oxygen isotope for climate change driven by solar radiation[J]. Science China (Seri. D): Earth Sciences, 1999, 29(6): 527-531.
    [61] Hastenrath S, Greischar L. Circulation mechanisms related to Northeast Brazil rainfall anomalies[J]. Journal of Geophysical Research, 1993, 98(D3): 5093-5102.
    [62] Oppo D W, McManus J F, Cullen J L. Palaeo-oceanography: Deepwater variability in the Holocene epoch[J]. Nature, 2003, 422(6929): 277.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article Metrics

Article views(973) PDF downloads(151) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-07-25
  • Published:  2021-04-23

High⁃resolution Humification Record of Xingyi Peat since the Late Holocene in Karst Region, Southwestern Guizhou

doi: 10.14027/j.issn.1000-0550.2019.107
Funds:

National Natural Science Foundation of China 41773140

Natural Science Foundation of Zhejiang Province, China LQ18D020002

National Key R&D Program of China 2016YFC0502101

Strategy for Leading Science and Technology Project from Chinese Academy of Sciences (A) XDA2 009000003

Science and Technology Program of Guizhou Province QKH[2019]1317

Abstract: Peat in Guizhou province is an important source of peat in the Asian monsoon zone. This study reveals the environmental significance of the degree of humification of Guizhou peat. The AMS 14C dating method was used to establish a chronological framework of XY1 core from Xingyi peatland, a new paleoenvironmental record from the karst area of southwestern China. A high⁃resolution analysis of the extent of humification, the deposition rate and the carbon accumulation rate estimated the climatic evolutionary history and peat deposition process for the period 3 000⁃1 770 cal. a B.P., and a possible mechanism is discussed. The following were found. (1) The humification extent of XY1 core was controlled by both precipitation and temperature. High humification values indicate cold, dry conditions, and vice versa. (2) During the 3 000 ⁃2 700 cal. a B.P. period, the degree of humification was low, but with a rising trend. The carbon accumulation rate was low and showed a decreasing trend. The deposition rate was low and relatively stable, and the peat deposition process was relatively weak. From 2 700 cal. a B.P. to 2 400 cal. a B.P. the humification degree decreased, while the carbon accumulation rate and deposition rate increased slightly, indicating that the peat deposition was accelerating slowly. Between 2 400 cal. a B.P. and 1 950 cal. a B.P., the humification degree increased, and the carbon accumulation rate and deposition rate all peaked, and peat was deposited rapidly. From 1 950 cal. a B.P. to 1 770 cal. a B.P., the humification degree, carbon accumulation rate and deposition rate all varied significantly and a fluctuating peat deposition was obvious. (3) The power spectrum and wavelet analysis of the degree of humification indicated a double Hale cycle, Brückner cycle and century cycle of solar activity. Consequently, it was inferred that climate change and Xingyi peatland deposition were driven by solar activity in Xingyi, southwestern Guizhou.

YANG Huan, ZENG MengXiu, PENG HaiJun, CAI Cheng, LI FengQuan, DENG BoLong, ZHU LiDong, HU ZhongXing, NI Jian. High⁃resolution Humification Record of Xingyi Peat since the Late Holocene in Karst Region, Southwestern Guizhou[J]. Acta Sedimentologica Sinica, 2021, 39(2): 395-407. doi: 10.14027/j.issn.1000-0550.2019.107
Citation: YANG Huan, ZENG MengXiu, PENG HaiJun, CAI Cheng, LI FengQuan, DENG BoLong, ZHU LiDong, HU ZhongXing, NI Jian. High⁃resolution Humification Record of Xingyi Peat since the Late Holocene in Karst Region, Southwestern Guizhou[J]. Acta Sedimentologica Sinica, 2021, 39(2): 395-407. doi: 10.14027/j.issn.1000-0550.2019.107
  • 泥炭是一种天然的沼泽地产物[1],具有沉积连续、分辨率高、经济易得等优点[2],是恢复环境演变历史的重要载体,常用的代用指标包括无机地球化学元素[3]、孢粉[4]、腐殖化度[5]等。对苏格兰南部Blanket泥炭[6]、瑞典中东部泥炭[7]、爱尔兰地区泥炭[8]以及我国的哈尼泥炭[2]、红原泥炭[9]、大九湖泥炭[10]、新疆巴里坤湖泥炭[11]的研究表明,腐殖化度能够很好地指示泥炭地地表湿度、泥炭分解程度[12]等。然而,由于气候因子、植被类型、微生物活动等条件都可能影响泥炭腐殖质化过程[1],使不同区域腐殖化度的指示意义不尽相同。相较于中国其他地区[2,911],对季风区泥炭的重要组成部分——位于西南喀斯特地貌区的贵州泥炭的研究较为匮乏。对贵州泥炭腐殖化度的研究,能够进一步明确不同气候区泥炭腐殖化度的古环境意义,对贵州气候变化、泥炭形成发育历史的探讨也具有重要意义。

    了解不同气候、地貌、植被条件下泥炭的形成、发育演化过程,也将对泥炭资源利用与保护、湿地生态环境建设等方面提供科学依据。当前,已有众多学者在阿拉斯加[13]、加拿大[14]、东南亚[15]、中国[16]等地开展了关于泥炭地演化方面的研究。表明中国青藏高原泥炭地大规模发育在早全新世[17],东南地区泥炭在早中全新世广泛发育[18],东北地区泥炭地发育主要集中在晚全新世[16]。不同地区泥炭地形成发育的时间不同,演化模式也不一样,有必要加强对不同地区,尤其是此前关注较少的西南地区泥炭的研究。

    贵州地处云贵高原,为亚热带季风气候,受东亚季风与南亚季风共同影响[19],境内喀斯特地貌分布广泛,生态环境脆弱,对气候和环境变化十分敏感。对贵州泥炭沉积过程研究有助于进一步厘清喀斯特地貌区植物残体分解过程、泥炭发育演化历史,及泥炭记录的古气候、古生态、古环境演化历史。本文以黔西南喀斯特地貌区兴义XY1泥炭钻孔为研究对象,通过对泥炭的腐殖化度、总有机碳、干容重等的测定,重建兴义泥炭碳累积过程,研究兴义泥炭腐殖化度的气候环境指示意义,探讨晚全新世以来兴义泥炭演化历史及其外部控制因子,以丰富我国季风区泥炭的研究资料。

  • 兴义泥炭地位于贵州省黔西南布依族苗族自治州兴义市西北方向25 km(25.31 °N,104.84 °E,海拔1 317 m),靠近黔、滇、桂三省的交界处(图1)。兴义市为中亚热带山地季风气候,年均温17.6 ℃,年降水量1 322 mm[20],无霜期长。海拔1 000~1 400 m,地势西北高、东南低,山峦起伏,喀斯特地貌面积占兴义市总面积的73.6%[21]。境内河流均属珠江流域南盘江水系,属于南盘江干流中游地区。属于亚热带常绿阔叶林带,典型植被类型包括中山常绿栎林、松栎混交林、云南松林等,并且在广大山坡上分布着稀树灌丛草丛和禾本科杂草草丛等[22]

    Figure 1.  Location and structural setting of Xingyi peatland

  • 2017年4月在兴义泥炭地使用俄罗斯泥炭钻采集了泥炭岩芯XY1,现场按2 cm等间距进行分样,然后立即装入自封袋中编号封存,并送入实验室置于4 ℃冰柜低温保存。XY1钻孔的组成物质主要为泥炭和粉砂,其中顶部0~50 cm为黑色粉砂质沉积物,表层有明显的植物根系发育。考虑到人类耕作活动的可能影响,该部分将不予分析讨论。本文选取的是钻孔上部50~250 cm的岩芯沉积物,进行干容重、烧失量及腐殖化度等实验室分析测定。集中分析深度的钻孔岩性自上而下描述如下(图2a):50~245 cm为褐黑色泥炭,低到中等分解程度,有明显红色灌木树枝或根系,且有明显的草本植物残体;245~250 cm主要为灰黑色沉积,中间有白色碳酸盐质颗粒互层沉积。

    Figure 2.  (a)Stratigraphy and the AMS14C dating positions of the upper of XY1 core; (b)Age⁃depth model of upper section of XY1 core, using WinBacon 2.2.R software

  • 在不同深度,挑选5个样品中的植物残体,送交美国Beta实验室进行AMS14C年代测定。测年结果采用OxCal程序并利用IntCal13曲线校正,通过基于Bayesian统计法的“WinBacon2.2”年代模型[23],结合R软件为不同的年代控制点选择合适的函数,从而建立准确的年代—深度框架[23]图2b)。然后基于上述年代—深度模型计算沉积速率。

  • 腐殖化度通过常规的碱提取溶液吸光度法测定[24]。由于此前对黔西南泥炭缺乏深入研究,因此此次对XY1钻孔样品进行465 nm、540 nm和665 nm三个波长吸光度测试。将泥炭样品以2 cm间隔取样共计125个,准确称取通过60目筛的0.10 g样品放入烧杯中;加入100 mL 0.1 mol/L的氢氧化钠溶液,在电加热板上进行加热直至沸腾,用微火继续加热1个小时以使泥炭的腐殖酸充分地浸出;待含有腐殖酸的溶液冷却后,将其转移到容量瓶进行稀释定容。紧接着用红外分光光度计分别测量三个波长的吸光度,每个波长结果取其三次测定的平均值。465 nm、540 nm和665 nm波长吸光度均可用来表示泥炭腐殖化度。此外,腐殖化度E4/E6(碱提取液在465 nm和665 nm下的吸光度之比)可以很好地反映降水量的状况,且与年平均降水量之间存在明显的负相关关系[25],因此也计算E4/E6值。

    将采集的新鲜样品放满24 cm3的铝盒,随后将样品在105 ℃下恒温烘干12 h,称重后计算出样品干容重[14]。总有机碳(Total Organic Carbon, TOC)含量采用烧失法测定。先将石英坩埚在马弗炉550 ℃下烘烧3 h,在干燥器中冷却后称取坩埚的净重,并称取已用105 ℃恒温烘干12 h的样品0.30 g置于坩埚中,在550 ℃下烘烧3 h后再冷却称量,并减去坩埚净重则为泥炭烧失量(Loss On Ignition, LOI),泥炭TOC为LOI的50%[14]

  • 通过MATLAB R2016a软件的Morlet小波变换函数分析兴义腐殖化度(540 nm处吸光度,下同)周期,通过定量古生物学软件Past3进行功率谱分析,并对其结果进行95%、99%的置信度检验。碳累积速率通过以下公式进行计算:

    R=10000×ρ×C%/t

    式中:R为碳积累速率,单位:g C/(m2·a);ρ为干容重,单位:g/cm3C%为泥炭碳元素含量,单位:%;t为每厘米沉积时间,单位:a。

  • AMS14C年代学结果(表1)表明XY1钻孔在60 cm以下无地层倒置现象,且沉积速率较为稳定(图2),平均沉积速率为1.65 mm/a(图3)。根据重建的年代—深度序列,该钻孔在250 cm处的沉积年龄为3 000 cal. a B.P.,50 cm处沉积年龄为1 767 cal. a B.P.。

    Figure 3.  Variation of sediment accumulation rate and indicators related to carbon accumulation in XY1 core from Xingyi peatland

    实验室编号 样品编号 深度/cm 测年材料 δ 13C/‰ 14C年龄/a B.P. 校正年龄/cal. a B.P.
    Beta⁃469793 XY1 50 植物残体 -24.4 1 850±30 1 715~1 865(1 767)
    Beta⁃470784 XY2 60 植物残体 -25.1 1 790±30 1 686~1 817(1 820)
    Beta⁃478621 XY3 70 植物残体 -27.4 2 050±30 1 930~2 115(1 915)
    Beta⁃469794 XY4 148 植物残体 -22.2 2 300±30 2 305~2 356(2 337)
    Beta⁃469795 XY5 242 植物残体 -22.9 2 840±30 2 866~3 039(2 933)

    Table 1.  AMS radiocarbon dating results for XY1 core

  • 465 nm、540 nm和665 nm处的吸光度总体呈现上升的趋势,其中540 nm吸光度波动范围为0.16~0.61,平均值为0.40;465 nm吸光度波动范围为0.27~0.96,平均值为0.68;665 nm吸光度波动范围0.06~0.32,平均值为0.16;E4/E6比值呈现上升—略有所回落—最后缓慢上升的趋势(图4)。

    Figure 4.  Variation of the absorbance at different wavelengths for different ages

    TOC含量变化呈现上升后保持平稳最后波动下降的趋势(图3b),变化范围为24.80%~45.77%,平均值为43.22%。干容量变化呈现上升后下降继而保持平稳最后波动上升趋势(图3c),大致与TOC含量变化曲线呈现相反的趋势,变化范围为0.09~0.37 g/cm3,平均值为0.16 g/cm3

    兴义泥炭碳累积速率变化范围为58.70~135.74 g C/(m2·a)(图3a),平均值为106.50 g C/(m2·a),落值于全球泥炭地的平均碳累积速率20~140 g C/(m2·a)范围内[26]

  • 功率谱分析(图5a)表明兴义泥炭腐殖化度比较显著的准周期有83 a、55 a、38 a、31 a、27 a、22 a、18 a、16 a、14 a(兴义泥炭腐殖化度分辨率为12 a,故小于12 a的周期不考虑)。兴义泥炭腐殖化度小波分析(图5b)表明,比较显著的准周期有170~220 a、70~90 a、45~32 a、22 a。170~220 a准周期信号存在于3 000~2 700 cal. a B.P.;70~90 a准周期信号存在于3 000~2 650、2 400~2 200和2 150~1 767 cal. a B.P.;45~32 a准周期信号存在于3 000~2 200和2 075~1 767 cal. a B.P.;22 a准周期信号存在于2 700~2 500和2 100~1 767 cal. a B.P.。功率谱分析和小波分析结果较为一致,共同存在83 a、55 a、38 a、31 a、27 a、22 a周期。

    Figure 5.  Absorbance from XY1 core in Xingyi peatland: (a) power spectrum; (b) wavelet spectral energy

  • 碱提取溶液吸光度法获取的泥炭腐殖化度在不同波长具有不同的指示意义。465 nm处吸光度能够反映有机大分子开始通过微生物分解产生腐殖酸的过程[27],665 nm处吸光度能够反映高氧含量和在稳定阶段产生的芳族化合物的特征,该波长腐殖酸成熟度和稳定性更高,并具有更高的官能团含量[25]。540 nm处的吸光度反映的土壤腐殖酸成熟度和稳定性程度介于前两者之间。普遍认为由于各波长吸光度是由高频到低频单调减少吸收,因此各个波长的吸光度虽在数值上有差别但其变化趋势较一致[2]。无论选取哪个波长吸光度都能反映腐殖化度的变化,吸光度值高表明腐殖酸含量高,腐殖化度高。XY1钻孔样品在465 nm、540 nm和665 nm三个波长的吸光度值变化曲线均一致(图4),三个波长数值呈现单调递减变化,也反映了以上规律。540 nm吸光度常被用于表示泥炭的腐殖化度[2,11],故本文也采用540 nm处吸光度代表泥炭的腐殖化度用于周期分析及后续讨论。

    影响泥炭腐殖化度的因素主要有微生物活动、水热状况、土壤酸碱度、成炭植物类型等,最主要的是水热条件[1]。对红原泥炭[9]、大九湖泥炭[10]及哈尼泥炭[28]的研究表明,温度对植物的生长量、微生物活动都有影响,一般而言,当温度低于5 ℃时,植物增长量小,微生物活动微弱,植物残体分解速率缓慢,腐殖化度低;当温度介于20 ℃~30 ℃时,植物增长量大,微生物活动强,植物残体分解速率加快,腐殖化度高;当温度大于30 ℃时,虽然植物生长量大,但由于温度高,微生物活动减弱,泥炭腐殖化度偏低。此外,泥炭湿度对植物的生长和微生物的活动影响也极为显著,从而影响泥炭腐殖化度。当湿度达到60%~80%时,微生物活动能力最强,泥炭腐殖化度高;当水热条件低于或高于上述水平时,微生物活动能力则逐渐减弱,泥炭腐殖化度低[1]。兴义地区年平均湿度高达80%并且年均温高年降水量大[20],在这种气候条件下湿度进一步增加则会越过微生物活动的适宜期,使微生物活动减弱,腐殖化度降低。前人研究也表明泥炭有机质含量越高,说明气候越干[29]。本研究TOC含量是经LOI转换得出,其变化能代表有机质含量的变化。当TOC含量处于高值时,说明泥炭地地下水水位较浅,大量植物,尤其是高等植物生长繁茂,使泥炭地积累了大量有机质;而TOC含量处于低值,说明泥炭地位于深水位,高等植物生长量减小,有机质含量下降。兴义泥炭XY1钻孔TOC含量与腐殖化度变化具有很好的一致性,相关系数R 2 =0.79,P<0.01,相关性极强,进一步证明兴义泥炭腐殖化度处于高值时,气候偏干,低值时气候湿润。兴义泥炭E4/E6(图4d)比值反映的降水量在该时期经历了下降—增加—缓慢下降的波动过程,540 nm吸光度表现为上升—下降—波动上升趋势,故而540 nm吸光度上升代表降水量下降,进一步印证了腐殖化度高时代表气候偏干,反之亦然。

    从构造位置上来说,兴义地区位于扬子陆块Ⅰ级构造单元内的上扬子陆块Ⅱ级构造单元的南盘江—右江前陆盆地Ⅲ级构造单元,地处黄泥河—潘家庄断裂与册亨弧形断裂所围区域[30]。兴义泥炭地西北—东北方向为苞谷地背斜,东南方向为鲁础营向斜,南侧为双龙向斜,西北方向的背斜可以提供地表径流汇入,东南—东北方向小丘阻挡水流流出,使得兴义泥炭地成为集水区域(图1b)。在这种地形条件下,当降水量丰富时,泥炭地湿度大,微生物活动弱,并不利于有机质的分解,腐殖化度低;反之,在降水量相对减少的条件下,腐殖化度则升高[1]。全球太阳总辐照度(TSI)在3 000~1 770 cal. a B.P.期间较稳定,在2 700 cal. a B.P.和2 300 cal. a B.P.左右出现两个低谷值[31],与兴义泥炭腐殖化度在2 650 cal. a B.P.和2 250 cal. a B.P.左右出现的两个高值相对应。因此,兴义泥炭腐殖化度也能够反映太阳辐射强度,腐殖化度处于高值时指示太阳辐射弱,温度低,反之则指示太阳辐射强,温度高,反映了腐殖化度与温度的负相关关系。

    综上所述,兴义泥炭腐殖化度可以很好地反映降水量和温度变化,当腐殖化度处于高值时,指示气候干冷,反之则指示气候湿热。对处于温带气候区的红原泥炭(图6a)、新疆北部巴里坤湖泥炭[11]、东北哈尼泥炭(图6b)和贵州西部威宁弧形背斜轴部发育的高海拔草海盆地南屯泥炭(图6c)的研究均表明,腐殖化度处于高值时气候湿热,反之则气候干冷。而对处于亚热带季风气候区的浙江天目山千亩田泥炭[5]、南岭东部大湖泥炭[34]、湖北神农架大九湖泥炭[10]、福建屏南天湖山泥炭(图6d)的研究表明,腐殖化度处于高值时指示气候干冷,反之则指示气候湿热,与兴义泥炭的研究结果一致。以上反映了泥炭腐殖化度的气候指示意义在气候区域上具有一致性。在温带气候区,增温增湿能提高植物初级生产力,有机质增加,微生物活动增强,腐殖质增多,腐殖化度升高;而在亚热带地区,降水量增加反而使地表积水加深,易于形成还原环境,抑制微生物活动,腐殖化度降低。值得注意的是,兴义泥炭和南屯泥炭腐殖化度的指示意义稍有差异。这应该由两地所处构造位置、海拔高度、气候条件差异等产生。兴义位于断裂构造所围区域,海拔低,而南屯泥炭地位于背斜轴部,年均温和年降水量远低于兴义地区,两地海拔也相差近900 m。然而,对南屯泥炭与兴义泥炭腐殖化度进行相关分析表明,其相关性呈反相关(R 2 =-0.53,P<0.01)。说明在研究时段内二者变化方向相反;从图6中也能发现,晚全新世兴义泥炭腐殖化度总体呈现上升趋势,而南屯泥炭腐殖化度总体呈现下降趋势。可以认为南屯泥炭和兴义泥炭腐殖化度记录反映的气候变化过程具有一致性,均表明晚全新世西南地区气候往冷干方向发展。此外,在南屯泥炭腐殖化度记录中表现明显的1 900 cal. a B.P.冷事件在兴义泥炭中也有体现。兴义泥炭腐殖化度记录与董哥洞石笋δ 18O[35]、滇中洱海沉积物孢粉[36]、黔东白鹇湖孢粉[37]、滇西北格贡错那卡湖泊沉积[38]和宁蒗仙人洞石笋[39]等云贵高原其他地区的古气候重建结果相一致。即3 000~1 770 cal. a B.P.期间气候总体偏冷干,其中在2 700~2 400 cal. a B.P期间气候增温增湿。

    Figure 6.  Comparison of humification records at different peatland research sites in China

  • 植物死亡后,其残体都要经过生物化学作用,使之分解、合成与积聚,当有机质增加量超过分解量,则逐渐聚积成泥炭[40]。泥炭腐殖化度可以定量描述泥炭分解程度并能够反映气候条件,其中XY1钻孔腐殖化度反映了降水量变化是影响兴义泥炭沉积的重要影响因素。沼泽湿地有机碳的累积由湿地生态系统的输入(植被生长和枯落物生产)和输出(有机质的分解)决定,同样也受气候条件的控制。如北半球沼泽湿地千年以来碳累积速率,受生长季光合有效辐射的控制[41]。沉积速率则反映单位时间内泥炭的沉积总量,也与当时的气候条件和沉积环境相关,有机质生产与分解差值越大,沉积速率越快。以上三个代用指标均能反映气候、植被和水文条件的变化[26],对研究泥炭形成和积累至关重要。根据XY1钻孔的腐殖化度、碳累积速率、沉积速率,并结合其他代用指标和已发表的研究成果,将兴义地区3 000~1 770 cal. a B.P.期间泥炭演化过程划分为四个阶段,具体如下:

    第一阶段:250~206 cm(3 000~2 700 cal. a B.P.)

    XY1腐殖化度呈上升趋势,平均值为29.17(图7a);碳累积速率呈下降趋势,平均值为107.44 g C/(m2·a)(图7b);沉积速率呈微弱的下降趋势,平均值为1.57 mm/a(图7c)。腐殖化度记录该阶段降水量减少,与西南季风区Bittoo洞石笋和董哥洞石笋δ 18O偏负且呈逐渐偏正的趋势(图7d,e)相一致。碳累积速率反映光合有效辐射略有减少,与TSI(图7f)的结果较为一致。洱海孢粉分析显示该阶段内蓼科(Polygonaceae)和莎草科(Cyperaceae)等喜湿草本减少,松属(Pinus)增加[36];白鹇湖孢粉分析显示该阶段内木本植物稍有减少,旱生草本和蕨类植物增加[37],表明该阶段内气候向冷干方向转变。因此,该阶段兴义地区接收到的光合有效辐射减少,植物生产潜力相对较低,季风减弱,降水较少,使兴义泥炭地地下水位变浅,生长着较多的沼生、湿生和水生植物,有机质增加,但微生物分解也加快,总体上泥炭缓慢积累。

    Figure 7.  Comparison of factors influencing the depositional evolution of Xingyi peatland extracted from XY1 core and records obtained from other carriers

    第二阶段:205~160 cm(2 700~2 400 cal. a B.P.)

    XY1腐殖化度平均值上升到40.97,碳累积速率平均值下降到103.91 g C/(m2·a),沉积速率基本不变,平均值为1.56 mm/a。腐殖化度(图7a)反映该阶段降水量增加,这与Bittoo洞石笋和董哥洞石笋δ 18O偏负(图7d,e)的重建结果相一致。碳累积速率呈上升趋势指示光合有效辐射增加,与TSI(图7f)重建的结果相一致。洱海孢粉分析显示该阶段内蓼科和莎草科等喜湿草本增加,松属和铁杉属(Tsuga)也增加[36];白鹇湖孢粉分析显示该时期喜热喜湿的热带亚热带木本植物和蕨类植物增加[37],表明该阶段气候有向暖湿方向转变的趋势。因此,该阶段兴义地区季风增强,季风降水较多,泥炭沼泽湿度增大,微生物活动较弱,有机质分解慢,泥炭积累速度较慢但有逐渐加快的趋势。

    第三阶段:159~76 cm(2 400~1 950 cal. a B.P.)

    XY1腐殖化度变化不大,平均值为40.40(图7a);碳累积速率明显升高,平均值为105.25 g C/(m2·a)(图7b);沉积速率也明显上升,平均值为1.85 mm/a(图7c)。腐殖化度(图7a)反映了该阶段降水总体较少,与Bittoo洞石笋和董哥洞石笋δ 18O(图7d,e)反映的季风降水结果一致。碳累积速率反映光合有效辐射在该阶段早期处于低值后明显增加并稳定在较高值,与TSI(图7f)的重建结果一致。洱海孢粉分析显示该阶段内桦木属(Betula)等开始出现且含量较高,草本植物藜科(Chenopodiaceae)、禾本科(Poaceae)、蒿属(Artemisia)含量增加[36];白鹇湖孢粉分析显示木本植物呈现减少趋势,耐旱草本显著增加,适应石漠化环境的蕨类植物增加,表明该时期气候转干[37]。因此,2 400~2 350 cal. a B.P.太阳辐射减少,季风减弱,降水减少,泥炭地水位变浅,微生物分解较快,但一些高等植物的生物量上升,有机质含量增加,使碳累积速率和沉积速率较前两个阶段明显提高,泥炭积累加快;此后季风减弱降水略有增加但总体偏少,光合有效辐射回升,有机质含量仍较高,泥炭沼泽湿度总体较低偏稳定,有机质分解稳定,泥炭积累高位稳定。

    第四阶段:75~50 cm(1 950~1 770 cal. a B.P.)

    XY1腐殖化度升高,平均值为42.69(图7a);碳积累速率明显下降,平均值为98.00 g C/(m2·a)(图7b);沉积速率明显下降,平均值为1.53 mm/a(图7c)。腐殖化度(图7a)表明该阶段降水较少,且降水量波动较大,与Bittoo洞石笋和董哥洞石笋δ 18O(图7d,e)反映的季风降水变化较一致。碳累积速率反映兴义地区光合有效辐射减少,与TSI减少(图7f)的结果一致。洱海沉积物中松属含量增加[36],白鹇湖沉积物中耐旱草本、蕨类继续增加,说明该时期气候偏干[37]。因此,该阶段季风强度波动剧烈,由季风带来的降水在兴义地区波动大,光合有效辐射减少,造成腐殖化度、碳累积速率、沉积速率曲线的波动明显,泥炭积累过程发生明显波动。

    晚全新世兴义泥炭低腐殖化度对应高碳积累速率、高沉积速率,是由于强降水能维持泥炭表面湿润,抑制泥炭分解;干燥气候将会降低泥炭湿度,加速泥炭分解,泥炭呈高腐殖化度,低碳积累速率,低沉积速率。处于温带的哈尼泥炭和红原泥炭的碳积累速率研究表明,高腐殖化度对应高碳积累速率,该地区升温促进初级生产力的提高,产生更多残留物,产生高碳积累速率[4344];而热带泥炭,泥炭表面高湿度是泥炭积累的关键[45]。因此,碳积累速率的变化特点反映了兴义泥炭发育特点与热带泥炭较为相似。

  • 从以上分析可知,兴义泥炭发育过程与季风气候变化密切相关,受季风降水的明显影响,并与TSI密切相关。而晚全新世亚洲季风气候变化的驱动力包括太阳辐射、大西洋经向翻转(AMOC)及热带辐合带(ITCZ)[46]等。其中太阳辐射与植物生长、分解密切相关,并且季风气候与太阳活动之间存在高度相关性,如在十年—百年尺度的季风气候变化与太阳活动周期基本一致[47]。本研究基于的腐殖化度小波分析及功率谱分析结果(图5)也表明,兴义泥炭发育过程中的外部控制因子主要为太阳活动。

    兴义泥炭腐殖化度比较显著的准周期有83 a、55 a、38 a、31 a、27 a、22 a,这些准周期广泛发现于中国境内的古环境记录中。其中22 a、27 a准周期与太阳活动双海尔周期[48]相近。大气活动中心位置及大气环流研究[49]、北京2 000 a气温变化[50]及临近区域古里雅冰芯和祁连山树轮记录[51]等,均证实22 a周期的存在。31 a、38 a准周期与太阳活布鲁克纳周期(35 a)[52]相一致。我国近500 a的洪涝灾害记录[53]及塔里木盆地南缘尼雅剖面粒度研究[54]中均存在布鲁克纳周期,且在阿尔卑斯冰川进退、太平洋高压、印度低压、赤道低压位置变化和我国长江下游以及北方京、津地区降水等记录中都明确存在35 a周期[55]。55 a周期与太平洋十年涛动指数(PDO)的50~70 a年代际周期较一致[56],与55 a的太阳循环周期十分接近[57]。神农架犀牛洞石笋δ 13C研究存在50~70 a的周期[58],江汉平原近3 000 a古洪水事件研究也记录了52 a周期[59]。83 a准周期与80~90 a的太阳活动世纪周期(Gleisberg周期)相一致。金川泥炭纤维素δ 18O记录发现86 a或93 a的类似周期[60],塔里木盆地南缘湖沼沉积粒度研究也存在97 a周期[54]。因此,XY1钻孔样品腐殖化度记录表明,兴义泥炭地演化不仅受太阳活动双海尔周期、布鲁克纳周期和太阳活动世纪周期驱动,对PDO的变化也有一定响应,表明十年—百年尺度的季风气候和泥炭地演化与太阳活动周期基本相一致。

    太阳活动减弱使太阳辐射量减少,导致北半球因降温所引起的南北半球间洋面温度梯度的增加[61],热带辐合带(ITCZ)平均位置南移,西南季风减弱;夏季太阳辐射减少,北大西洋浮冰增加,温盐环流(THC)减弱,北大西洋经向翻转环流(AMOC)变慢[62],赤道海面温度(SST)升高,最终造成西南季风减弱。2 800 cal. a B.P.太阳辐射减少(图7f),西南季风减弱,兴义地区降水量减少,气候偏干,沼泽水深变浅,推动了晚全新世兴义泥炭地的稳定演化。2 700~2 400 cal. a B.P.期间太阳辐射增加(图7f),西南季风增强,降水增加,泥炭地湿润,微生物活动弱有机质分解减慢,泥炭累积虽较弱但逐渐加快。2 400~1 950 cal. a B.P.期间太阳辐射在早期出现明显低值后回升(图7f),植物初级生产力提高,泥炭积累加快。1 950~1 770 cal. a B.P.期间太阳辐射减少(图7f),西南季风强度剧烈波动,兴义地区干湿波动明显,泥炭积累发生明显波动。

  • 兴义泥炭位于亚热带季风区的喀斯特地貌区,其腐殖化度高值指示干冷,反之则指示气候暖湿。腐殖化度的气候指示意义与温带地区泥炭研究结果差异大,而与热带、亚热带地区泥炭研究结果一致,腐殖化度指示意义在气候区上具有一致性。

    通过对兴义泥炭腐殖化度、碳累积速率、沉积速率,邻近区域石笋δ 18O值、太阳总辐照度、湖泊孢粉记录等的综合集成分析,兴义泥炭发育经历四个阶段:3 000~2 700 cal. a B.P.气候较干燥,泥炭地沼泽水深变浅,植物增长,但微生物分解作用也加强,兴义泥炭缓慢发育;2 700~2 400 cal. a B.P.降水量增加,湿度增加,微生物活动较弱,有机质分解弱,泥炭沉积缓慢加快;2 400~1 950 cal. a B.P.降水量减少,有机质分解快,植物初级生产力增加生物量提高,泥炭沉积较快;1 950~1 770 cal. a B.P.期间季风强度波动剧烈,兴义地区干湿波动明显,泥炭沉积速度发生明显波动。

    利用功率谱分析和小波分析对腐殖化度进行周期分析,研究时段存在的83 a、55 a、38 a、31 a、27 a、22 a周期与太阳活动周期基本一致。当太阳活动弱时,太阳辐射量减少,西南季风强度减弱,泥炭地湿度降低,有机质分解慢,泥炭积累速度快,反之则泥炭积累速度慢。

Reference (62)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return